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We consider a hydrothermal scheduling problem with a mid-term hori-

zon (HTSPM) modeled as a large-scale multistage stochastic program with

stochastic monthly inflows of water to each hydro generator. In the HTSPM

we seek an operating policy to minimize the sum of present and expected future

costs, which include thermal generation costs and load curtailment costs. In

addition to various simple bounds, problem constraints involve water balance,

demand satisfaction and power interchanges.

Sampling-based decomposition algorithms (SBDAs) have been used in

the literature to solve HTSPM. SBDAs can be used to approximately solve

problem instances with many time stages and with inflows that exhibit inter-

stage dependence. Such dependence requires care in computing valid cuts for

the decomposition algorithm.
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In order to help maintain tractability, we employ an aggregate reservoir

representation (ARR). In an ARR all the hydro generators inside a specific

region are grouped to effectively form one hydro plant with reservoir storage

and generation capacity proportional to the parameters of the hydro plants

used to form that aggregate reservoir. The ARR has been used in the liter-

ature with energy balance constraints, rather than water balance constraints,

coupled with time series forecasts of energy inflows. Instead, we prefer as a

model primitive to have the time series model forecast water inflows. This, in

turn, requires that we extend existing methods to compute valid cuts for the

decomposition method under the resulting form of interstage dependence.

We form a sample average approximation of the original problem and

then solve this problem by these special-purpose algorithms. And, we assess

the quality of the resulting policy for operating the system. In our analysis,

we compute a confidence interval on the optimality gap of a policy generated

by solving an approximation on a sampled scenario tree. We present computa-

tional results on test problems with 24 monthly stages in which the inter-stage

dependency of hydro inflows is modeled using a dynamic linear model. We fur-

ther develop a parallel implementation of an SBDA. We apply SBDA to solve

the HTSPM for the Brazilian power system that has 150 hydro generators, 151

thermal generators and 4 regions that each characterize an aggregate reservoir.

We create and solve four different HTSPM instances where we change the in-

put parameters with respect to generation capacity, transmission capacity and

load in order to analyze the difference in the total expected cost.
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Chapter 1

Introduction

1.1 Motivation

Renewable energy is a key piece of the supply side of power systems around

the world, as sustainable development becomes a goal of our societies. This

energy is becoming important to mitigate changes in climate due to global

warming, while not depriving humans of access to goods and services to which

they have become accustomed. The fossil age of the last century contributes

to our current way of living but we are facing the cost of that kind of energy.

Therefore, the access to clean energy is part of many energy programs of

European countries and others which are engaged in making a better world to

live.

Renewable resources should be part of the solution to fulfill the energy

demands of seven billion people. There are many types of green energy like

wind, solar, geothermal, biomass and tidal generation which can be combined

to compose a sustainable portfolio of electricity providers. The main problem

with that kind of energy is that we cannot store it and it depends on the

natural resources which usually do not match the demand as the times and

locations that is necessary.

1



There are some exceptions to this limitation of renewable energy includ-

ing hydro-energy resources in which storage reservoirs can be used to control

the timing of energy generation. In many countries like Canada and Norway,

most of the hydro-electric generation comes from run-of-river power plants

which depend basically on the ice cycles. However, in other countries like

Brazil and Colombia, the hydro plants have large reservoirs which can be used

for optimizing the use of water. In Brazil around 85% of the electricity produc-

tion comes from hydro plants, and the reservoirs have the capacity of providing

energy for several years to satisfy current load levels even if the worst of histor-

ical droughts occurs. Given this characteristic, the hydro-thermal scheduling

problem becomes very important for minimizing the total operational costs

derived from the cost of fuels that feed the thermal plants and the costs of

possible demand curtailments. This problem is complicated by the fact that

we do not have perfect forecasts for future inflows of water into our reservoirs.

This dissertation concerns minimizing the expected value of these operational

costs, given a time series forecast for future inflows into the hydrological reser-

voirs.

1.2 Dissertation Outline

In Chapter 2 we describe a hydro-thermal scheduling problem. In order to

help maintain tractability we use an aggregate reservoir representation that

is also described in this chapter. A detailed mathematical model known as a

multi-stage stochastic program is used to represent this problem. The model
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is presented in detail, as we describe the model’s objective function and each

of its constraints.

In Chapter 3 we present a sampling-based decomposition algorithm

(SBDA) that we use to solve our hydro-thermal scheduling model. A litera-

ture survey is presented, and we describe the main concepts related to SBDAs.

The first SBDA, known as stochastic dual dynamic programming (SDDP), is

described as well as the cut-sharing methodology needed for practical im-

plementations of this algorithm when hydrological inflows exhibit inter-stage

dependence. In this chapter we extended previous methodologies related to

cut-sharing for SBDAs, establishing new formulas for sharing cuts under a

novel interaction between a class of inter-stage dependency models for the hy-

dro inflows, and how they appear in the stochastic program. In Chapter 3 we

also describe a parallel implementation of our SBDA.

In Chapter 4 we present a methodology to assess the solution quality

of SBDAs. A policy generation procedure, and an associated sampling-based

scheme, is described, that we can use to obtain a point estimate for an upper

bound on the optimal value of the true problem, along with an estimate of

the sampling error. We further describe a procedure for estimating a lower

bound on the true problem’s optimal value, along with an estimate of its

sampling error. With the lower bound, upper bound, and associated sampling

errors, we then construct a confidence interval on the optimality gap of the

policy generated by our SBDA. We investigate the results we obtain using

this procedure for assessing solution quality, using a problem with 24 monthly
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stages. Our investigation studies the nature of the results obtained, using

different sample sizes, and provides guidance on the sample sizes necessary to

both obtain a high-quality policy, and to prove that it is indeed near-optimal.

In Chapter 5 we present a case study based on the Brazilian intercon-

nected power system. We present optimization results for a family of 24-stage

problems in which we consider model variants in which additional hydro ca-

pacity becomes available, additional transmission capacity becomes available,

and additional load is introduced to the system.

In Chapter 6 we conclude this dissertation with a summary of the main

contributions of this work. We finalize our discussion pointing out some pos-

sibilities for future work.
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Chapter 2

Hydro-Thermal Scheduling Problem

2.1 Problem Overview

In a hydro-thermal scheduling problem we are interested in minimizing the

production costs of electricity to supply the system demand considering the

operation of both hydro and thermal power generators. In the power sector,

the independent system operator (ISO) may decide to use the water available

at the hydro plant reservoirs to produce electricity. Doing so avoids the eco-

nomic expense required to dispatch thermal power plants, but can risk hydro

availability in future time periods.

The water available to produce electricity is bounded by the reservoir

storage capacities and future water inflows at the river basins of these reser-

voirs. Most of the time thermal generation must be used to complement the

necessary amount of electricity to meet system demand. However, wise use of

the hydro and thermal system resources can reduce costs. Figure 2.1 presents

the decision process that the ISO faces in operating a hydro-thermal system.

Hydroelectricity is inexpensive to produce, with virtually no associated

costs for water usage once hydro turbines are installed. One possibility is

to measure indirectly the value of the electricity produced by hydro genera-
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Figure 2.1: Decision process for the hydro thermal scheduling problem

tors by computing the difference between the operational costs in a system

containing only thermal generation and the operational costs in that same

system containing both hydro and thermal generation. In the former system

the thermal generators are usually dispatched in a least cost fashion to meet

system demand. In the latter system the thermal generators are dispatched to

complement the electricity produced by the hydro generators. By comparing

both operational costs we can indirectly measure the value of hydroelectric

generation to the system.

2.1.1 Problem Characteristics

The available hydro generation capacity at a particular time period depends

on the amount of water stored in the hydro generator’s reservoir. If this hydro

generator is part of a cascade system (there are generators upstream and/or
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downstream in the same river) the amount of stored water is influenced by the

operational decisions applied to the generators upstream. This couples the

problem in space.

Natural water inflows are responsible for a large part of the future

water supply that will be available to generate electricity. These future water

inflows and their stochastic nature complicates the resulting hydro thermal

scheduling model. Our problem is dynamic because present decisions affect

the future. Figure 2.1 presents the intuition behind this idea. On the one hand,

if the ISO uses a large quantity of water to produce electricity today and in

the future a drought occurs it may be necessary to dispatch more expensive

thermal generation (e.g., diesel generators) in order to supply demand or even

to curtail some load. This procedure would generate unnecessary expenses to

the system. On the other hand, if the ISO stores water to use in the future

and large water inflows occur it is possible that the operator must spill some

water from the reservoir. This implies a waste of potential energy and hence

money. These characteristics couple the problem in time.

In this problem, there are multiple interconnected hydro reservoirs in

the system that need to be scheduled over many time periods. This combined

with stochastic inflows means that the problem can be defined as a multi-

stage stochastic program. The objective is to determine the optimal amount

of hydro and thermal electricity to be produced at each time period satisfying

the problem constraints such that the expected operating costs of the system

are minimized.
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2.1.2 Model with Individual Hydro Plants

In formulating a model of the hydro-thermal scheduling problem with indi-

vidual hydro generators one is interested in determining generation targets for

each hydro and thermal plant over multiple time periods with the objective at

minimizing the total operational costs. In this setting, the parameters related

to water inflows, turbine water outflows, water spillage and water storage are

represented by water volumes. In general, such a model captures an inter-

connected cascade system so that decisions at each generator may affect the

whole cascade. Depending on the model’s horizon and time discretization,

water volumes that are used to produce electricity and water volumes that are

spilled from upstream reservoirs are available at the same time period at the

next downstream reservoir and can be used to produce electricity. So, besides

the water inflows, the amount of water available at each reservoir depends on

operational decisions upstream.

Figure 2.2 depicts a hydro plant cascade system. The triangles repre-

sent hydro plants with reservoirs and the circles represent run-of-river hydro

plants. In this setting, operational decisions of generators 1 through 5 have

influence on the water available for generators 6 and 7, and that of generator

7 is also influenced by decisions of generator 6, and so on.

A power system representation with 4 different regions is shown in

Figure 2.3. Each region has its individual demand and its individual power

generators (hydro and thermal). The hydro generators within a region are

coupled by a cascade scheme, and the thermal generators are independent of
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Figure 2.2: Hydro Plants Cascade Representation

each other. Figure 2.3 also shows transmission lines that interconnect the

power system, transferring power between regions. With transmission lines in

a hydro-thermal power system, the ISO can take advantage of the hydrological

diversity between regions in order to operate the system in the best possible

way.

The thermal units play an important role in the system reliability. Dur-

ing periods with unfavorable hydrological conditions, the thermal plants can

be dispatched to help to satisfy demand. This allows the hydro plants to store

water in the reservoirs and produce energy in future time periods as necessary.

Thus, one of the main purposes of the thermal units and transmission lines is

to optimize the utilization of system resources (water and fuel).

2.1.3 Model with Aggregate Reservoir Representation

The main goal in formulating a model of the hydro-thermal scheduling problem

with an aggregate reservoir representation (ARR) is the same as that with
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Figure 2.3: Power System Representation with Individual Hydro Plants

individual hydro plants, minimize present and future operational costs subject

to a set of constraints. The main difference is that in a model with the ARR, we

deal with energy instead of water. Random water inflows and water reservoir

volumes are transformed into energy for an aggregate reservoir using the hydro

generator productivities along the cascade. Now instead of a solution yielding

individual targets for the hydro generators, a solution yields generation targets

for the each aggregate reservoir during the planning horizon.

The hydro plants inside a region are aggregated into a single reservoir

that has both controllable and uncontrollable energy that can be used to pro-

duce electricity. Figure 2.4 depicts some of the parameters of an aggregate

reservoir. The energy inflows are divided into controllable and uncontrollable

inflows. Both the controllable and the uncontrollable inflows may be used
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to generate electricity immediately but only the controllable inflows can be

stored for future use. We have energy losses at the aggregate reservoir due to

evaporation, diversion of water (e.g., for agricultural use) and water spillage.

Figure 2.4: Aggregate Reservoir Representation

Figure 2.5 shows the same power system of Figure 2.3 but now under

the ARR. Note that all the hydro plants inside each region are replaced by a

single aggregate reservoir.

There are a number of parameters required to create the ARR for a

system. We detail these parameters later in this chapter.

2.2 Hydro Generation Power Plants

Hydro generation power plants play the main role in the hydro-thermal schedul-

ing problem. In the simplest model of a generation-demand system that con-

tains only thermal generators, the demand is met by the least cost approach,
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Figure 2.5: Power System Representation with Aggregate Hydro Plants

i.e., thermal generators are dispatched in ascending order of cost until demand

is satisfied. In a system with hydro plants, one can produce electricity with

water, at no cost, and reduce the operational expenses. But the hydro plants

are influenced by the seasons, the amount of hydro generation in a system is

directly proportional to the water inflows. Also, the amount of water stored

at a reservoir couples the problem over time.

There are a number of important parameters that we have to consider

in modeling hydro plants, but first we describe the different types of hydro

plants.
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2.2.1 The Hydro Plant Schemes

There are three main types of hydro generators. Hydro generators with large

reservoirs, run-of-river hydro generators, and small hydro generators.

2.2.1.1 Hydro Plants with Reservoirs

Hydro plants with reservoirs can store water and use this water to produce

electricity whenever it is required. Most hydro power comes from hydro plants

with reservoirs, where the potential energy of dammed water driving a water

turbine and a generator is transformed into electricity. The amount of energy

generated is proportional to the difference in height between the top of the

reservoir and the water discharge level, which is called the reservoir’s head.

Figure 2.6 represents of a hydro generator, a reservoir, and further

details including the dam, the penstock, the generator and the turbine. Figure

2.6 also depicts the maximum (V ) and minimum (V ) operational volumes of

the reservoir and the corresponding maximum (Hmax) and minimum (Hmin)

heads.
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Figure 2.6: Representation of a Hydro Generator with a Reservoir

2.2.1.2 Run-of-River Hydro Plants

Run-of-river hydro generators also have reservoirs, but their capacities are

small compared to other hydro plants. In a run-of-river hydro plant, it is es-

sentially impossible to store water, and hence the flow of water either generates

electricity or is spilled depending on the hydro plant’s generation capacity.

Figure 2.7 depicts a typical run-of-river hydro plant. The water is

captured at the intake structure and goes through a buried penstock to the

powerhouse.

In this scheme if the water is not captured at the intake it will continue

its normal flow in the river. The dam is required to ensure enough water

goes to the penstock. The penstock carries the water from an upper elevation
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Figure 2.7: Representation of a Run-of-River Plant, source: Douglas (2007)

and delivers it to a lower elevation where the water turbine is located. The

difference in height characterizes the head of a run-of-river hydro plant and is

responsible for the potential energy that is transformed into electricity by the

hydro plant.

2.2.1.3 Small Hydro Plants

Small hydro plants vary in power output. Most commonly installed capacities

range from 1 to 30 MW, but there are also plants that have power output

less than 1 MW. These hydro power plants are similar to run-of-river plants,

with little or no reservoir capacity. That said, we distinguish small and run-

of-river plants because we need specific equipment to simultaneously meet the

requirements of sufficiently high power output, environmental restrictions and

reliability.
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Small hydro plants do not have serious environmental impacts. This

scheme of power plant does not require large flooding areas and can be installed

to produce electricity in remote regions. To a greater degree than run-of-river

plants, a drawback of this scheme is that the power output of these plants is

highly dependent on the natural flow of the river, making them susceptible to

seasonal variations.

Usually, because of small power output and seasonal variation, these

power plants are not considered as regular hydro power plants in the hydro

scheduling problem. Instead the power produced by small hydro plants at a

particular time period is simply subtracted from the system electricity demand.

2.2.2 Common Hydro Plants Parameters

Now we turn to the most common important parameters associated with hydro

power plants.

2.2.2.1 Reservoir Head

One of the most important parameters for a reservoir is its head, the difference

in height between the reservoir level and the water discharge level. Given a

reservoir physical shape, a specific volume corresponds to a specific reservoir

height. Each reservoir has its own polynomial that describes the relationship

between volume and height.

We have different reservoir’s head corresponding to the different vol-

umes. There are four different head’s values of interest: minimum, medium,

16



maximum and equivalent head. The equivalent head (Heq,r) of reservoir r is

calculated numerically integrating from Vr to Vr the height with respect to the

volume. We are not interested to compute the different heads of the reservoir.

We assume that the different head values are given for each reservoir in m.

The minimum (Hmin,r) and maximum (Hmax,r) head corresponds to

the minimum and maximum reservoir’s volumes respectively. The medium

head (Hmed,r) corresponds to 65% of the difference between the minimum and

maximum volumes. For run-of-river plants there is just the available head h

in m.

2.2.2.2 Hydro Plant Power Output

A hydro plant typically consists of multiple groups of power generators, and

the power output represents sum of power output over each group of machines.

Equation (2.1) presents the computation of this parameter. If the hydro plant

is run-of-river we have to substitute Hmax,i, Hmed,i and Hmin,i by hi. This pa-

rameter is used as data for the computation of the maximum hydro generation

that is presented further in this chapter.

Pmax,r =
∑
j∈Cr

nr,jP
N
r,j min

(
1,

(
Hmax,r

QN
r,j

)ϕr
)

(2.1a)

Pmed,r =
∑
j∈Cr

nr,jP
N
r,j min

(
1,

(
Hmed,r

QN
r,j

)ϕr
)

(2.1b)

Pmin,r =
∑
j∈Cr

nr,jP
N
r,j min

(
1,

(
Hmin,r

QN
r,j

)ϕr
)

(2.1c)
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where,

Pmax,r power output of hydro plant r under maximum storage [MW ];

Pmed,r power output of hydro plant r under medium storage [MW ];

Pmin,r power output of hydro plant r under minimum storage [MW ];

PN
r,j machine group j’s nominal power output [MW ];

QN
r,j machine group j’s nominal head [m];

Cr set of machine groups for hydro plant r;

nr,j number of power generators in machine group j;

ϕr constant associated with hydro plant r’s water turbine.

If the reservoir head is equal to the nominal head of machine group j

then the amount of power that that machine group can produce is equal to the

nominal power of that machine group. In this case, the term min
(
1,
(
Hr

QN
r,j

)ϕr
)

will be 1, otherwise, depeding on the reservoir’s head the value may be less

than 1 and the power output that we can produce with that machine group

will be smaller than its nominal power.

2.2.2.3 Hydro Plant Productivity

Other important parameter for a hydro generator is its productivity (ρr). The

productivity of a hydro plant represents the plant efficiency to transform water

into energy. This parameter is given in MW/m3/s/m. We use this parame-

ter to compute the energy parameters associated to each aggregate reservoir

further in this chapter.
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2.2.2.4 Reservoir Surface Area

A reservoir’s surface area is used to compute the amount of water that evapo-

rates during each time period. Similar to the height-volume polynomial each

reservoir also has polynomials that characterizes its surface area given its

height. There are different surface areas values of interest: minimum, medium

and maximum surface areas. We are not interested to compute the different

surface areas. We assume that the different surface area values are given for

each reservoir in km2.

2.3 The Aggregate System Reservoir Description

The ARR, also known as the equivalent reservoir representation, was first

mentioned by Pierre Mass in the mid 1940s (Klingerman, 1992). Arvanitidis

and Rosing (1970a,b) present the first ARR model with application to the

multireservoir hydroelectric power system in the Pacific Northwest. The ARR

is an aggregation technique used to reduce the size of the model by aggregating

multiple reservoirs inside a specific region to a single aggregate reservoir. The

use of ARR consequently reduces the computational effort required to solve

a hydro-thermal scheduling model. This type of representation models total

hydro generation of a power system or even a specific region inside the system.

The main idea of this approach is to deal with everything in terms of energy

instead of water.

The ARR has been used since the 1970s in Brazil to model the hydro-

electric power system. First the ARR was coupled with a stochastic dynamic
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programming approach to solve hydro-thermal scheduling problems (Terry,

1980). Since the mid 1990s the same ARR model started to be used with

stochastic dual dynamic programming to solve hydro-thermal scheduling prob-

lems for the Brazilian interconnected system (Maceira et al., 1998, 2002, 2008).

Marcato (2001) presents a hybrid application of ARR together with individ-

ual hydro plants in which the objective is to model more precisely certain

generators in the system. A description of the long-term hydrothermal plan-

ning problem for the Brazilian system, along with a discussion of the required

energy inflow forecasting model and a comparison of the relative merits of

aggregating hydro reservoirs via electrical subsystem versus aggregating them

via hydrological cascade can be found in de Matos et al. (2008) and de Matos

(2008).

We can construct an equivalent reservoir to represent as many or as

few hydro generators as we want. Generally the equivalent reservoir, created

for each region of the power system, contains a set of hydro generators for a

specific river basin, where the characteristics of the random inflows tend to be

similar. We follow the work presented in Cepel (2001) to model and describe

the parameters of the ARR.

2.3.1 Hydro Power System Configuration

Generally, during a long planning horizon, the configuration of the hydro plants

changes. New generators may become available to produce electricity in the

future, the number of generators/turbines of a specific hydro plant may in-
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crease or even a new reservoir may be formed and filled at a particular time.

Each such change creates a different hydro power system configuration.

Three states of a hydro plant allow us to characterize the different hydro

power system configurations:

I. Filling reservoir’s minimum volume: This is the state right before the

hydro plant is constructed. In this state, the power plant cannot generate

electricity, and so the the hydro plant productivity is set to 0. Also, the

reservoir cannot be used by the system.

II. Hydro plant operating with less machines than specified: The reservoir

is available to be operated in this state but only a limited subset of the

generators/turbines can be used to produce electricity. The hydro plant

productivity is set to 0.

III. Normal reservoir operation: The hydro plant’s reservoir is available to be

used and also the number of machines operating is equal to the specified

number. The hydro plant productivity is set to its normal value and the

hydro plant can produce electricity.

If a hydro plant is in state I during time period t and goes to state II

or III at time period t+ 1 (or from state II to III) we have two different hydro

power system configurations. Also if there are changes in the hydro genera-

tion capacity, from one time period to the next, due to changes in the water

discharge levels, we will have different hydro power system configurations.
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We can define a hydro power system configuration as a set of hydro

generators, each operating according to a certain state, at a particular time

period t. The different configurations are important to capture because they

have a strong influence in the computation of most parameters of the equivalent

reservoir. For each different configuration it is necessary to recalculate the

parameters that we explain next.

2.3.2 Maximum Energy Storage Capacity

The maximum energy storage capacity or potential energy of an equivalent

reservoir is calculated as the energy that would be obtained from completely

depleting the reservoirs of that regions. In order to establish the potential

energy of a region it is necessary to adopt an operational rule of reservoir

depletion. da Cruz Jr. and Soares (1999) present a nonlinear operational

rule that can prioritize storage upstream or downstream in the cascade. In

our work we follow the linear operational rule presented in Cepel (2001) that

requires that all the reservoirs inside an ARR have to operate at the same

percentage of storage capacity.

We can then obtain the maximum energy storage capacity by the sum of

the available volume of each reservoir multiplied by its equivalent productivity

plus the productivities of all downstream hydro plants of that reservoir. The

intuition behind this calculation is that the water used to produce electricity

in one hydro generator will be available downstream in the cascade for the

other generators of that same cascade to produce electricity as well. We can
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obtain the maximum energy storage capacity of an equivalent reservoir by:

EAmax =
1

ν

∑
r∈R

(
V r − V r

)∑
j∈Dr

ρjHj (2.2)

where,

EAmax maximum energy storage capacity of the equivalent reservoir

[MW -month];

ν constant to transform [m3/s] in [hm3/month] for period t. It is

function of the number of days in a particular month;

ρj productivity of the group turbine/generator of the hydro

plant j [MW/m3/s/m];

Hj equivalent head Heq,j if hydro plant j has a reservoir or the

available head hj if j is run-of-river plant [m];

R set of reservoirs in the equivalent reservoir. We could write Ri to

indicate precisely but we will suppress the subscript i for simplicity;

Dr set of downstream hydro generators of reservoir r (including r).

The maximum energy storage capacity depends on the hydro system

configuration. If a new hydro plant starts to operate in the future, the maxi-

mum energy storage capacity has to be recalculated at that time period.

2.3.3 Controllable Energy

Controllable energy represents the amount of energy that we can store or use

to meet demand, and can be calculated for each time period of the planning
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horizon by:

ECt =
∑
r∈R

Qt
r

(
ρrHeq,r +

∑
j∈DRr

ρjhj

)
(2.3)

where,

ECt controllable energy available at equivalent reservoir i in time period t

[MW -month];

Qt
r natural water inflow to reservoir r in time period t [(m3/s)-month];

hj head of the run-of-river plant j [m];

DRr set of downstream run-of-river plants from hydro plant r until the

next reservoir.

2.3.4 Uncontrollable Energy

Uncontrollable energy is the amount of energy produced by the run-

of-river hydro plants in an equivalent reservoir. A share of this amount is

accounted for at the upstream reservoirs of these plants, and because of that,

for the calculation of uncontrollable energy we use the incremental inflow at

these plants. The incremental inflow is obtained from the natural inflow dis-

counted by the natural inflow of the reservoirs immediately upstream of that

hydro plant. The uncontrollable energy can be obtained by:

EU t =
∑
j∈RR

(
Qt
j −

∑
u∈Uj

Qt
u

)
ρjhj (2.4)

where,

EU t uncontrollable energy available at the equivalent reservoir
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in time period t [MW -month];

RR set of run-of-river plants in the equivalent reservoir;

Uj set of immediately upstream reservoirs of the run-of-river plant j.

2.3.5 Natural Inflow Energy

The natural inflow energy is the sum of the controllable and the uncontrollable

energy of an equivalent reservoir. We can compute the natural inflow energy

by:

EN t = ECt + EU t (2.5)

where,

EN t natural inflow energy in the equivalent reservoir in time period

t [MW -month].

In Cepel (2001) the natural energy inflow is modeled as the random pa-

rameter for the optimization problem. They create a model to forecast energy

inflows instead of water. Using the historical series of natural water inflows

the historical series of energy inflows is computed using equation (2.5) and

then used to calculate parameters of stochastic time series models. Because of

that they do not have explicitly the share of controllable and uncontrollable

energy that composes the natural inflow energy at each stage. In order to

overcome this problem it is created a linear function that maps the percentage

of controllable energy in natural energy inflow based on the historical data

available.
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We prefer to use natural water inflows forecasts at each hydro plant.

We assume that the water inflows at each hydro plant given by btr, t = 2, ..., T

for all r ∈ R ∪ RR are random. Then we use equations (2.3) and (2.4), in

each time period, to compute exactly the controllable and the uncontrollable

energy parameters in each time period.

2.3.6 Minimal Outflow Energy

The minimal outflow energy represents the amount of energy produced by

the minimal water outflow requirements from the set of reservoirs that are

members of the ARR. The minimal outflow energy does not depend on the

natural inflow of water; rather, it depends exclusively on the hydro system

configuration at a particular time.

We calculate three different values of minimal outflow energy corre-

sponding to the three different head values of the reservoirs. We can calculate

the minimal outflow energy of an equivalent reservoir by:

EM t
max =

∑
r∈R

Qt

r

(
ρrHmax,r +

∑
j∈DRr

ρjhj

)
(2.6a)

EM t
med =

∑
r∈R

Qt

r

(
ρrHmed,r +

∑
j∈DRr

ρjhj

)
(2.6b)

EM t
min =

∑
r∈R

Qt

r

(
ρrHmin,r +

∑
j∈DRr

ρjhj

)
(2.6c)

where, EM t
max, EM

t
med and EM t

min represent the minimal outflow energy con-

sidering the maximum, medium and minimum reservoir head respectively in

time period t in MW -month.
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We construct a linear function to represent the minimal outflow energy

as a function of the energy stored, EM t(EA). This type of energy is uncon-

trollable, which means if we do not use it at a particular time period t we

cannot store it for a future time period.

2.3.7 Maximum Hydro Generation

The maximum hydro generation available to be used by an equivalent reser-

voir has to take in account the energy storage changes during the operational

process. The smaller the storage the smaller the maximum hydro generation

available. The maximum hydro generation at a particular time period is in-

dependent of the natural water inflow, it only depends on the hydro system

configuration.

For each time period (when the hydro system configuration has changed)

we calculate three parameters for the maximum hydro generation, correspond-

ing to the maximum, medium and minimum reservoir storage levels. Equation

(2.7) shows how these parameters are computed.

GH t
max =

∑
r∈R∪RR

(
1− λtC,r

)(
1− λtP,r

)
Pmax,r (2.7a)

GH t
med =

∑
r∈R∪RR

(
1− λtC,r

)(
1− λtP,r

)
Pmed,r (2.7b)

GH t
min =

∑
r∈R∪RR

(
1− λtC,r

)(
1− λtP,r

)
Pmin,r (2.7c)

where,
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GH t
max maximum hydro generation at time t considering maximum energy

storage [MW -month];

GH t
med maximum hydro generation at time t considering medium energy

storage [MW -month];

GH t
min maximum hydro generation at time t considering minimum energy

storage [MW -month];

λtC,r hydro plant r corrective maintenance rate at time t (0 ≤ λtC,r ≤ 1);

λtP,r hydro plant r preventive maintenance rate at time t (0 ≤ λtP,r ≤ 1).

We can calculate the hydro plant power output using equation (2.1).

Then, we construct a linear function to represent the maximum hydro gener-

ation as a function of the energy stored, GH t(EA).

2.3.8 Evaporation Energy Losses

The evaporation losses represent the amount of energy lost by an equivalent

reservoir due to the evaporation of water in a time period t. Each reservoir has

a different evaporation coefficient (according to its region). This coefficient is

influenced by each season and may even be different for each month of the

year.

We can calculate the losses due to water evaporation at the equivalent
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reservoir using Equation (2.8):

EV t
max =

1

103ν

∑
r∈R

evptrA
t
max,r

∑
j∈Dr

ρjHmax,j (2.8a)

EV t
med =

1

103ν

∑
r∈R

evptrA
t
med,r

∑
j∈Dr

ρjHmed,j (2.8b)

EV t
min =

1

103ν

∑
r∈R

evptrA
t
min,r

∑
j∈Dr

ρjHmin,j (2.8c)

where,

EV t
max maximum evaporation energy losses in period t [MW -month];

EV t
med medium evaporation energy losses in period t [MW -month];

EV t
min minimum evaporation energy losses in period t [MW -month];

evpti evaporation coefficient of reservoir r in period t [mm];

Atmax maximum reservoir’s i surface area in period t [km2];

Atmed medium reservoir’s i surface area in period t [km2];

Atmin minimum reservoir’s i surface area in period t [km2].

It is important to mention that the different surface areas correspond

to the different storage levels. Also, if a downstream hydro plant j is a run-of-

river plant we replace Hmax,j and Hmin,j by hj. We construct a linear function

to represent the evaporation energy losses as a function of the energy stored,

EV t(EA).

2.3.9 Energy Losses to Fill Minimal Reservoir Volumes

Due to the addition of a new reservoir and/or hydro plant in the power system,

new hydro generators will begin operation at a particular time period. After
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a new hydro plant is built, it may be necessary to fill the minimum volume

of the reservoir in order to be able to operate the system. The water that is

used to fill the reservoir represents a loss for the cascade because this volume

cannot be used to produce electricity anymore at downstream hydro plants.

This leads to the energy losses required to fill the minimal reservoir volume.

The energy losses due to filling reservoirs volumes does not depend on

the natural inflow of water. It only depends on the hydro system configuration.

Equation (2.9) presents how this loss of energy should be computed:

ELt =
1

ν

∑
r∈RM

V r

∆tr

∑
j∈D∗r

ρjHj (2.9)

where,

ELt energy losses to fill reservoirs volumes in period t [MW -month];

∆tr number of time periods that the reservoir r takes to fill

minimal volume;

RM set of reservoirs that must have their minimal volume filled;

D∗r set of hydro plants downstream from reservoir r (without i).

If the downstream hydro plant j has reservoir then Hj = Heq,j otherwise

Hj = hj for a run-of-river plant.

2.3.10 Water Diversion Energy Losses

Energy losses due to the diversion of water represent the amount of energy that

could have been generated with the amount of water diverted immediately up-

stream of a hydro plant. Generally, it is necessary to divert water upstream of
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a hydro plant to attend certain requirements of specific areas; e.g., sometimes

in areas near the river basins water is needed for agriculture and industry pur-

poses, because of that water has to be diverted from its normal course what

represent energy losses for the aggregate reservoir. These losses depend on

the hydro system configuration and on the water volumes being diverted. The

energy losses are independent of natural water inflow.

There are two types of such water diversion losses, one corresponds to

water diverted immediately upstream of a reservoir, which is then discounted

from the controllable energy. The other corresponds to water diverted im-

mediately upstream of a run-of-river plant, which is then discounted from the

uncontrollable energy. We can compute the controllable portion of these losses

using equation (2.10):

EDCt
max =

∑
r∈R

Qt
D,r

∑
j∈Dr

ρjHmax,j +
∑
r∈RR

Qt
D,r

∑
j∈DF,r

ρjHmax,j (2.10a)

EDCt
med =

∑
r∈R

Qt
D,r

∑
j∈Dr

ρjHmed,j +
∑
r∈RR

Qt
D,r

∑
j∈DF,r

ρjHmed,j (2.10b)

EDCt
min =

∑
r∈R

Qt
D,r

∑
j∈Dr

ρjHmin,j +
∑
r∈RR

Qt
D,r

∑
j∈DF,r

ρjHmin,j (2.10c)

where,

EDCt
max maximum controllable portion of energy losses from water diversion

in period t [MW -month];

EDCt
med medium controllable portion of energy losses from water diversion

in period t [MW -month];

EDCt
min minimum controllable portion of energy losses from water diversion
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in period t [MW -month];

Qt
D,r water volume diverted immediately upstream of hydro plant r

in period t [(m3/s)-month];

DF,r set of downstream hydro plants (starting on the first reservoir)

of run-of-river plant r.

If the hydro plant j is run-of-river plant we substitute Hmax,j, Hmed,j

and Hmin,j by hj. We adjust a linear function to represent the controllable

portion of energy losses due to water diversion as a function of the energy

stored, EDCt(EA).

The uncontrollable portion of energy losses due to water diversion does

not depend on the storage, and this makes makes its computation easier than

the controllable portion. We can compute these losses using equation (2.11).

EDU t =
∑
r∈R

Qt
D,r

∑
j∈DRr

ρjhj (2.11)

where,

EDU t uncontrollable portion of energy losses due to water diversion

in period t [MW -month];

2.3.11 Energy from Hydro Plants Operating with Less Machines

Before a new hydro plant with a reservoir can be used, the reservoir has to be

filled with a certain volume of water. After this volume has been reached, the

new hydro plant goes to state II (described earlier) and the turbine/generator
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groups, that belong to the generator, will be installed during the following

time periods. Each hydro plant is projected with a different number of groups,

and there is a minimum number of operating groups necessary for the hydro

generator to be able to produce energy.

While in state II a power generator can produce energy, but this energy

is not accounted for in the controllable or uncontrollable energy parameters

of the equivalent reservoir. Usually the amount of energy produced by hydro

generators in state II is simply discounted from the system demand. Same

way we do for small hydro plants (see Section 2.2.1.3).

2.4 Thermal Generation Power Plants

In contrast to hydro plants which must be constructed on river-basins, we

have the flexibility to locate thermal generators near the load centers to reduce

transmission losses and costs. A thermal plant is a power generator that uses

fuel to transform energy from heat into electricity. The most common type of

fuel are: natural gas, coal, oil and nuclear.

There is a cost associated with energy production from thermal plants,

with one portion being proportional to fuel costs and the other involving op-

erational and maintenance costs. Each thermal plant has its own function

that relates power output and cost. Usually these cost function are nonlinear,

but in order to simplify the hydro-thermal scheduling problem many models

assume that thermal costs are linear functions of the power output. In our

model, we assume for each thermal plant a fixed cost where ctg is the unit cost
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to produce electricity at thermal plant g during period t.

Later on this chapter we present a model formulation for our hydro-

thermal scheduling problem. We consider the thermal generation of each ther-

mal plant as a decision variable that is restricted by the thermal power plant

minimum and maximum thermal generation at each time period. Note that,

these values are fixed parameters for our optimization model.

The maximum thermal generation of a thermal plant g, at a particular

time period t can be computed using equation (2.12):

GT
t

g = ηgP
t
g

(
1− λtC,g

)(
1− λtP,g

)
(2.12)

where,

GT
t

g maximum thermal generation of thermal plant g available in

time period t [MW -month];

ηg thermal plant g turbine/generator efficiency;

P t
g is the nominal power of thermal plant g at time period t [MW ];

λtC,g is the thermal plant g corrective maintenance rate at time t;

λtP,g is the thermal plant g preventive maintenance rate at time t.

During the time horizon of the hydro-thermal scheduling model, we

can have generation expansion due to new thermal plants that enter the sys-

tem. The thermal generation expansion differs from the one with hydro plants

because they do not affect other power plant operational decisions. Besides

34



the addition of new thermal plants, turbines/generators can be modified dur-

ing the planning horizon, which implies a fluctuation of the available thermal

generation at such time periods.

2.5 Power System Demand

We model demand for energy in unitss of MW -month, and we do so at the

resolution of demand for each region, including three levels of load, represent-

ing high (H), medium (M) and low (L). Each load level captures a period of

the day for some duration. Figure (2.8) represents three load levels during a

specific month, with µ representing a multiplier relative to average demand

and τ representing load level durations.

Figure 2.8: Demand at each load level

In our hydro-thermal scheduling model we discount from the demand

some energy generation in a preprocessing step. As mentioned before, gener-
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ation from small hydro plants is discounted from the demand. Similarly, the

sum of the minimal thermal generation is discounted from the demand. Also

we subtract from the demand energy produced by hydro plants operating in

state II.

Consider a set of regions I that have demand and generation. The

electricity demand in region i, at load level k during time period t is defined

by equation (2.13):

dti,k = Dt
iµ
t
i,k − gshti −

∑
g∈Gi

GT tg − EF t
i (2.13)

where,

dti,k net demand in region i, at load level k in period t [MW -month];

Dt
i monthly average demand in region i in period t [MW -month];

µti,k demand multiplier for region i, load level k in period t;

gshti energy produced by small hydro plants in region i in period t;

GT tg minimum thermal generation from plant g in period t [MW -month];

EF t
i electricity produced by hydro plants operating in state II in region i

in period t.

2.6 Energy Exchanges in the System

Transmission lines allow regions with excess supply to ship energy to regions

with a deficit. Using the available hydro generation and the transmission sys-

tem we can meet demand at regions far away from the river basins. Transmis-
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sion capacity between regions is limited and these restrictions play an impor-

tant role in the operational costs of each region. Lack of transmission capacity

can lead to the need to dispatch expensive generators close to the demand or

even the need to curtail load.

Figure (2.9) represents a small system with four regions and one virtual

region. We can exchange energy between regions that have direct connections.

For example, we can exchange energy between regions 1 and 2 directly, but

in order to transfer energy between regions 2 and 3 we have to pass through

region 1 first. The virtual region 5 is a point where transmission lines have a

connection. In this case, to transfer power from region 3 to 4 we have to pass

at least through the virtual region 5 first. A virtual region has no demand,

so the energy that comes in must be equal the energy that comes out of the

region. Inside the other regions the sum of electricity generation, the load

curtailment and the power transfers (“-” signal if going out from the region

and “+” signal if going into the region) has to equal demand.

2.7 Mathematical Model

We present a formulation of a T -stage stochastic linear program with recourse

for our hydro-thermal scheduling problem with ARR.

Indices / Sets

i, j ∈ I regions that define each aggregate reservoir;

i ∈ I+ regions, including virtual regions;
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Figure 2.9: Power system with 4 regions and 1 virtual region

(i, j) ∈ E energy-exchange pairs;

g ∈ G thermal generators;

Gi subset of thermal generators in region i;

k ∈ K load levels;

` ∈ L curtailment levels;

Li subset of curtailment levels in region i;

t ∈ T time stages;

ωt ∈ Ωt energy inflow scenarios at stage t;

Data

β discount rate;

ctg thermal energy generation cost at plant g, at stage t [$/MW -month];

ρt` load curtailment cost at curtailment level `, at stage t [$/MW -month];

dti,k demand in region i, in load level k, at stage t [MW -month];
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GT
t

g,k upper bound on thermal generation for thermal plant g during load

level k [MW -month];

pt
i,j,k

lower bound on energy transfers from region i to region j, during load

level k at stage t [MW -month];

pti,j,k upper bound on energy transfers from region i to region j, during load

level k at stage t [MW -month];

xti lower bound on energy storage for region i at stage t [MW -month];

xti upper bound on energy storage for region i at stage t [MW -month];

ut`,k upper bound on unmet demand at curtailment level `, during load

level k at stage t [MW -month];

f t1(·) right-hand side (RHS) of the energy-balance constraints. It is a function

of storage from stage t− 1 and energy inflow available at current stage t

[MW -month];

f t2,k(·) RHS of demand satisfaction constraints, for load level k. It is a

function of storage from stage t− 1 and energy inflow available

at current stage t [MW -month];

f t3,k(·) RHS of the hydro-generation constraint, for load level k. It is a

function of storage from stage t− 1 and energy inflow available

at current stage t [MW -month];

Random Variables

bωi,t energy inflow in region i, at stage t, under energy inflow

scenario ω [MW -month];

Decision Variables
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xti energy storage in aggregate reservoir i, at stage t [MW -month];

ghti,k hydro generation at aggregate reservoir i, during load level k, at

stage t [MW -month];

sti water spilled from the aggregate reservoir i, at stage t [MW -month];

gttg,k thermal generation at generator g, during load level k, at stage t

[MW -month];

ut`,k unmet demand at curtailment level `, during load level k, at stage t

[MW -month];

pti,j,k energy transfers from region i to region j, during load level k, at

stage t [MW -month];

yti,k surplus variable to represent the energy generation exceeding the

demand in region i, during load level k, at stage t [MW -month].

In this model we assume that the energy inflows are known at the

beginning of the current stage t.
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Formulation

z∗ =min
∑
i∈I

∑
k∈K

[∑
g∈Gi

c1
ggt

1
g,k +

∑
`∈Li

ρ1
`u

1
`,k

]
+
(
1 + β

)−1Eb2|b1h2(x1, b2)

(2.14a)

s.t. x1
i +

∑
k∈K

gh1
i,k + s1

i = f 1
1 (x0

i , bi,1) ∀i ∈ I (2.14b)

gh1
i,k +

∑
g∈Gi

gt1g,k +
∑
`∈Li

u1
`,k −

∑
j:(i,j)∈E

p1
i,j,k+ (2.14c)

+
∑

j:(j,i)∈E

p1
j,i,k − y1

i,k = f 1
2,k(x

0
i , bi,1) ∀k ∈ K,∀i ∈ I

gh1
i,k − y1

i,k ≤ f 1
3,k(x

0
i , bi,1) ∀k ∈ K,∀i ∈ I (2.14d)∑

i:(i,j)∈E

(
p1
i,j,k − p1

j,i,k

)
= 0 ∀k ∈ K,∀j ∈ I+ \ I (2.14e)

gh1
i,k, s

1
i , y

1
i,k ≥ 0 ∀k ∈ K,∀i ∈ I (2.14f)

0 ≤ gt1g,k ≤ GT
1

g,k ∀k ∈ K,∀g ∈ G (2.14g)

p1

i,j,k
≤ p1

i,j,k ≤ p1
i,j,k ∀k ∈ K,∀(i, j) ∈ E (2.14h)

0 ≤ u1
`,k ≤ u1

`,k ∀k ∈ K,∀` ∈ L (2.14i)

x1
i ≤ x1

i ≤ x1
i ∀i ∈ I. (2.14j)

Note that x0
i is the given energy storage amount available to be used

at the first stage. For stages t = 2, . . . , T we have:
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ht(x
t−1, bωt ) =min

∑
i∈I

∑
k∈K

[∑
g∈Gi

ctggt
t
g,k +

∑
`∈Li

ρt`u
t
`,k

]
+

+
(
1 + β

)−1Ebt+1|b1,...,btht+1(xt, bt+1) (2.15a)

s.t. xti +
∑
k∈K

ghti,k + sti = f t1(xt−1
i , bωi,t) ∀i ∈ I (2.15b)

ghti,k +
∑
g∈Gi

gttg,k +
∑
`∈Li

ut`,k −
∑

j:(i,j)∈E

pti,j,k+ (2.15c)

+
∑

j:(i,j)∈E

ptj,i,k − yti,k = f t2,k(x
t−1
i , bωi,t) ∀k ∈ K,∀i ∈ I

ghti,k − yti,k ≤ f t3,k(x
t−1
i , bωi,t) ∀k ∈ K,∀i ∈ I (2.15d)∑

i:(i,j)∈E

(
pti,j,k − ptj,i,k

)
= 0 ∀k ∈ K,∀i ∈ I+ \ I (2.15e)

ghti,k, s
t
i, y

t
i,k ≥ 0 ∀k ∈ K,∀i ∈ I (2.15f)

0 ≤ gttg,k ≤ GT
t

g,k ∀k ∈ K,∀g ∈ G (2.15g)

pt
i,j,k
≤ pti,j,k ≤ pti,j,k ∀k ∈ K,∀(i, j) ∈ E (2.15h)

0 ≤ utl,k ≤ utl,k ∀k ∈ K,∀l ∈ L (2.15i)

xti ≤ xti ≤ xti ∀i ∈ I. (2.15j)

We use f t1(·), f t2,k(·) and f t3,k(·) on the RHS of the constraints for sim-

plicity. We can represent these functions in more detail as:

f t1(xt−1
i , bωi,t) = δtix

t−1
i + ECt

i − EM t
i − EV t

i − EDCt
i − ELti (2.16)

f t2,k(x
t−1
i , bωi,t) = dti,k −

(
EU t

i + EM t
i − EDU t

i

)
τ ti,k (2.17)

f t3,k(x
t−1
i , bωi,t) =

(
GH t

i − EU t
i − EM t

i + EDU t
i

)
τ ti,k (2.18)

where,
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ECt
i controllable energy in aggregate reservoir i at stage t [MW -month].

ECt
i = γib

ω
i,t;

EM t
i minimal outflow energy at aggregate reservoir i at stage t [MW -month].

This energy is uncontrollable and cannot be stored. EM t
i = EM t

i (δ
t
ix
t−1
i );

EV t
i energy loss due to water evaporation at aggregate reservoir i at stage t

[MW -month]. EV t
i = EV t

i (δtix
t−1
i );

EDCt
i energy losses from controllable water diversion at aggregate reservoir i at

stage t [MW -month]. EDCt
i = EDCt

i (δ
t
ix
t−1
i );

ELti energy losses to fill new hydro reservoirs in aggregate reservoir i

at stage t [MW -month]. This term does not depend on the previous

stored energy from stage t− 1;

EU t
i uncontrollable energy produced by run-of-river hydro plants

in aggregate reservoir i, at stage t [MW -month]. EU t
i = (1− γi)bωi,t;

EDU t
i energy losses from uncontrollable water diversion at aggregate reservoir i

at stage t [MW -month];

GH t
i maximum hydro generation available at aggregate reservoir i at stage t

[MW -month]. GH t
i = GH t

i (δ
t
ix
t−1
i );

δti correction factor used to incorporate changes in the hydro system

configuration in aggregate reservoir i at stage t;

τ ti,k load level k duration fraction at region i at stage t;

γi fraction of the energy inflow that represents controllable energy

at aggregate reservoir i;
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The objective function in equation (2.14a) represents the sum of the

first stage costs and the expected discounted future costs. Similarly, equation

(2.15a) contains the objective function of the problem at stage t. We have

four sets of structural constraints at each stage. Equations (2.14b) and (2.15b)

represent the set of energy balance constraints at stage 1 and t respectively.

We have a total of |I| constraints of this type at each stage, the purpose of

this constraint is to balance the aggregate reservoir energy storage levels. It

considers the inventory the aggregate reservoir i will carry on to the next

stage plus the amount of energy production by hydro plants and the energy

spilled from the aggregate reservoir at that stage. The associated sum must

equal the energy storage from the previous stage minus the losses. Equations

(2.14c) and (2.15c) represent the set of demand satisfaction constraints. We

have a total of |I| · |K| constraints of this type at each stage. The demand

satisfaction constraints require that at each stage, and each region i and each

load level k, the amount of energy produced plus the demand curtailment and

energy exchanges must equal to the system demand for region i during load

level k. The third set of structural constraints in (2.14d) and (2.15d) restricts

the amount of hydro generation that the model can use from the available

energy storage at aggregate reservoir i, during load level k at stage t. We

have a total of |I| · |K| constraints of this type at each stage. The last set of

structural constraints in (2.14e) and (2.15e) enforces energy balance through

virtual regions and we have a total of |K| ·
(
|I+| − |I|

)
constraints of this type

at each stage. The virtual regions do not have demand, which means that the
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energy that comes in the virtual region has to go out. The other constraints

represent simple bounds for the problem at each stage.
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Chapter 3

A Sampling-Based Decomposition Algorithm

3.1 Literature Survey

We focus on multi-stage stochastic linear programs with recourse. According

to Chen and Powell (1999), this class of problems has the following character-

istics:

1. the term stage represents a time period;

2. the beginning of the first stage is viewed as here and now;

3. at the beginning of each stage we know deterministically all the param-

eters in that stage; the random parameters in future time stages is only

known probabilistically;

4. we must make decisions at each time stage that can depend only on the

realizations observed up to that stage and conditional distribution for

parameters in future stages;

5. after the random parameters are realized recourse actions can be taken

to compensate for decisions made prior to this particular stage; and,

6. the total cost measures the quality of the decisions made.
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Until the mid 1980s, most research on hydro-thermal scheduling under

uncertainty used stochastic dynamic programming (SDP) techniques as the

solution method. The main drawback of SDP is the “curse of dimensionality”

of dynamic programming (DP) that makes the problem intractable when the

dimension of the state vector is medium or large. DP algorithm constructs

the future cost function by discretizing the state variables at each stage into

a set of finite values. Then the algorithm proceeds backward in time using

Bellman’s recursion; see Bellman (1957) and Bertsekas (2005). Methods to

overcome DP’s “curse of dimensionality” and solve real-size instances of this

type of problem were necessary. Benders’ decomposition algorithm (Benders,

1962) lead the way.

Benders’ decomposition algorithm is at the core of the solution meth-

ods for multi-stage stochastic linear programs. In the literature, there are two

different types of algorithms used to address this class of problems: scenario-

based decomposition algorithms and sampling-based decomposition algorithms.

Scenario-based methods first select a modest number of scenarios to

represent the probability distribution. The problem, after the scenarios are

chosen, is considered as a large deterministic linear program. The optimal

solution obtained for this problem is exact, but it is only an approximation

of the true original problem, assuming the probability distribution was ap-

proximated. Two of the most well known scenario-based decomposition algo-

rithms are the L-shaped method of Van Slyke and Wets (1969) for two-stage

stochastic linear programs, and the nested Benders’ decomposition algorithm
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(Birge, 1985) for problems with more than two stages. According to Reben-

nack (2010), one advantage of this method is that more uncertainties can be

modeled and represented at the same time. In a hydro-thermal scheduling

problem, for example, one can consider randomness not just on the water in-

flows, but also on electricity demand, fuel prices and other parameters, as long

as a modest number of overall scenarios are considered.

An important application of a Benders-style algorithm to a hydro-

thermal scheduling problem is presented by Pereira and Pinto (1985). Using

a scenario-based method, the authors attempt to solve three- and five-stage

hydro-thermal scheduling problems with two possible random realizations at

each stage. They presented the dynamic dual programming (DDP) algorithm

that later was revised in Velasquez et al. (1999) to be valid for problems with

more than two stages. Morton (1996) presents enhancements to the nested

Benders’ decomposition algorithm, and an application of this algorithm to

hydro-thermal scheduling at Pacific Gas and Electric Company can be found

in Jacobs et al. (1995).

We focus on a sampling-based decomposition algorithm (SBDA) for

multi-stage stochastic linear programs. An SBDA differs from a scenario-

based decomposition algorithm, in that it considers scenario trees whose size

is too large for a scenario-based algorithm. Sample observations of the ran-

dom parameters are drawn, at each time stage. An SBDA proceeds, pursuing

convergence in some probabilistic sense, until it finally reaches a stopping cri-

terion (Chen and Powell, 1999). The idea to introduce sampling methods
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into the nested Benders’ decomposition algorithm gave origin to SBDA. The

first SBDA to appear in the literature is called stochastic dual dynamic pro-

gramming (SDDP), presented in Pereira (1989) and Pereira and Pinto (1991).

SDDP is one of the most used and well known SBDA, and the motivation for

its development was hydro-thermal scheduling.

Since the early 1990s SBDAs have received considerable attention from

the stochastic programming community. SDDP-related algorithms such as

abridged nested decomposition (AND) by Donohue (1996) and Donohue and

Birge (2006), the convergent cutting-plane and partial-sampling (CUPPS) al-

gorithm of Chen and Powell (1999) and the dynamic outer approximation

sampling algorithms (DOASAs) by Philpott and Guan (2008) and Philpott

and de Matos (2010) were developed to improve SDDP’s computational effi-

ciency. In Donohue and Birge (2006) the authors present a different sampling

scheme and computational results for AND and SDDP applied to a dynamic

vehicle allocation problem with uncertain demand. Their AND algorithm also

was applied to a hydro-thermal scheduling problem in the Colombian Power

System (Supatgiat, 2001). The DOASA, first presented in Philpott and Guan

(2008) to deal with a hydro-thermal scheduling problem, was also used to solve

a production planning problem for the dairy industry in New Zealand (Guan

and Philpott, 2009).

Since the appearance of SDDP, convergence properties of these algo-

rithms have been studied in the literature. Convergence analyses and state-

ments are shown in Donohue (1996); Chen and Powell (1999); Linowsky and
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Philpott (2005) and, Philpott and Guan (2008). A convergence proof was pre-

sented by Chen and Powell (1999) for the CUPPS algorithm. Later, Linowsky

and Philpott (2005) extend the proof for SBDA related algorithms in gen-

eral. But according to Philpott and Guan (2008) the convergence proofs pre-

sented until that time were weak in the sense that they require an implicit

assumption of independence between sampled random variables and conver-

gent subsequences of algorithm iterates. Philpott and Guan (2008) present a

simpler convergence proof for SBDA that does not require the independence

assumption and holds in general, based on an idea of Donohue (1996) that

states: “Finite convergence of this algorithm follows from the finite conver-

gence of the Nested Decomposition algorithm, since the scenarios from which

the optimality cuts are generated are re-sampled at each iteration”.

Shapiro (2011) discusses statistical properties of the SDDP algorithm.

In his work, considering stage-wise independence, a sample from the distribu-

tion of the original problem is taken to create a finite sample average approx-

imation (SAA) of the true problem. SDDP is studied for this SAA problem

and an extension for the risk-averse case, using conditional value at risk (see

Rockafellar and Uryasev, 2000) is presented. Shapiro states that the stop-

ping criteria proposed by Pereira and Pinto (1991) and used by Donohue and

Birge (2006) does not guarantee correct stopping or reasonable solution quality

for SBDA. He presents another stopping criterion and argues that it is more

meaningful from a statistical point of view.
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Stopping criteria for SDDP were also studied by Homem-de-Mello et al.

(2011). The authors present the stopping criterion proposed in Pereira and

Pinto (1991) as a hypothesis test. They argue that the original stopping

criterion allows the algorithm to terminate sooner than it should, depending

on the sample size chosen, without achieving good solutions. The authors

then suggest a modification of the original criterion to alleviate the premature

stopping issue.

Monte Carlo methods usually define the sampling schemes for SBDA

(Pereira and Pinto, 1991; Donohue and Birge, 2006; Chen and Powell, 1999;

Philpott and Guan, 2008). Homem-de-Mello et al. (2011) present two dif-

ferent sampling schemes for SBDA, randomized quasi-Monte Carlo (QMC)

and the Latin hypercube sampling (LHS) schemes. The authors apply SDDP

with these alternative sampling schemes to a three-year horizon hydro-thermal

scheduling problem and achieve more consistent operational policies than with

SDDP with traditional Monte Carlo methods.

SBDA avoids the DP “curse of dimensionality” by constructing an ap-

proximation of the future cost function. The algorithm approximates the fu-

ture cost function with a piecewise linear functions (Benders’ cuts) that are

iteratively added as the algorithm proceeds. In this chapter an SDBA is pre-

sented and the ideas behind the approximation of the future cost function are

described. Then we turn to the algorithm’s ability to share cuts under an

inter-stage dependency model (Infanger and Morton, 1996). We conclude the

chapter with an extension of the cut-sharing procedure to deal with the ARR
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model of Chapter 2, coupled with forecasts of natural inflow of water at each

hydro plant.

3.2 A Two Stage Stochastic Linear Program

Towards introducing an SBDA in the multi-stage setting, we begin with the

simpler non-sampling based algorithm for two-stage linear programs of the

form:

z∗ = min
x1,x2

c1x1 + c2x2

s.t. A1x1 = B1x0 + b1

−B2x1 + A2x2 = b2

x1 ≥ 0, x2 ≥ 0,

(3.1)

where, for t = 1, 2, matrix At has mt rows and dt columns, and the remain-

ing matrices and vectors are dimensioned to conform. In order to illustrate

Benders’ scheme for a two-stage linear program we begin by assuming that

matrices A1, B1, A2 and B2 are deterministically known as well as the vectors

b1, b2 and x0.

Model (3.1) can be partitioned by stage following the idea behind Ben-

ders’ decomposition. We can re-write the problem as a two-stage model with

a recourse function in the following way:

z∗ = min
x1

c1x1 + h(x1, b2)

s.t. A1x1 = B1x0 + b1

x1 ≥ 0,

(3.2)
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where, we define the recourse function as:

h(x1, b2) = min
x2

c2x2

s.t. A2x2 = B2x1 + b2 : π

x2 ≥ 0.

(3.3)

The recourse function h(x1, b2) represents the cost incurred in the sec-

ond stage given the first stage decisions x1. One way to view the recourse

function is via the dual program of (3.3):

h(x1, b2) = max
π

π(B2x1 + b2)

s.t. πA2 ≤ c2.
(3.4)

Imagine enumerating all the extreme points of model (3.4)’s feasible

region, π(1), . . . , π(l), where l is the number of extreme points of the set Π =

{π : πA2 ≤ c2}. We can then write:

h(x1, b2) = max
1≤i≤l

π(i)(B2x1 + b2).
(3.5)

Model (3.5) can be re-written, by adding a new variable θ to represent

the optimal value:

h(x1, b2) = min
θ

θ

s.t. θ ≥ π(1)(B2x1 + b2)

θ ≥ π(2)(B2x1 + b2)
...
θ ≥ π(l)(B2x1 + b2).

(3.6)

53



We can then re-write model (3.1) based on (3.2) and (3.6):

min
x1,θ

c1x1 + θ (3.7a)

s.t. A1x1 = B1x0 + b1 (3.7b)

−~Gx1 + e θ ≥ ~g (3.7c)

x1 ≥ 0, (3.7d)

where, ~G represents the cut gradient matrix with l rows given by π(i)B2, i =

1, 2, . . . , l, and ~g represents the l-vector of cut intercepts with components

given by π(i)b2, i = 1, 2, . . . , l. Model (3.6), as stated, is called the full master

program and has optimal value z∗. If instead (3.7c) only contains a subste of

the cut constraints the model (3.6) is called the relaxed master program, and

has optimal value z ≤ z∗.

Benders’ algorithm decomposes (3.1) into two separate problems. A

relaxed master problem that represents the first stage together with a subset

of optimality cuts (3.7c), and a subproblem that represents the second stage

used to determine the value of h(x1, b2) and generates dual extreme points.

Model (3.7) represents the master problem and models (3.3), (3.4) and (3.5)

represent different formulations for the subproblem. Note that the optimality

cuts are added iteratively, to the relaxed master and so at an iteration of the

algorithm the set of cuts in the relaxed master is just the collection of the

cuts generated so far. Let the optimal solution of the relaxed master, at a

particular iteration of the algorithm, be (x̂1, θ̂). Because the master has only

a subset of the cuts, we have z = c1x̂1 + θ̂ ≤ z∗.
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Now let b2 be a random vector with sample space Ω, and a sample point

(scenario) in Ω denoted ω. A realization of the random vector b2 is denoted bω2

and when the scenario tree is finite, b2’s probability mass function is denoted

P(b2 = bω2 ) = pω2 .

The first stage decision variables, x1, have to be chosen prior to the real-

ization of the second stage random vector b2. Note that we are only considering

uncertainty in b2, although this model could be extended to address uncertain-

ties in other second stage parameters. The resulting two-stage stochastic linear

program (SLP-2) with random vector b2, can be formulated according to model

(3.8):

z∗ = min
x1,xω2

c1x1 +
∑

ω∈Ω p
ω
2 c2x

ω
2

s.t. A1x1 = B1x0 + b1

−B2x1 + A2x
1
2 = b1

2

−B2x1 + A2x
2
2 = b2

2
...

. . .
...

−B2x1 + A2x
|Ω|
2 = b

|Ω|
2

x1 ≥ 0, xω2 ≥ 0 ∀ω ∈ Ω.

(3.8)

Model (3.8) contains a block diagonal structure with connecting vari-

ables (x1). This type of problem can be solved by Benders’ decomposition or

equivalently the L-shape method. We can re-write model (3.8) as:

z∗ = min
x1

c1x1 + Eb2|b1h(x1, b2)

s.t. A1x1 = B1x0 + b1

x1 ≥ 0.

(3.9)

For each realization of b2 we have a problem similar to (3.3). We can
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apply the same idea described before in the stochastic case. We now state the

Benders’ decomposition algorithm for SLP-2.

Benders’ Decomposition for SLP-2:

Input: Instance of model (3.8) with a scenario tree with modest-sized |Ω|.
Bound M , Eh(x1, b2) ≥M, ∀x1.

Output: Optimal solution x∗1.

0. let k = 0;

append lower bounding cuts to the relaxed master program θ ≥ −M ;

1. solve the relaxed master program, i.e., (3.7), and obtain (xk1, θ
k);

let zk = c1x
k
1 + θk;

2. do ω ∈ Ωk

form RHS of model (3.3): B2[x1]k + bω2 ;

solve and obtain ([xω2 ]k, [πω]k);

enddo

let zk = c1x
k
1 +

∑
ω∈Ω p

ω
2 c2

[
xω2
]k

;

3. if zk = zk, then stop and output
[
xk1
]
;

4. Form cut gradient and intercept:

Gk =
∑

ω∈Ω p
ω
2

[
πω
]k
B2 and

gk =
∑

ω∈Ω p
ω
2

[
πω
]k
b2;

augment ~G and ~g with Gk and gk;

5. let k = k + 1; goto step 1;
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3.3 A Multi-Stage Stochastic Linear Program

A T -stage stochastic linear program (SLP-T) with recourse may be formulated

as follows:
z∗ = min

x1
c1x1 + Eb2|b1h2(x1, b2)

s.t. A1x1 = B1x0 + b1

x1 ≥ 0,

(3.10)

where for t = 2, . . . , T ,

ht(xt−1, bt) = min
xt

ctxt + Ebt+1|b1,...,btht+1(xt, bt+1)

s.t. Atxt = Btxt−1 + bt

xt ≥ 0.

(3.11)

The matrices At have mt rows and dt columns, t = 1, . . . , T , and the

remaining matrices and vectors are dimensioned to conform. The sample space

for stage t is denoted Ωt, and a sample point (scenario) in Ωt is denoted ωt. A

stage t > 1 scenario, ωt, has a unique stage t−1 ancestor denoted a(ωt). And,

a stage t < T scenario has a set of stage t + 1 descendants denoted ∆(ωt). A

realization of the random vector bt is denoted bωt
t and when the scenario tree

is finite, bt’s probability mass function is denoted P(bt = bωt
t ) = pωt

t . When the

tree is again finite and ωt+1 ∈ ∆(ωt), we can define the conditional probability

mass function P(bt+1 = b
ωt+1

t+1 | bt = bωt
t ) = p

ωt+1|ωt

t+1 via

p
ωt+1|ωt

t+1 =
p
ωt+1

t+1∑
ω′t+1∈∆(ωt)

p
ω′t+1

t+1

.

In the setting of a hydro-scheduling model with aggregate reservoir

representation (ARR), models (3.10) and (3.11) are general formulations of
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models (2.14) and (2.15). The xt vector represents all stage t decision vari-

ables including hydro generation, hydro energy storage, water spills from the

reservoirs, thermal generation, energy transfer among regions and load cur-

tailment. An A matrix is the stage t model’s structural constraint matrix that

captures energy-balance constraints, demand satisfaction constraints, maxi-

mum hydro generation constraints and energy transfer constraints. The bt

vector represents the deterministic demand, the random energy inflow that

includes the controllable energy inflow (ECt
i ) and the uncontrollable energy

inflow (EU t
i ), the energy losses to fill minimal reservoir volumes (ELti) and

the uncontrollable portion of energy losses from water diversion (EDU t
i ). The

term Btxt−1 includes the energy storage that is carried forward from stage

t − 1 and is available at stage t. This term further captures the fact that

terms like the minimal energy outflow (EM t
i ), the evaporation energy losses

(EV t
i ), the controllable portion of energy losses from water diversion (EDCt

i )

and the maximum hydro generation (GH t
i ) are all modeled as linear functions

that depend on the storage in aggregate reservoir i in the previous stage, e.g.,

EM t
i (δ

t
ix
t−1
i ) = aEM t

i δ
t
ix
t−1
i + bEM t

i , where aEM t
i and bEM t

i are the slope

and the intercept of the linear function EM t
i (δ

t
ix
t−1
i ) of aggregate reservoir i in

time period t. The expression ht+1(xt, bt+1) represents the future cost function.

Costs include thermal energy generation costs and penalty costs for

energy deficits. To handle end-effects, we can specify the value of ending

energy inventories via hT+1. Or, alternatively we can let hT+1 = 0 and instead

specify final-period inventory constraints. We assume that the model has
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so-called relatively complete recourse, i.e., for any realization of the random

inflows and for any history of feasible decisions, the stage t model defined by

(3.11) is feasible.

As indicated above, the random parameters in model (3.10) involve

energy inflow into aggregate reservoirs, represented by the random vectors bt.

Figure 3.1 shows a three-stage scenario tree.

Figure 3.1: Depiction of a three-stage scenario tree

It is important to understand the relative timing of observations of the

random inflows and the model’s decisions. The energy inflows b1 in the first

time period (month) are assumed known when we make decision x1, but only

a probability distribution governing future energy inflows (b2, b3) is assumed

known. The vector realization of b2 is known when decisions x2 must be made

for the second month. At this time, we have an updated conditional probability

distribution governing b3 given b2. In the first month, B1x0 represents the
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(given) initial energy inventories in the ARRs and in subsequent stages Btxt−1

captures the “state” of the system, i.e., the inventories carried forward from

one month to the next. We note that while the first stage energy inflows, b1,

are deterministically known at the beginning of the model, it is notationally

convenient to condition on b1 as we have in (3.10) and (3.11). Moreover, we

may wish to solve a family of models with different first stage energy inflows,

b1. The output of an algorithm we describe later in Section 3.6 is a set of cuts

in each stage, which approximate expected future cost functions. Solving a

family of models for a range of first stage vectors, b1, allows us to have a richer

approximation of the first stage expected future cost function, across a larger

domain of interest.

3.4 Stochastic Process Governing Energy Inflows

The stochastic process that governs the water, and therefore the energy, inflows

is one of the most important characteristics of the hydro-thermal scheduling

problem. In this section we assume that the stochastic model for bt is in

the same units as that of the constraints. That assumption is implicit in the

Btxt−1 + bt RHS of model (3.11). So, if our flow conservation constraint is in

units of water volume then our forecasting for {bt} is also in units of water.

Or, if we have formulated the model using an ARR with flow conservation in

units of energy then our forecasting of {bt} is also in units of energy. Given

our context from Chapter 2, we assume the latter situation here. Later in

Section 3.8, we consider the variant in which inflow forecasting is in units of
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water volume but we formulate the stochastic program in units of energy.

3.4.1 Interstage Independent Case

The simplest way to represent the random variables representing energy inflows

in a scenario tree is to assume that the vectors bt, t = 2, . . . , T , are interstage

independent. When we assume independence from one month to the next

we mean that the realization of the random variable at a future stage has no

relationship with the realization of random variables from previous stages.

3.4.2 Interstage Dependent Case

In the interstage dependent case, we assume the energy-inflow vectors satisfy

the following process:

bt =
t−1∑
j=1

Rt
jbj + ηt, t = 2, . . . , T, (3.12a)

ηt, t = 2, . . . , T, are independent. (3.12b)

The matrices Rt
j, j = 1, . . . , t− 1, t = 2, . . . , T , are assumed known, pre-

sumably because they have been estimated using historical data. Dependency

model (3.12) generalizes the periodic autoregressive model (PAR) in which

Rt
j exhibits seasonality. For example, referring to de Matos et al. (2008), we

can appropriately define the Rt
j matrix and ηt random vectors to have: (i)

12 seasons in a model with monthly time increments, (ii) the length of the

lag depend on the month (because some matrices satisfy Rt
j = 0), (iii) the

PAR model use centered terms bj − Ebj in place of bj (because the associated
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deterministic terms can be absorbed in ηt), and (iv) the distribution of ηt can

be that of a multivariate shifted lognormal. Note that if we have a lag of a

specific order (e.g., six monthly periods) then we can alter (3.12a) so that in

the initial periods the inflow vector depends on the “prehistory” of the opti-

mization model (e.g., the inflows in the six months predating the optimization

model’s first month).

In the general statement of the stage t − 1 problem (i.e., a version of

model (3.11) shifted by one stage), the expectation operator is Ebt|b1,...,bt−1 .

In light of the autoregressive-style dependency process specified above, the

first term on the RHS of (3.12a) is deterministic given that we condition on

b1, . . . , bt−1. So, given these values of the inflows in stages 1, . . . , t − 1, the

expectation amounts to integrating with respect to the distribution of ηt. In

other words, under (3.12) we can rewrite the conditional future cost function

in model (3.11) as

Ebt+1|b1,...,btht+1(xt, bt+1) = Eηt+1ht+1(xt, bt+1(b1, . . . , bt, ηt+1)). (3.13)

3.5 From an Infinite to a Finite Sampled Scenario Tree

When the probability distribution governing bt is continuous then the scenario

tree in Figure 3.1 is also infinite, with a continuum of descendent nodes at each

stage. The sampling-based decomposition algorithm (SBDA) we describe in

Section 3.6 is not designed to handle a stochastic program with an infinite

scenario tree. So, we first form a finite scenario tree by sampling.
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3.5.1 Sampled Scenario Tree under Interstage Independence (SSTII)

First assume that the vectors bt, t = 2, . . . , T , are interstage independent.

(Note that even though they are interstage independent, the components of

the vector bt within a time stage can be dependent.) In this case we form a

sample scenario tree in the following fashion.

Input: Multivariate distributions Ft(·) governing bt, t = 2, . . . , T , which are as-

sumed to be interstage independent. A procedure for drawing i.i.d. observations

from each Ft. Branch size n(t) for each stage, t = 2, . . . , T , e.g., n(t) = 20 ∀t.

Output: A finite sampled scenario tree with the property that its inflow

vectors exhibit interstage independence.

1. Let b1 denote the known first stage realization.

2. Sample b1
2, . . . , b

n(2)
2 , i.i.d. observations from F2. Let these denote the de-

scendent nodes of b1.

3. Sample b1
3, . . . , b

n(3)
3 , i.i.d. observations from F3, independent of those formed

in stage 2. Let these denote the same set of descendent nodes for each of the

n2 = n(2) leaf nodes {b1} × {b1
2, . . . , b

n(2)
2 }.

...

t. Sample b1
t , . . . , b

n(t)
t , i.i.d. observations from Ft, independent of those formed

in stages 2, . . . , t − 1. Let these denote the same set of descendent nodes for

each of the nt−1 =
∏t−1

t=2 n(t) leaf nodes given by {b1} × {b1
2, . . . , b

n(2)
2 } × · · · ×

{b1
t−1, . . . , b

n(t−1)
t−1 }.
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...

T. Sample b1
T , . . . , b

n(T )
T , i.i.d. observations from FT , independent of those

formed in stages 2, . . . , T−1. Let these denote the same set of descendent nodes

for each of the nT−1 =
∏T−1

t=2 n(t) leaf nodes given by {b1} × {b1
2, . . . , b

n(2)
2 } ×

· · · × {b1
T−1, . . . , b

n(T−1)
T−1 }.

In the scenario tree constructed by this SSTII algorithm, we have the

same set of scenarios at each branch of the tree. Figure 3.2 presents an example

of a finite three stage scenario tree built by this algorithm with three possible

scenarios per stage, i.e., n(t) = 3 for all t.

Figure 3.2: Three-stage scenario tree under interstage independent model

Note that in Figure 3.2 the first node represents the first stage where

the energy inflows are assumed to be deterministically known. In the second

stage we have three scenarios. In the third stage we have for the left branch

of the tree from A2 the same set of three descendant scenarios {A3, B3, C3}
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that we have for the other branches (B2 and C2). This characterizes the

interstage independent setting, i.e., the energy inflows in the third stage are not

influenced by what happened before. Here, the original infinite scenario tree

and the finite sampled scenario formed by the SSTII algorithm both exhibit

interstage independence.

In stage t of the scenario tree created by the SSTII algorithm there are

a total of nt =
∏t

t=2 n(t) nodes. These are leaf nodes only temporarily during

construction of the tree. In the final scenario tree output by SSTII there are

leaf nodes only in stage T . In a more general tree, it will be convenient to

denote the nt realizations on stage t in two distinct ways, bit, i = 1, . . . , nt,

and bi
′,j
t , j = 1, . . . , n(t), i′ = 1, . . . , nt−1. When we use the sampled scenario

tree to form an instance of model (3.10), the former representation indexes

over ωt ∈ Ωt and the latter representation indexes over ωt ∈ ∆(ωt−1) for each

ωt−1 ∈ Ωt−1. Given i in the former representation, i′ = b(i − 1)/n(t)c + 1

and j = (i − 1) mod n(t) + 1. And, given (i′, j) in the latter representation,

i = (i′ − 1)n(t) + j. We use this notation in describing the procedure to

construct a sampled scenario tree under the autoregressive-style interstage

dependency model (3.12) in the next section.

3.5.2 Sampled Scenario Tree under Interstage Dependence Model
(SSTIDM)

Now assume that the vectors bt, t = 2, . . . , T , are interstage dependent ac-

cording to model (3.12). In this case we form a sample scenario tree in the

65



following fashion.

Input: Multivariate distributions Ft(·) governing ηt, t = 2, . . . , T , assumed to

be interstage independent. A procedure for drawing i.i.d. observations from

each Ft. Dependency model (3.12) with known Rt
j matrices. Branch size n(t)

for each stage, t = 2, . . . , T , e.g., n(t) = 20, ∀t.

Output: A finite sampled scenario tree with the property that its inflow

vectors satisfy the dependency model (3.12), where the independent increments

ηt have the empirical distribution the algorithm has formed by sampling.

1. Let b1 denote the known first stage realization.

2. Sample η1
2, . . . , η

n(2)
2 , i.i.d. observations from F2. Use equation (3.12a) with

t = 2 to form b1
2, . . . , b

n(2)
2 , i.e., bi2 = R2

1b1 + ηi2, i = 1, . . . , n(2). Let these

denote the descendent nodes of b1.

3. Sample η1
3, . . . , η

n(3)
3 , i.i.d. observations from F3, independent of those formed

in stage 2. For each of the i = 1, . . . , n2 stage 2 leaf nodes use equation (3.12a)

with t = 3 to form the descendant nodes bi,13 , . . . , b
i,n(3)
3 using the same set of

increments {η1
3, . . . , η

n(3)
3 }.

...

t. Sample η1
t , . . . , η

n(t)
t , i.i.d. observations from Ft, independent of those formed

in stages 2, . . . , t− 1. For each of the i = 1, . . . , nt−1 stage t− 1 leaf nodes use

equation (3.12a) with t to form the descendant nodes bi,1t , . . . , b
i,n(t)
t using the

same set of increments {η1
t , . . . , η

n(t)
t }.
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...

T. Sample η1
t , . . . , η

n(T )
T , i.i.d. observations from FT , independent of those

formed in stages 2, . . . , T − 1. For each of the i = 1, . . . , nT−1 stage T − 1

leaf nodes use equation (3.12a) with t = T to form the descendant nodes

bi,1T , . . . , b
i,n(T )
T using the same set of increments {η1

T , . . . , η
n(T )
T }.

Figure 3.3 presents a simple representation of a finite scenario tree with

three stages under interstage dependence.

Figure 3.3: Three-stage scenario tree under interstage dependent model

In Figure 3.3 the first node represents the first stage where the energy

inflows are assumed to be deterministically known. In the second stage we have

three different possible scenarios. In the third stage we have for each branch
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of the tree different sets of possible scenarios, this characterizes the interstage

dependent setting. The energy inflows on the third stage are influenced by

what happened in the second stage.

3.5.3 Sampled Scenario Tree Observations

As indicated in the SSTII and SSTIDM procedures, we emphasize using the

same set of n(t) observations at stage t to form the descendent nodes of all stage

nt−1 scenarios. This ensures the resulting sampled tree is interstage indepen-

dent under SSTII, and satisfies the dependency model (3.12) under SSTIDM.

Note that if we instead used a separate, independent set of i.i.d. observations

b1
t , . . . , b

n(t)
t for each of the stage nt−1 scenarios in SSTII then the resulting

sampled tree would not be interstage independent. An analogous fact holds

for the similarly modified SSTIDM procedure. We wish to maintain inter-

stage independence, or more generally the dependency model (3.12), in our

sampled scenario trees so that we can apply an SBDA to solve the stochastic

program defined on those trees. The SBDA idea does not apply, for example,

to the scenario tree in which we instead use a separate, independent set of

i.i.d. observations b1
t , . . . , b

n(t)
t for each of the stage nt−1 scenarios in SSTII.

As indicated in model (3.10), let z∗ denote the optimal value to model

(3.10) defined on the original, infinite scenario tree. Let ẑ∗ denote the optimal

value to model (3.10) instead defined on the simple scenario tree formed using

the procedure SSTII or SSTIDM. Of course, ẑ∗ is a random variable. And, for

problems with more than a few stages we cannot compute a realization of ẑ∗
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because of the exponentially-sized scenario tree. That said, we do know that

Eẑ∗ ≤ z∗ (Chiralaksanakul and Morton (2004) and Mak et al. (1999)), and

this fact is useful in establishing the quality of a feasible policy.

We say above that the bt in SSTII, and the ηt in SSTIDM, are drawn

i.i.d. at each stage. However, we can use other sampling schemes. For example,

we could use Latin hypercube sampling (LHS) or randomized quasi Monte

Carlo (RQMC) sampling schemes to generate these observations (Homem-de-

Mello et al., 2011). Our only requirement of such an alternative sampling

scheme is that it produce an unbiased estimator if we remove the optimization

operator, i.e., that ηt+1 be drawn from Ft+1 so that the samples satisfy the

following unbiasedness condition

Eηt+1ht+1(xt, bt+1(ηt+1)) = E

 1

n(t+ 1)

n(t+1)∑
j=1

ht+1(xt, bt+1(ηjt+1))

 , (3.14)

for all xt and t = 1, . . . , T − 1. Here, we have used the representation of the

conditional expected future cost function given by (3.13) and have suppressed

the dependence of bt+1 on b1, . . . , bt only for notional simplicity.

3.6 Sampling-based Decomposition Algorithm

The first SBDA-type implementation to appear in the literature was the SDDP

algorithm developed by Pereira and Pinto (1991) in order to approximately

solve problems of the type described in Section 3.3. While we formalize the

SDDP algorithm below, it is easy to visualize as shown in Figure 3.4. To

simplify this description, for the moment we regard the finite sampled tree
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obtained from the SSTII or SSTIDM procedure of Section 3.5 as defining

the problem we wish to solve. So, when we reference the expectation operator

Ebt+1|b1,...,bt , this will be with respect to the sampled scenario tree, whose sample

space we denote Ω̂T in place of the original sample space ΩT .

During a typical iteration of the SDDP algorithm, cuts have been ac-

cumulated at each stage. These represent a piecewise linear outer approxima-

tion of the expected future cost function, i.e., Ebt+1|b1,...,btht+1(xt, bt+1), at each

stage. On a forward pass we sample a number of linear paths through the

tree as depicted in Figure 3.4a. As we solve a sequence of problems at each

time stage along a single forward path, the cuts that have been accumulated

so far are used to form decisions at each stage. These collections of cuts yield

a policy that indicates the decisions we will make on any such path through

the tree. That policy does not anticipate the future. In fact, the decisions

can be made at a node on a sample path at stage t, even before we sample

the random energy inflow at stage t+ 1. In this way, the sample mean of the

costs incurred along all the forward sampled paths through the tree form an

estimator of the expected cost we incur by following the policy specified by

the current set of cuts. Figure 3.4a shows three explicit forward paths in a

four-stage tree, while about 200 forward paths in a 120-stage tree are used

in de Matos et al. (2008). Note that those (say) 200 sampled forward paths

should be selected independently in each iteration of the SDDP algorithm.

In the backward pass of the algorithm, we add cuts to the collection

defining the current approximation of the expected future cost function at
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… … 

(a) Forward Pass

… 

…  …  … 

…  …  … 

(b) Backward Pass

Figure 3.4: The figure depicts forward and backward passes of the SDDP
algorithm

each stage. We do this by solving the descendent nodes of each node in the

linear paths from the forward pass, except in the final stage, T . In Figure 3.4b

the gray nodes correspond to the nodes that were selected in this iteration’s

forward pass. The white nodes are the additional nodes we solve as part of

the backward pass in order to construct optimality cuts. Figure 3.4 shows a

single set of cuts corresponding to all the nodes on each stage. This is a correct

depiction when the bt, t = 2, . . . , T , are interstage independent. When they

are instead dependent according to the autoregressive-style model (3.12) then

an intercept-correction formula is applied to each node, which requires keeping

track of, and then using, the expected value of the dual variables associated

with the cuts and the lag term (
∑t−1

j=1R
t
jbj) as detailed in Infanger and Morton

(1996) and later in this section.

Let ~Gt and ~gt denote the cut-gradient matrix and cut-intercept vector
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for stage t that have been generated so far when running the SDDP algo-

rithm. Each backward pass of SDDP along a sample path (there are three

in Figure 3.4b) augments ~Gt and ~gt with one additional row, in a manner

we make precise below. We define a stage t optimization problem that we

view as a master program with respect to its stage t+ 1 descendants and as a

subproblem with respect to its stage t− 1 ancestor:

zt = min
xt,θt

ctxt + θt (3.15a)

s.t. Atxt = Btxt−1 + bt : πt (3.15b)

−~Gtxt + e θt ≥ ~gt : αt (3.15c)

xt ≥ 0. (3.15d)

Here, θt in the objective function (3.15a), coupled with cut constraints (3.15c),

forms an outer linearization of the recourse function Ebt+1|b1,...,btht+1(xt, bt+1)

from model (3.11). The structural and nonnegativity constraints (3.15b) and

(3.15d) simply repeat the same constraints from model (3.11). The column

vector e in constraint (3.15c) is the appropriately-dimensioned vector of all

1s, i.e., e’s dimension is the number of cuts accumulated in that stage. The

master problem (3.15) holds for t = 1, . . . , T , except that for t = T the cut

constraints (3.15c) are absent. The πt and αt represent dual vectors associated

with constraints (3.15b) and (3.15c), respectively. It is model (3.15) that is

solved at each node in the forward sample paths depicted in Figure 3.4a.

Recalling notation from Section 3.3, when we let bt = bωt
t and xt−1 = x

a(ωt)
t−1 , we

refer to model (3.15) as sub(ωt). When we specialize model (3.15) in this way,
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we similarly append ωt superscripts to the optimal value, zωt
t , as well as the

the primal and dual solutions, (xωt
t , θ

ωt
t ) and (πωt

t , α
ωt). The SDDP algorithm

is formalized below.

Stochastic Dual Dynamic Programming (SDDP) Algorithm:

Input: Instance of model (3.10) with finite scenario tree, interstage

independence, and a modest number of immediate descendants

at each stage. Mt used to form lower bound on future cost

function at each stage.

Output: Set of cuts, ~G sddp
t and ~g sddpt , t = 1, . . . , T , that yield policy for

model (3.10), first stage solution x1, and lower bound estimator z.

0. let k = 0;

append lower bounding cuts θt ≥ −Mt, t = 1, . . . , T − 1;

1. solve the stage 1 master program, i.e., (3.15) with t = 1, and

obtain (xk1, θ
k
1);

let zk = c1x
k
1 + θk1 ;

2. sample i.i.d. paths from Ω̂t and index them by Sk;

do ω ∈ Sk

do t = 2 to T

form RHS of sub(ωt): Bt[x
a(ωt)
t−1 ]k + bωt

t ;

solve and obtain [xωt
t ]k;

enddo

enddo

let zk = c1x
k
1 + 1

|Sk|
∑

ω∈Sk
∑T

t=2 ct[x
ωt
t ]k;

3. if stopping criterion, given zk and zk, is satisfied then stop and

output: (i) set of cuts, ~G sddp
t and ~g sddpt , t = 1, . . . , T , (ii) first

stage solution x1 = xk1, and (iii) lower bound z = zk;

4. do t = T − 1 downto 1
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do ω ∈ Sk

do ωt+1 ∈ ∆(ωt)

form RHS of sub(ωt+1): Bt[x
ωt
t ]k + b

ωt+1

t+1 ;

solve to obtain dual vectors π
ωt+1

t+1 , α
ωt+1

t+1 and optimal

value z
ωt+1

t+1 ;

enddo

Form cut gradient and intercept:

Gt =
∑

ωt+1∈∆(ωt)
p
ωt+1|ωt

t+1 π
ωt+1

t+1 Bt+1 and

gt =
∑

ωt+1∈∆(ωt)
p
ωt+1|ωt

t+1 z
ωt+1

t+1 −Gt[x
ωt
t ]k;

augment the set of stage t cuts with θt −Gtxt ≥ gt;

enddo

enddo

5. let k = k + 1; goto step 1;

When costs are positive, we can take Mt = 0, and enforce nonnegativity

for θt. Steps 2 and 4 of the SDDP algorithm carryout the forward and backward

passes depicted in Figure 3.4a and 3.4b, respectively. In step 2 at the k-

th iteration, we select a set of random sample paths from the root node to

the stage T leaf nodes denoted Sk, and an element ω ∈ Sk has the form

ω = (ω2, . . . , ωT ). We could, e.g., have |Sk| = 200, ∀k. In step 2, we form the

RHS of sub(ωt) as Bt[x
a(ωt)
t−1 ]k + bωt

t . When we do this, we are within a loop

with ω = (ω2, . . . , ωT ) fixed and so we could arguably simplify the notation and

replace the a(ωt) superscript on xt−1 with ωt−1. In the analogous part of step

4, there is no chance for ambiguity, i.e., we are assured that [xωt
t ] = [x

a(ωt+1)
t ]k

since we explicitly loop over ωt+1 ∈ ∆(ωt). In step 4, and in the remainder

of this chapter, we use p
ωt+1|ωt

t+1 when we calculate the cut gradient and cut

intercepts. However, given how the sampled scenario tree is constructed we
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simply have p
ωt+1|ωt

t+1 = 1/n(t)

In step 4, when we form Gt and gt and augment the set of stage t cuts,

this amounts to adding one row to the matrix of cut gradients, ~Gt, and the

vector of cut intercepts, ~gt, that define the stage t subproblem (3.15). Step 4

calculates the cut intercept as

gt =
∑

ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 z
ωt+1

t+1 −Gt[x
ωt
t ]k. (3.16)

An equivalent way to calculate the cut intercept is

gt =
∑

ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 π
ωt+1

t+1 b
ωt+1

t+1 +
∑

ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 α
ωt+1

t+1 ~gt+1, (3.17)

although when t = T − 1 the second term in (3.17) that involves the cut

intercept of the descendant nodes, is absent. The equivalence follows by taking

the dual of the subproblem (3.15) for stage t+1. This can be useful for verifying

an implementation. When using the form given in (3.17), we must include in

the intercept all the terms associated with simple upper bounds on the decision

variables. Note that in step 4 of the SDDP procedure, we obtain α
ωt+1

t+1 . That

vector is not used in the above statement of the algorithm, but it would be

used if we calculated the cut intercept via (3.17) and it will be required in

the extension to handle the autoregressive-style dependency model we discuss

next.

3.7 Cut-Sharing under Interstage Dependency Model

When bt, t = 2, . . . , T , are not interstage independent but rather follow the

autoregressive-style dependency model (3.12), the SDDP algorithm requires
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modification (Infanger and Morton, 1996). First, we have not indexed Gt and

gt above with an ωt because the same set of cuts is valid for each scenario on

stage t, i.e., we store a single set of cuts on each stage. This remains true

for the cut gradients under dependency model (3.12) but the cut intercepts

differ by scenario and require an ωt index. It can be shown (see Infanger and

Morton, 1996) that we can express gωt
t in the following additive form

gωt
t = gindt + gdept (ωt). (3.18)

When we first form a cut in step 4 of SDDP, we can compute gωt
t exactly

as given in the SDDP procedure, or equivalently via equation (3.17). Then,

using equation (3.19) below we can compute gdept (ωt) and then via (3.18) form

gindt = gωt
t − gdept (ωt). The dependent part of the cut intercept for stage t,

t = 2, . . . , T − 1, is given by

gdept (ωt) = π̄t+1

t∑
j=1

Rt+1
j b

ωj

j + ᾱt+1

T∑
i=t+1

Di
t+1

t∑
j=1

Ri
jb
ωj

j , (3.19)

where Di
t, i ≥ t is recursively defined as

Dt
t = Pt+1R

t+1
t + At+1

T∑
i=t+1

Di
t+1R

i
t

Dt+1
t = Pt+1 + At+1D

t+1
t+1

Di
t = At+1D

i
t+1, i ≥ t+ 2


(3.20)

with DT
T = 0 and AT = 0. Here, when we compute a cut in step 4 of the
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SDDP algorithm, we form:

π̄t+1 ≡
∑

ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 π
ωt+1

t+1 (3.21a)

ᾱt+1 ≡
∑

ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 α
ωt+1

t+1 . (3.21b)

Recall that the stage t subproblem (3.15) has mt rows of structural constraints

in (3.15b) and we denote by `t the number of cuts in constraints (3.15c). We

define Pt to be the `t−1 × mt matrix whose rows contain the expected value

of the structural constraint dual variables, π̄t. Similarly, At is defined as the

`t−1 × `t matrix whose rows contain the expected value of the cut constraint

dual variables, ᾱt. For each cut, the SDDP algorithm must then store: (i)

the cut gradient, Gt, (ii) the scenario independent cut intercept term, gindt ,

and (iii) the expected dual vectors π̄t+1 and ᾱt+1. Then, when we form a

subproblem to solve, either in step 2 or in step 4 of the SDDP, we must form

the correct set of cut intercepts via (3.18), (3.19) and (3.20).

There is another way to handle interstage dependency that is useful for

verifying an implementation. Specifically, we can use the model with interstage

independence, and the SDDP algorithm for that model, by expanding the

definition (and dimension) of xt to capture the history. For example, at stage

3, we have b3 = R3
1b1 + R3

2b2 + η3 with the RHS of subproblem (3.15) being

B3x2 + b3 = B3x2 + R3
1b1 + R3

2b2 + η3. By redefining B3 and x2 to include

additional components for R3
1, R3

2 and b1, b2, respectively, we can capture the

interstage dependency model. More specifically, in stage 1 we can introduce

a new decision variable y1 = b1, and in stage 2 we can introduce y2 =
( y1
b2

)
.
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Then in stage 3 we can use the y2 carried forward to form R3
1b1 +R3

2b2 as part

of the “Bx” term, and then add the independent component η3. We suspect

that there is a computational advantage to not expanding the dimension of

the stage variable in this way and instead using the ideas explained above in

(3.18), (3.19) and (3.20), but this hypothesis has not been computationally

tested, to our knowledge.

3.8 A Modified SLP-T Formulation

The cut-sharing procedure described in Section 3.7 is designed to handle cases

where bt, t = 2, . . . , T , satisfy dependency model (3.12) and the underlying

SLP-T has the form of model (3.10). This is valid in the context of a hydro-

thermal scheduling model with hydro-thermal scheduling with individual gen-

erators, because the parameter bt represents the water inflow at a certain

reservoir at time period t. In the case of the model (3.10) under the ARR,

bt instead represents the energy inflow at a specific equivalent reservoir. So,

in the literature, applications of the hydro-thermal scheduling with ARR are

coupled with time series forecasts of energy inflows.

That said, there is a compelling argument to be made for forecasting

water inflows at the level of individual reservoirs rather than energy inflow

into aggregate reservoirs. Forecasting water inflows at individual reservoirs

allows the forecasting model to exploit local predictors like precipitation and

soil-type in local run-off models in hydrology. Forecasting water inflows in in-

dividual reservoirs, rather than energy inflow in an aggregate reservoir, better
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lends itself to validation because individual reservoir inflows are measurable.

Moreover, when the configuration of the hydro power system evolves over time

(as described in Section 2.3.1) this complicates an energy-inflow forecast be-

cause a different forecasting model must be constructed for each configuration.

However, a forecasting model with individual reservoir resolution of water in-

flows is unaffected by the hydro system configuration. Forecasting energy

inflows, rather than measurable water inflows, arguably unnecessarily ties a

forecasting model of a natural process to the decision process associated with

the hydro-thermal system.

Thus, in order to best couple the hydro-thermal scheduling model with

ARR, with a forecasting model, we prefer as a model primitive to have the

time series model forecast water inflows. This, in turn, requires that we extend

existing methods to compute valid cuts for the decomposition method under

the resulting form of interstage dependence.

A modified SLP-T, that considers water inflows at individual reservoirs rather

energy inflows at aggregate reservoirs, with recourse may be formulated as

follows:
z∗ = min

x1
c1x1 + Eb2|b1h2(x1, b2)

s.t. A1x1 = B1x0 + ρ1b1 + k1

x1 ≥ 0,

(3.22)

where for t = 2, . . . , T ,

ht(xt−1, bt) = min
xt

ctxt + Ebt+1|b1,...,btht+1(xt, bt+1)

s.t. Atxt = Btxt−1 + ρtbt + kt

xt ≥ 0.

(3.23)
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The matrices At have mt rows and dt columns, t = 1, . . . , T . The column-

vectors bt have dimension qt, in our hydro-thermal model qt represents the

number of individual hydro generators. The matrices ρt have mt rows and

qt columns, in our hydro-thermal model ρt represents vectors that transform

water inflows at the individual reservoirs into energy inflows (controllable and

uncontrollable) at the aggregate reservoirs. The other vectors and matrices

are dimensioned to conform.

The term Btxt−1 includes the energy storage that is carried forward

from stage t − 1 and is available at stage t. This term further captures the

parameters of the linear functions (e.g., aEM t
i ) that depend on xt−1. Note

that, these model also differs from models (3.10) and (3.11) by the column-

vector kt. The column–vector kt is used to separate the constant terms of

the model, i.e., we consider in our hydro-scheduling model the demand dt, the

intercept terms of the energy functions (e.g., bEMt) and the other constant

terms of each stage into the column-vector kt. We need this distinction in

order to construct the cut-sharing procedure that considers water inflows.

Suppose we are at stage t under scenario ωt. Assume that we have a

simple lag-one linear dependency model for random water inflows given by:

bt = Rt−1bt−1 + ηt, t = 2, . . . , T, (3.24a)

ηt, t = 2, . . . , T, are independent. (3.24b)

We assume in our model that:

vec
(
ct, Bt, At, kt

)
, t = 2, . . . , T are independent. (3.25)
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3.8.1 Basic Cut Computation

An analogue of model (3.15) for our modified SLP-T can be defined as:

zt = min
xt,θt

ctxt + θt (3.26a)

s.t. Atxt = Btxt−1 + ρt
(
Rt−1bt−1 + ηt

)
+ kt : πt (3.26b)

−~Gtxt + e θt ≥ ~gt : αt (3.26c)

xt ≥ 0. (3.26d)

The dual of problem (3.26), is:

zt = max
πt,αt

πt

[
Btxt−1 + ρt

(
Rt−1bt−1 + ηt

)
+ kt

]
+ αt~gt (3.27a)

s.t. πtAt − αt ~Gt ≤ ct : xt (3.27b)

eTαt = 1 : θt (3.27c)

αt ≥ 0 (3.27d)

For model (3.26) the cut gradient is computed as stated on the SDDP

algorithm. The cut intercept is computed as in step 4 of the SDDP algorithm

or using the alternative formula given by:

gωt
t =

∑
ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 π
ωt+1

t+1

(
ρt+1b

ωt+1

t+1 + kt+1

)
+

∑
ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 α
ωt+1

t+1 ~g
ωt+1

t+1 .

(3.28)

We have an interstage dependency model in bt+1 and ~gt+1 that appears

when we compute the cut intercept for this problem. Because of that, we need

to formulate a procedure, similar to the one presented in Section 3.7, to enable

cut-sharing so that we can facilitate an SBDA for our modified model (3.22).
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3.8.2 Expanding the State

As mentioned earlier one way to handle dependency models is to use an inter-

stage independent model with an increase in the dimension of the xt vector in

order to capture the history of the realizations of the random parameters. We

now show how this works for model (3.22).

As in Section 3.7 suppose we add an auxiliary variable yt to model

(3.22) in order to capture the history. We set these variables equal to the water

inflows from that period, i.e., yt = bt = Rt−1bt−1 +ηt. Consider a reformulation

of model (3.22) in which we introduce an additional set of decision variables

and constraints in each stage:

z∗ = min
x1,y1

c1x1 + Eb2|b1h2(x1, y1, b2)

s.t. A1x1 = B1x0 + ρ1y1 + k1

y1 = b1

x1 ≥ 0,

(3.29)

where for t = 2, . . . , T ,

ht(xt−1, yt−1, bt) = min
xt,yt

ctxt + Ebt+1|b1,...,btht+1(xt, ytbt+1)

s.t. Atxt = Btxt−1 + ρtyt + kt

yt = Rt−1yt−1 + ηt
xt ≥ 0.

(3.30)

Applying the decomposition algorithm to model (3.29) we arrive at the
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full master program with the following form:

zt = min
xt,yt,θt

ctxt + θt (3.31a)

s.t. Atxt − ρtyt = Btxt−1 + kt : πBt (3.31b)

−~Gx
t xt − ~Gy

t yt + e θt ≥ ~gt : αt (3.31c)

yt = Rt−1yt−1 + ηt : πSt (3.31d)

xt ≥ 0, (3.31e)

where ~Gx
t and ~Gy

t are the cut gradient matrix related to the decision variables

xt and yt, respectively. Now we have πBt and πSt as the dual variables associated

with the set of constraints (3.31b) and (3.31d), respectively.

The dual of (3.31) can be written as:

zt = max
πB
t ,π

S
t ,αt

πBt
(
Btxt−1 + kt

)
+ αt~gt + πSt

(
Rt−1yt−1 + ηt

)
(3.32a)

s.t. πBt At − αt ~Gx
t ≤ ct : xt (3.32b)

−πBt ρt − αt ~G
y
t + eTπSt = 0 : yt (3.32c)

eTαt = 1 : θt (3.32d)

αt ≥ 0. (3.32e)

The purpose of decision variable yt is to capture the history of the

random parameters. The cut gradient is computed using:

Gx
t =

∑
ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 π
B,ωt+1

t+1 Bt+1, and (3.33)

Gy
t =

∑
ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 π
S,ωt+1

t+1 Rt. (3.34)
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The cut intercept for the new formulation is computed using:

gωt
t =

∑
ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 z
ωt+1

t+1 −Gx
t x

ωt+1

t −Gy
t y

ωt+1

t . (3.35)

An equivalent way to compute cut intercepts in this case is given by:

gωt
t =

∑
ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1

(
π
B,ωt+1

t+1 kt+1 +π
S,ωt+1

t+1 ηt+1

)
+

∑
ωt+1∈∆(ωt)

p
ωt+1|ωt

t+1 α
ωt+1

t+1 ~g
ωt+1

t+1 .

(3.36)

Note that we do not have parameters with interstage dependency mod-

els showing up on the computation of the cut intercept. In this case, we can

apply the SBDA as we do for problems with interstage independence models.

The storage requirements in this case would be: (i) the cut gradients, Gx
t and

Gy
t , (ii) the cut intercept term, gt.

3.8.3 An Equivalence Result

We argue that models (3.31) and (3.32) are equivalent to models (3.26) and

(3.27) respectively. In order to show that the models are equivalent we argue

via the optimality conditions specified by primal feasibility, dual feasibility

and strong duality for the pair of models.

Primal feasibility, dual feasibility and strong duality of the model (3.26)

are given by:

Atxt = Btxt−1 + ρt
(
Rt−1bt−1 + ηt

)
+ kt

−~Gtxt + e θt ≥ ~gt
xt ≥ 0,

(3.37)
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πtAt − αt ~Gt ≤ ct
eTαt = 1
αt ≥ 0,

(3.38)

ctxt + θt = πt

[
Btxt−1 + ρt

(
Rt−1bt−1 + ηt

)
+ kt

]
+ αt~gt. (3.39)

Primal feasibility, dual feasibility and strong duality for model (3.31)

are given by:
Atxt = Btxt−1 + ρtyt + kt
−~Gx

t xt − ~Gy
t yt + e θt ≥ ~gt

yt = Rt−1yt−1 + ηt
xt ≥ 0,

(3.40)

πBt At − αt ~Gx
t ≤ ct

−πBt ρt − αt ~G
y
t + eTπSt = 0

eTαt = 1
αt ≥ 0,

(3.41)

ctxt + θt = πBt
(
Btxt−1 + kt

)
+ αt~gt + πSt

(
Rt−1yt−1 + ηt

)
. (3.42)

Let (x∗t , θ
∗
t , π

∗
t , α

∗
t ) satisfying (3.37) - (3.39). Thhen, we must argue

that we can use this solution to form (xt, yt, θt, π
B
t , π

S
t , αt) that satisfy (3.40)

- (3.42). By using this assumption and strong duality for both models we can

state the following:

ctxt + θt = πBt
(
Btxt−1 + kt

)
+ αt~gt + πSt

(
Rt−1yt−1 + ηt

)
ctx
∗
t + θ∗t = πBt

(
Btxt−1 + kt

)
+ αt~gt + πSt

(
Rt−1yt−1 + ηt

)
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π∗t

[
Btxt−1+ρt

(
Rt−1bt−1+ηt

)
+kt

]
+α∗t~gt = πBt

(
Btxt−1+kt

)
+αt~gt+π

S
t

(
Rt−1yt−1+ηt

)
By doing some manipulation on the expression above we obtain the

dual variables for the modified problem in (3.43)

xt = x∗t (3.43a)

yt = bt (3.43b)

πBt = π∗t (3.43c)

πSt = π∗t ρt (3.43d)

αt = α∗t (3.43e)

Assume we are at the last stage, t = T . There are no optimality cuts in

model (3.26), constraint set (3.26c), as well as in model (3.31), constraint set

(3.31c) associated to this stage. Proceeding by induction, we assume yt = bT

in model (3.26c), then, it is easy to see that it lends itself into model (3.26).

Now assume we are at stage t = T − 1, we need to show that the cuts

that are present in model (3.26) are equivalent to the cuts in model (3.31).

Consider the cut matrix for (3.26), as defined in the SDDP algorithm, given

by:

~GT−1 =
∑

ωT∈∆(ωT−1)

p
ωT |ωT−1

T πωT
T BT . (3.44)

We form this matrix using all the dual vertices of stage T .

Now, consider the cut matrix ~Gx
t of model (3.31), that is computed
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using (3.33). At stage t = T − 1 we have:

~Gx
T−1 =

∑
ωT∈∆(ωT−1)

p
ωT |ωT−1

T πB,ωT

T BT . (3.45)

Note that, for equations (3.45) and (3.44) are the same when πBt = πt. So, we

can write ~Gx
T−1 = ~GT−1, that holds for any other stage t. For the same stage

we can re-write equation (3.31c) in terms of ~GT−1 and obtain:

−~GT−1xT−1 − ~Gy
T−1yT−1 + e θT−1 ≥ ~gT−1. (3.46)

At this point, we turn to model (3.26). For the cut intercept vector,

using equation (3.28), at stage t = T − 1 we obtain:

gωt
T−1 =

∑
ωT∈∆(ωT−1)

p
ωT |ωT−1

T πωT
T

(
ρT b

ωT
T + kT

)
. (3.47)

Now, for model (3.31), using equation (3.36), we can write the cut

intercept vector as:

g
ωT−1

T−1 =
∑

ωT∈∆(ωT−1)

p
ωT |ωT−1

T

(
πB,ωT

T kT + πS,ωT

T ηT
)
. (3.48)

By using the result of (3.48) and (3.34) into (3.46) we can write:

−~GT−1xT−1 + e θT−1 ≥ ~Gy
T−1yT−1 + ~gT−1

−~GT−1xT−1 + e θT−1 ≥
∑

ωT∈∆(ωT−1) p
ωT |ωT−1

T πS,ωT

T RT−1yT−1+

+
∑

ωT∈∆(ωT−1) p
ωT |ωT−1

T

(
πB,ωT

T kT + πS,ωT

T ηT
)

−~GT−1xT−1 + e θT−1 ≥
∑

ωT∈∆(ωT−1) p
ωT |ωT−1

T πS,ωT

T

(
RT−1yT−1 + ηT

)
+

+
∑

ωT∈∆(ωT−1) p
ωT |ωT−1

T πB,ωT

T kT .
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Proceeding by induction, we assume that yT−1 = bT−1 and we can write:

−~GT−1xT−1 + e θT−1 ≥
∑

ωT∈∆(ωT−1) p
ωT |ωT−1

T πS,ωT

T bT+

+
∑

ωT∈∆(ωT−1) p
ωT |ωT−1

T πB,ωT

T kT .
(3.49)

It is now possible to see that for πBT = πT and πST = πTρT we have in

the RHS of (3.49) ~gT−1 as stated in equation (3.47). So, we define ~gT−1 of

model (3.26) equal to ~gT−1 + ~Gy
T−1yT−1 of model (3.31), this result holds for

any other stage t.

With the (primal, dual) pair obtained from (3.43) we can say that we

should get the same solutions for both models when we have the established

relationship between the cut gradient matrices and the cut intercept vectors.

But as mentioned earlier we conjecture that by increasing the dimension of the

problem the computational time required to solve the problem may increase,

and so we do not expect to have an efficient model using the modified formu-

lation. So instead in the next section we describe the cut-sharing procedure

under the aggregate dependency model (3.24) that does not require increasing

the dimension of the problem.

3.8.4 Cut-Sharing for SLP-3

We start by illustrating how cut-sharing works with the simple case of a three

stage stochastic linear program (SLP-3) with a linear lag-one model given by

(3.24). Later we present the general form of the cut formation for a T -stage

stochastic linear program (SPL-T ).

We have T = 3 and we compute cuts for stage t = 2, the only non-
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trivial case for SLP-3. From model (3.27) for T = 3 we have that the second

stage cut gradient and intercept are:

G2 =
∑

ω3∈∆(ω2)

p
ω3|ω2

3 πω3
3 B3 (3.50)

gω2
2 =

∑
ω3∈∆(ω2)

p
ω3|ω2

3 πω3
3

(
ρ3b

ω3
3 + k3

)
. (3.51)

From model (3.27) with T = 3 we see that α3
~G3 in (3.27b), α3~g3 in

(3.27a) and constraints (3.27c) - (3.27d) are all absent. This coupled with the

fact that c3 and A3 are interstage independent (see equation 3.25) means that

the collection of dual variables {πω3
3 : ω3 ∈ ∆(ω2)} from the solution of one

set of stage 2 descendants is feasible for the descendants of any second stage

scenario. Therefore these dual variables generate a valid cut that can be used

for any second stage scenario.

It is necessary to show how these cuts can be recomputed for each

second stage scenario so that they can be used during future SBDA iterations.

We follow the notation presented in Infanger and Morton (1996). Let σ3 ∈

Σ3 index realizations for the third stage. A full indexing of realizations in

the third stage would be ω3(ω2, σ3), but the only parameter that requires ω3

resolution is bω3
3 = R2b

ω2
2 +ησ33 . All other parameters can be indexed by simply

σ3, including the conditional probability p
ω3|ω2

3 = pσ33 . Also, because B3 is

independent of the second stage random parameter the cut gradient matrix

G2 is written in (3.50) without index ω2. But, note that the cut intercept

on expression (3.51) presents the random parameter bω3
3 that has interstage
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dependency model (3.24). By using the dependency model in (3.24) we can

separate the cut intercept from (3.51) in two parts as:

gω2
2 = gind2 + gdep2 (ω2), (3.52)

where,

gind2 =
∑
σ3∈Σ3

pσ33 π
σ3
3

(
ρ3η

σ3
3 + k3

)
(3.53)

gdep2 =

[ ∑
σ3∈Σ3

pσ33 π
σ3
3

]
︸ ︷︷ ︸ ρ3R2b

ω2
2 . (3.54)

π3

For SLP-3, the dependent part of the cut intercept (3.54) does not

depend on the dual variables associated with the cuts, because there are no

cuts in the third stage. In order to compute the dependent part of the cut

intercept for a particular second stage scenario it is necessary to know a pri-

ori the realization of the random parameter bω2
2 in the second stage and the

expected dual vector π3 from stage 3 used to compute a cut. In this case, it

is necessary to store for each computed cut: (i) the cut gradient G2, (ii) the

scenario independent cut intercept gind2 , and (iii) the expected dual vector π3.

We can compute valid cuts for the second stage with this stored information

by calculating the dependent part of the cut intercept using the closed-form

scenario-dependent correction (3.54) and then the cut intercept using (3.52).
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3.8.5 Cut-Sharing for SLP-T

Model SLP-3 does not show all the difficulties behind cut-sharing in a full SLP-

T . In a three-stage model, when we are computing cuts for the second stage

we do not have to deal with dual variables associated with cuts constraints of

the next stage (because there are no cuts at the last stage).

Consider now a problem with more stages denoted SLP-T . In Theorem

1 we show that the dependent portion of the cut intercept can be computed

using:

gdept (ωt) =
[
πt+1ρt+1 + αt+1Dt+1

]
Rtb

ωt
t , (3.55)

where, for t = 2, . . . , T the matrix Dt is defined recursively as:

Dt =
[
Pt+1ρt+1 + At+1Dt+1

]
Rt, DT = 0. (3.56)

The cut intercept gωt
t is then computed using (3.18), (3.55) and (3.56).

Note that if T = 3 then (3.55) for t = 2 reduces to (3.54). More generally, Pt

is defined to be the `t−1 ×mt matrix whose rows contain the expected value

of the structural constraint dual variables, π̄t. Similarly, At is defined as the

`t−1 × `t matrix whose rows contain the expected value of the cut constraint

dual variables, ᾱt.

Theorem 1. Consider an SLP-T as formulated in (3.22). Assume a linear

lag-one model given by (3.24). The cut intercepts for stage t, t = 2, . . . , T − 1

are given by (3.18), (3.55) and (3.56).
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Proof. We proceed by induction. First, assume that we are at stage t = T −1.

The cut intercept g
ωT−1

T−1 can be computed using the method described by SLP-

3, and in this case we have that (3.55) holds because DT = 0.

The inductive hypothesis is (3.18), (3.55) and (3.56) and we verify the

same expressions with t decremented by 1. For notational convenience, the

vector analog of (3.55) is:

~g dept (ωt) =
[
Pt+1ρt+1 + At+1Dt+1

]
Rtb

ωt
t . (3.57)

From model (3.27) a stage t− 1 cut intercept for scenario ωt−1 is:

g
ωt−1

t−1 =
∑

ωt∈∆(ωt−1)

p
ωt|ωt−1

t πωt
t

(
ρtbt︸ ︷︷ ︸+kt

)
+

∑
ωt∈∆(ωt−1)

p
ωt|ωt−1

t αωt
t ~g

ωt
t︸ ︷︷ ︸ . (3.58)

1st term 2nd term

By substituting the lag-one model (3.24) into the 1st term of (3.58) we obtain:

πtρtRt−1b
ωt−1

t−1 + Eσtπσtt
(
ρtη

σt
t + kt

)
. (3.59)

By using the inductive hypothesis (3.18) and (3.55) and the lag-one

model (3.24) in the 2nd term of (3.58) we obtain:

αt~g
ind
t + αt

[
Pt+1ρt+1 + At+1Dt+1

]
RtRt−1b

ωt−1

t−1 +
+Eσtασtt

[
Pt+1ρt+1 + At+1Dt+1

]
Rtη

σt
t .

(3.60)

Now using the definition of matrix Dt (3.56) and summing the two terms we

obtain:

πtρtRt−1b
ωt−1

t−1 + Eσtπσtt
(
ρtη

σt
t + kt

)
+ αt~g

ind
t +

+αt
[
Dt

]
Rt−1b

ωt−1

t−1 + Eσtασtt
[
Dt

]
ησtt .

(3.61)
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Finally, it is possible to separate expression (3.61) in dependent and

independent parts as:

gdept−1(ωt−1) =
[
πtρt + αtDt

]
Rt−1b

ωt−1

t−1 (3.62)

gindt−1 = Eσt
[
πσtt ρt + ασtt Dt

]
ησtt + Eσtπσtt kt + αt~g

ind
t , (3.63)

which completes the proof.

In this case, when running an SBDA it is necessary to store for each

computed cut: (i) the cut gradient Gt, (ii) the scenario independent cut inter-

cept gindt and (iii) the cumulative expected dual vector
[
πt+1ρt+1+αt+1Dt+1

]
Rt.

At a particular stage t, we can compute valid cuts for sub(ωt) with the stored

information by calculating the dependent part of the cut intercept using the

closed-form scenario-dependent correction (3.55) and then the cut intercept

using (3.18). The first time we compute a cut, the cumulative expected dual

vector associated with this cut can be created from the set of cumulative ex-

pected dual vectors that from of the descendant scenarios. In order to perform

such computation we use (3.55) and (3.56). Relative to the case of interstage

independence we need additional storage of
[
πt+1ρt+1 + αt+1Dt+1

]
Rt for each

cut.

3.9 Parallel Implementation

A simplified idea of the SDDP algorithm can be seen in Figure 3.5. We have a

small three stage problem with three scenarios per stage (usually we apply the
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SDDP to much larger instances). There are a total of 9 forward paths in the

scenario tree presented in Figure 3.5. The SDDP algorithm chooses a number

of forward paths in the tree and then starts the optimization process. The

problem can be decomposed for each forward path because they are completely

independent from each other, except for the information of the first node,

which is carried on to the second stage nodes. Because of that it is possible

to parallelize the algorithm in order to solve large instances faster.

Inventory ( )

Future Cost 

Piecewise Linear 

Function

Forward Pass Backward Pass

-

-

Figure 3.5: General SDDP Scheme

The SDDP algorithm parallelization can be performed in both the for-

ward and backward steps depicted in Figure 3.5. We use Message Passing

Interface (MPI) function calls in order to create the parallel implementation
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of SDDP. Figure 3.6 presents a general parallelization scheme for the algo-

rithm. The algorithm starts by selecting a number of forward paths on a

scenario tree, in which the first node of all the paths is the same and repre-

sents the present stage. The problem related to this node is solved by the root

processor, or root core, and the information about the connecting variables is

broadcast to all other cores. Also, at this point the root core designates the

forward paths that each core will have to deal with. The MPI function call

used in this case is MPI Scatterv. MPI Scatterv takes a vector of information

from one core, in this case the root, and splits that information up, sending

a portion of it to each of the other cores. Each core solves all its designated

forward paths and computes their costs. If for a specific forward path the

algorithm has to compute cuts then the core that was assigned that path also

performs the backward step for that path.

The optimal solution of the first stage gives a lower bound on the op-

timal value, which is computed at the root. After all the forward paths of a

specific iteration are solved the algorithm calls MPI Reduce to pass the infor-

mation about the costs of each path to the root core. After that it is possible

to compute the upper bound associated with the sample tree and to decide

whether to stop the algorithm. If the algorithm does not stop it is necessary

to call MPI Gatherv in order to gather all the computed cuts in the root

core. After that there is one more call of MPI Bcast to broadcast all the cuts

computed during that iteration to the other cores.

In our simulations we decide to use 128 forward paths, 32 backward
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Figure 3.6: General SDDP Parallelization Scheme

paths and 128 cores. This means we assign at each iteration only one forward

path for each core and only 32 of these cores have to perform backward steps

while the others are idle. Note that the backward step is the one that requires

more computational effort. If we decide to reduce the number of cores to 64,

at each iteration there are 2 forward paths to be solved by each core and again

only 32 cores have to perform the backward step. The computational time

will increase a little because now each core has solve two forward paths. The

computational time would more than double if instead of one, two backward

paths were assigned to be performed by one core. So in order to get faster

results we decided to give at most one forward path for each core and one or

zero backward paths.
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Chapter 4

Solution Quality Evaluation in a Multistage

Stochastic Program

4.1 Policy Generation Procedure and Cost Estimator

A solution to a multistage stochastic program is defined by a policy, which

specifies what decision to take at each stage, given the history of the stochas-

tic process up to, and including, that stage. Mathematically, a policy for

model (3.22) is a sequence of mappings, xt(b1, . . . , bt), t = 1, . . . , T , whose

domain is the support of the random vector (b1, . . . , bt) and whose range

is in Rdt , t = 1, . . . , T . To be feasible the sequence of decisions x1(b1),

x2(b1, b2), . . . , xT (b1, . . . , bT ) must be nonnegative, satisfy the sequence of struc-

tural constraints in (3.22) and (3.23), and be nonanticipative. Nonanticipativ-

ity means that as indicated, xt(·) can depend on the random inflows through

stage t. It can depend on stage t+ 1, . . . , T inflows only through the distribu-

tion of those inflows. In words, a policy is a rule which specifies what decision

to take at each stage for each possible realization of the random inflows up to

that point in time.

We propose a method for generating a policy that applies to a multi-

stage stochastic linear program with relatively complete recourse whose stochas-
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tic parameters exhibit interstage independence or satisfy the dependency model

(3.24). This approach uses the fact that SBDAs iteratively form a cut-based

policy generation scheme. The forward pass in step 2 of the SDDP algorithm

presented in Chapter 3 computes a sample-mean estimator, z̄k, of the expected

cost of the policy at iteration k, evaluated on the sample paths indexed by Sk.

It is necessary to be clear about the sample space from which we sim-

ulate inflow vectors when we assess the performance of our cut-based policy.

We let ΩT denote the sample space of the original stochastic program, i.e.,

under the stochastic process described in Chapter 3, where ΩT is uncountably

infinite. And, we let Ω̂T denote the sample space of the finite scenario tree

generated by either the SSTII or SSTIDM procedure of Chapter 3. Recall

that z∗ denotes the optimal value of the stochastic program defined on the

tree associated with ΩT and ẑ∗ denotes that associated with Ω̂T . Suppose we

have run SDDP until the termination criteria is satisfied and we have obtained

SDDP’s output, including ~G sddp
t and ~g sddpt , t = 1, . . . , T , which denote the cuts

collected at each stage.

The forward pass in step 2 of SDDP gives information about the “in-

sample” performance of the policy at each iteration, i.e., with respect to Ω̂T ’s

scenario tree formed by the SSTII or SSTIDM procedure. However, we wish to

know the out-of-sample performance of the policy specified by the collection of

cuts (~G sddp
t , ~g sddpt ), t = 1, . . . , T . In order to do that we sample nu i.i.d. paths

from ΩT , bi1, . . . , b
i
T , i = 1, . . . , nu, and compute xt(b

i
1, . . . , b

i
t), t = 1, . . . , T , by

solving the nu associated sequences of stage t problems (3.26) with bt = bit,
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~Gt = ~G sddp
t and ~gt = ~g sddpt , and with xt−1 = xt−1(bi1, . . . , b

i
t−1). Then, we can

form the estimator

Unu =
1

nu

nu∑
i=1

T∑
t=1

ctxt(b
i
1, . . . , b

i
t). (4.1)

We know that EUnu ≥ z∗. Here, E denotes the expectation with respect to

ΩT . Of course, x1(bi1) is identical for all i = 1, . . . , nu samples and it is not

necessary to solve (3.26) with t = 1 to compute this first stage decision. This

is why x1 is an output of SDDP. That said, we express the estimator (4.1)

in this form for notational convenience. Note that here we are talking about

model (3.26) and its associated equations, but the following procedures that we

describe also can be applied to models (3.15) and (3.31) and their associated

equations.

4.1.1 Policy Generation Procedure (PGP)

The following procedure states in algorithmic form the procedure for forming

an out-of-sample (i.e., sampling from ΩT , outside of the finite scenario tree)

statistical estimator of the form (4.1) for the policy’s cost. For simplicity of

describing the procedure, for the moment we assume that Rt−1 = 0 in (3.24),

i.e., that the process is inter-stage independent.

Input: Model (3.26) with cuts ~Gt = ~G sddp
t and ~gt = ~g sddpt , t = 1, . . . , T ,

from the output of SDDP. First stage solution x1 from SDDP.

Sample size nu.

Output: Sample mean estimator, Unu , and sample variance estimator,

S2
u, for expected cost of policy.
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1. let xi1 = x1, i = 1, . . . , nu;

2. sample i.i.d. paths from ΩT , bi1, . . . , b
i
T , i = 1, . . . , nu;

do i = 1, . . . , nu
do t = 2 to T

form RHS of model (3.26b): Btx
i
t−1 + ρtb

i
t + kt;

solve and obtain xit;

enddo

let zi =
∑T

t=1 ctx
i
t;

enddo

3. let Unu =
1

nu

nu∑
i=1

zi;

let S2
u =

1

nu − 1

nu∑
i=1

(zi − Unu)2;

In step 2 of the PGP, we repeatedly solve model (3.26) in a forward

pass and obtain xt(b
i
1, . . . , b

i
t) for each sample path i, which we denote in the

algorithm by xit for brevity. Step 3 computes the sample mean estimator of

the expected cost of operating under the policy specified by the cuts we obtain

as output from SDDP, along with the associated sample variance. We have

stated PGP for the case of interstage independence, but the extension to the

dependency model (3.24) is not difficult. First, SDDP instead outputs: (i)

x1, (ii) ~G sddp
t , (iii) the independent components of the cut intercepts, denoted

~g sddp,indt , (iv) π̄t and ᾱt associated with each cut, i.e., Pt and At in matrix form,

and (v) the cumulative expected dual matrices Di
t as defined in (3.56). Then,

in step 2 of PGP, in addition to forming the RHS of model (3.26) we also form
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the cut intercepts using equations (3.18) and (3.55), where bi1, . . . , b
i
t replaces

bω1
1 , . . . , b

ωt
t in equation (3.55). When we report computational results later in

this chapter, we do so with respect to the interstage dependency version of the

PGP that we have just sketched.

4.2 Lower Bound Estimation

As when estimating the cost of a policy, we must be clear what the sample

space is when we discuss lower bound estimation. As before, Ω̂T denotes the

sample space associated with the finite sampled scenario tree and ΩT denotes

that of the original stochastic process (3.24). The respective optimal values

for the two corresponding stochastic programs are z∗ and ẑ∗. In Section 4.1

our primary aim was to estimate the cost of a policy with respect to ΩT , i.e.,

we obtained a policy with estimated cost Unu , where EUnu ≥ z∗. Similarly, in

this section we seek a lower bound estimator on z∗. That said, ẑ∗, or rather its

bounds and related estimators, play an important role in achieving this goal.

As is shown in Chiralaksanakul and Morton (2004), we have that Eẑ∗ ≤

z∗. The intuition behind this bound is clear when the branch size n(t) = 1

for all t because then the approximate “stochastic” program we form on a

finite scenario tree has a single scenario. Within that approximating model

we know the future when we making hydro and thermal generation decisions.

So, the resulting estimate of the system’s cost is optimistic. More precisely,

when n(t) = 1 for all t, Eẑ∗ is the so-called wait-and-see bound. The intuition

behind the result Eẑ∗ ≤ z∗ is similar when n(t) > 1. We have sampled a finite
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number of inflow scenarios and the approximate stochastic program defined on

this finite scenario tree effectively “over-optimizes” by adapting its decisions

to the specific scenarios that have been sampled. The approximation’s ability

to over-optimize in this manner diminishes as n(t) grows.

In principle one way to form a lower bound estimator on z∗ is to: (i)

form n` i.i.d. scenario trees via SSTIDM, (ii) solve the associated stochastic

programs to obtain ẑ∗,i, i = 1, . . . , n`, and (iii) form the associated sample

mean and sample variance estimators of Eẑ∗. Unfortunately, we cannot com-

putationally carryout this procedure because we cannot solve the approximate

stochastic program exactly for the values of T and n(t) we have in mind. How-

ever, the SDDP algorithm produces a lower bound on ẑ∗, namely z, and we

can replace ẑ∗,i above with zi to yield a computable lower bound estimator.

Note that the bound z is a deterministically valid lower bound on ẑ∗, given

that Ω̂T is the sample space. We summarize the procedure below.

Input: Instance of model (3.22). Branch size n′(t), t = 1, . . . , T − 1.

Sample size n`.

Output: Sample mean estimator, Ln`
, and sample variance estimator,

S2
` , of lower bound on optimal value of (3.22), z∗.

1. do i = 1, . . . , n`
run SSTIDM to form a sample tree with n′(t) branches at

stage t, a tree independent of those in other iterations;

run SDDP and obtain lower bound on optimal value zi;

enddo
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2. let Ln`
=

1

n`

n∑̀
i=1

zi;

let S2
` =

1

n` − 1

n∑̀
i=1

(zi − Ln`
)2;

The LBE procedure forms a lower bound estimator on z∗ satisfying

ELn`
≤ z∗. We run SSTIDM with a branch size n(t) to provide the input to

SDDP when we wish to form a high quality policy. We can use a smaller branch

size n′(t) when running LBE in order to produce a lower bound to assess the

quality of that policy. If the branch size, n′(t), used in LBE is too small the

bias ELn`
− z∗ can be too large in magnitude in order to produce a reasonable

statement regarding the policy’s quality. If LBE’s branch size, n′(t), is too

large then the computational effort needed to carryout the LBE procedure

can be excessive. We examine further this trade-off in our computational

results of Section 4.5.

4.3 Confidence Interval Construction on Policy Quality

In this section, we build on ideas of Chiralaksanakul and Morton (2004) in

forming a confidence interval on the optimality gap. Consider the policy spec-

ified by the cuts output by SDDP, (~G sddp
t , ~g sddpt ), t = 1, . . . , T . The policy

specifies the action we take on an arbitrary sample path from ΩT . That is, let

b1, . . . , bT be a random sample path selected from ΩT . Then we solve the asso-

ciated sequence of stage t problems (3.26) with bt, ~Gt = ~G sddp
t and ~gt = ~g sddpt ,
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and with xt−1 = xt−1(b1, . . . , bt−1). The random variable

U =
T∑
t=1

ctxt(b1, . . . , bt) (4.2)

is the random cost of the policy on path b1, . . . , bT . The policy has expected

cost EU ≥ z∗. If EU − z∗ is small then the policy is of high quality. Of course,

we cannot compute EU and we do not know z∗. However, the cost estimator

for the PGP of Section 4.1 and the lower bound estimators of Section 4.2 allow

us to form a one-sided confidence interval that bounds EU − z∗ from above.

Let Unu denote the point estimate, and S2
u be the sample variance

estimator, output by PGP. We have EUnu = EU and

P
{
EU ≤ Unu + zα

Su√
nu

}
= P

{√
nu(Unu − EUnu)

Su
≥ −zα

}
,

where zα denotes the (1 − α)-level quantile of a standard normal random

variable. By the central limit theorem for i.i.d. random variables,

lim
nu→∞

P
{√

nu(Unu − EUnu)

Su
≥ −zα

}
= 1− α.

Hence, for sufficiently large nu, we infer an approximate one-sided 100·(1−α)%

confidence interval for EU of the form
(
−∞, Unu + zαSu/

√
nu
]
.

Let Ln`
and S2

` be estimators produced by the LBE procedure. Since

z∗ ≥ ELn`
,

P
{
z∗ ≥ Ln`

− tn`−1,α
S`√
n`

}
≥ P

{
ELn`

≥ Ln`
− tn`−1,α

S`√
n`

}
= P

{√
n`(Ln`

− ELn`
)

S`
≤ tn`−1,α

}
.
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Again by the central limit theorem for i.i.d. random variables,

lim
n`→∞

P
{√

n`(Ln`
− ELn`

)

S`
≤ tn`−1,α

}
= 1− α.

So we infer, for sufficiently large n`, that [Ln`
− tn`−1,αS`/

√
n`,∞) is an ap-

proximate one-sided 100 · (1 − α)% confidence interval for z∗. Note that this

confidence interval is valid for any value of the branch size, n′(t). Here tn`−1,α

denotes the (1− α)-level quantile of a Student t random variable with n` − 1

degrees of freedom.

We can combine the events {Ln`
− tn`−1,αS`/

√
n` ≤ z∗} and {EU ≤

Unu + zαSu/
√
nu} using the Boole-Bonferroni inequality to obtain

P{Ln`
− tn`−1,αS`/

√
n` ≤ z∗,EU ≤ Unu + zαSu/

√
nu} ≈ 1− 2α.

This coupled with

P{Ln`
− tn`−1,αS`/

√
n` ≤ z∗,EU ≤ Unu + zαSu/

√
nu} ≤

P{EU − z∗ ≤ (Unu − Ln`
) + tn`−1,αS`/

√
n` + zαSu/

√
nu} ≤

P{EU − z∗ ≤ (Unu − Ln`
)+ + tn`−1,αS`/

√
n` + zαSu/

√
nu}

yields validity of the confidence interval formalized in the following procedure.

Here, (·)+ = max(·, 0).

Confidence Interval Construction (CIC):

Input: Instance of model (3.22) under dependency model (3.24).

Branch sizes n(t) for policy construction and n′(t) for lower

bound estimation (LBE), sample sizes n` and nu, and α ∈ (0, 1).
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Output: Approximate (1− α)-level confidence interval on optimality gap

EU − z∗.

1. run SSTIDM to form a sample scenario tree with branch sizes n(t);

2. run SSDP to approximately solve (3.22) defined on the sample

scenario tree to obtain (~G sddp
t , ~g sddpt ), t = 1, . . . , T , x1, and z;

3. run PGP with sample size nu to obtain Unu and S2
u;

4. run LBE with branch sizes n′(t) and sample size n` to obtain Ln`

and S2
` ;

5. let ε` = tn`−1,αS`/
√
n` and εu = zαSu/

√
nu;

output one-sided CI on EU − z∗,
[
0, (Unu − Ln`

)+ + ε` + εu
]

;

4.4 Tightening the Confidence Interval

Below we list four reasons that we might not obtain satisfactory results when

running the CIC procedure:

(a) Under LBE: The computational effort to run SDDP on (say) n` = 15-20

instances of model (3.22) is prohibitive;

(b) the bias of Ln`
, from LBE, is large;

(c) the sampling error, ε` and/or εu, is large; or,

(d) the candidate policy is far from optimal to (3.22).
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Issues (b), (c) and (d) can produce a confidence interval that is un-

acceptably large, and issue (a) concerns computational tractability. Before

turning to how we can diagnosis which issue is the foremost problem, we dis-

cuss the related matter of how the inputs to CIC affect each issue. We do this

separately for the LBE and LBE2 variants of CIC.

CIC under LBE: The inputs are n(t), the branch size for producing a

policy; n′(t), the branch size for producing the lower bound estimator; n`, the

number of replicates for the lower bound estimator; and, nu, the sample size for

the upper bound estimator. Increasing n(t) primarily affects (d). Increasing

n(t) tends to increase the quality of the cut-based policy, and also increases

the computational effort required to solve the instance of model (3.22) used

to produce that policy. (The variance of U differs under different policies,

and hence increasing n(t) can affect εu in (c) but this cannot be expected

to behave monotonically as the policy improves.) Increasing n′(t) affects (a),

(b) and (c). Increasing n′(t) decreases the bias of Ln`
, tends to decrease the

sampling error, ε`, and increases the computational effort discussed in (a). We

usually fix n` = 15-20, but increasing n` affects (c), decreasing sampling error

ε`. Increasing nu affects (c), decreasing sampling error, εu.

The assessment of which issue is of primary importance can be ap-

proached as follows. The confidence interval width consists of (Unu −Ln`
)+ +

ε` + εu. The first term, (Unu − Ln`
)+, is the point estimate of the optimality

gap, ε` is the sampling error associated with the lower bound estimator and

εu is that associated with the upper bound estimator. If ε` or εu dominates
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then we know the primary issue is (c). If (Unu − Ln`
)+ dominates it could

be because EU is too large, i.e., the policy is poor—issue (d)—or because

ELn`
is too small, i.e., the bias is large—issue (b). With CIC under LBE, we

can solve two or three instances of (3.22), starting with a small value of n(t)

and allowing it to grow to produce two or three policies and associated upper

bound estimators. And, we can solve multiple instances of (3.22) with growing

n′(t) to form two or three lower bound estimators. The focus is then which is

changing more quickly. Is the lower bound increasing more quickly (i.e., issue

(b) is foremost) or is the upper bound decreasing more quickly (i.e., issue (d)

is foremost)?

Although we do not pursue it here, another option is to sample in a non-

i.i.d. manner when forming the sample scenario tree in SSTIDM. This could be

for the scenario tree used to produce the policy and/or the scenario trees used

in forming the lower bound estimator. Two promising approaches are to use

Latin hypercube sampling (LHS) or randomized quasi Monte Carlo (RQMC).

RQMC and LHS can be applied to problems in which the scalar components

of a random vector are independent (or are functions of a component-wise

independent vector). The idea is to more uniformly spread the U(0, 1) random

variates that are used, e.g., through inversion, to form the nonuniform random

variables. When forming a multivariate normal, or multivariate lognormal, we

do so using a linear transformation of a collection of underlying independent

standard normal random variables. Hence, the dependent components ηt of

the interstage dependency model (3.24) are amenable to LHS and RQMC.
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Application of RQMC in stochastic programming is examined in Di-

wekar and Kalagnanam (1997) and Pennanen and Koivu (2005). Homem-

de-Mello Homem-de-Mello (2008) provides conditions under which pointwise

(i.e., without the optimization operator) rates of convergence associated with

non-i.i.d. sampling schemes like RQMC and LHS are inherited by the solution

and value estimators in the two-stage setting. LHS is also applied in Bailey

et al. (1999); Diwekar and Kalagnanam (1997); Freimer et al. (2005); and,

Linderoth et al. (2006).

4.5 Solution Quality Analysis

We assess the solution quality for a hydro thermal scheduling problem for the

mid-horizon (HTSPM). We optimize over 24 monthly stages considering the

Brazilian interconnected power system that we first describe in Chapter 2 and

describe further in Chapter 5. We compute the upper bound estimator using a

large number (nu = 12800) of independent forward paths and the lower bound

estimator LBE using n` = 15 independent trees. We consider a dynamic linear

model (DLM) from Marangon Lima (2011) to generate the inflow scenarios and

create interstage dependent scenario trees according to SSTIDM. The DLM

satisfies the additive form (3.24) that we introduce in Chapter 3.

We have carried out the solution quality analysis that we describe in

this chapter on several problem instances. These instances differ only in: (a)

the same sample sizes, n(t), at each stage in the sample scenario tree that we

use to form the cuts that define the solution policy via PGP, which in turn
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feed into the upper bound estimator, Unu , and (b) the sample sizes, n′(t) used

in the sample scenario trees that define the lower-bound estimator, Ln`
. We

solve a total of seven such problem instances with growing values of n(t) and

n′(t). Our smallest instances use n(t) = 10 and n′(t) = 8 and then n(t) = 20

and n′(t) = 15. Here, these sample sizes denote the number of branches at

each stage in the scenario trees, and we use identical values for all of the

stages. However, in our larger sampled scenario trees we use a larger number

of samples in the early iterations and use fewer as the stage index grows larger.

Specifically, for the tree used to generate the policy, we use equation (4.3):

n(t) = max{ρt−1n(1), nmin}. (4.3)

And, we use this same equation with n(1) and n(t) replaced by n′(1) and n′(t)

for the LBE procedure. We use ρ = 0.8 and nmin = 20 and range the values

of n(1) from 60 up to 2000 and n′(1) from 45 up to 1500.

Appendix A gives detailed results for each of the seven sets of scenario

trees we consider. The next four sections report a summary of these results.

4.5.1 Upper Bound Estimator Analysis

In this section we analyze the results of all the simulated instances for the

outputs of the PGP. Table 4.1 presents the upper bound estimator, Unu , and

the confidence interval width, εu, as the number of branches, n(t), used to

define the scenario tree that yields the PGP grows. The “Branches” column

indicates the value of n(1). When n(1) = 10 and n(1) = 20, the same branch
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size is used in all stages t = 1, . . . , T − 1. When n(1) > 20, we use formula

(4.3). For the results in Table 4.1, we use a confidence level of 1 − α = 0.95,

and each row is based on nu = 12800.

Branches Unu εu εu%
10 4755388.8 62257.5 1.3%
20 4182477.9 63699.1 1.5%
60 4256700.1 58379.2 1.4%

100 4171942.8 63322.1 1.5%
200 4120735.7 61167.5 1.5%

1000 4090672.5 58522.3 1.4%
2000 4076822.7 58511.5 1.4%

Table 4.1: Upper Bound Estimator for PGPs From Scenario Trees of Growing
Size

The nu = 12800 forward paths for estimating Unu in Table 4.1 are

all identical; i.e., we form these estimators using common random numbers.

Figure 4.1 shows the upper bound estimator and the confidence interval width

for each scenario-tree size. Table 4.1 and Figure 4.1 suggest that as the size

of the scenario tree used to define the cuts for PGP grows, the estimated

cost, Unu , tends to decrease. The sampling error does not shrink because we

estimate the sample variance with a constant sample size, nu = 12800.

We carried out a paired Student-t test in order to assess whether the

apparent decrease in cost with larger scenario trees is statistically significant.

Table 4.2 shows the results of this test. A positive difference for the point

estimate indicates a larger cost when the scenario tree has a smaller number

of branches. With one exception (when the number of branches grows from 20
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Figure 4.1: Upper Bound Point Estimate and CI Width with Scenarios Trees
of Various Size

to 60), larger trees yield smaller estimates of cost. All of the point estimates of

those differences are, individually, statistically significant at a level of 1−α =

0.90. The significant variance reduction that we obtain by using common

random numbers in estimating these differences can be seen by comparing

the halfwidth values (HW) in Table 4.2 with the CI widths (εu) reported in

Table 4.1.
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Branches 10 20 60 100 200 1000

20
Pt 572910.9
HW 23540.8

60
Pt 498688.8 -74222.1
HW 17604.6 13660.4

100
Pt 583446.1 10535.1 84757.3
HW 23811.1 9626.8 13067.4

200
Pt 634653.2 61742.2 135964.4 51207.1
HW 23365.3 10191.1 10923.7 7531.9

1000
Pt 664716.3 91805.4 166027.5 81270.2 30063.1
HW 23698.3 11212.3 10373.0 9103.9 5905.1

2000
Pt 678566.1 105655.2 179877.3 95120.1 43913.0 13849.8
HW 24116.9 11058.8 10742.0 8959.6 6019.8 4668.8

Table 4.2: Paired Student-t Test for PGP with Different Scenario-Tree Sizes
Paired Student-t tests using common random numbers and a 90% level with

a sample size of 12800. The table contains confidence intervals for the
column entry less the row entry; e.g., the first entry is 572910.9 ± 23540.8 is

a confidence interval for Unu(10)− Unu(20), where Unu(10) and Unu(20)
denote the point estimates from scenario trees with n(1) = 10 and n(1) = 20

branches at each stage, respectively.
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4.5.2 Lower Bound Estimator Analysis

In this section we analyze the results of all the simulated instances for the

outputs of the LBE procedure. Table 4.3 presents the lower bound estimator,

Ln`
, and the confidence interval width ε`, as the number of branches, n′(t), used

to define the scenario trees in LBE grows. The “Branches” column indicates

n′(1). When n′(1) = 8 and n′(1) = 15, the same branch size is used in all

stages t = 1, . . . , T − 1. When n′(1) > 15, we use formula (4.3). For the

results in Table 4.3, we use a confidence level of 1−α = 0.95, and each row is

based on n` = 15.

Branches Ln`
ε` ε`%

8 3500672.5 595878.0 12.5%
15 4166823.0 599633.0 14.3%
45 4011643.7 246636.0 5.8%
75 4032745.6 135208.5 3.2%

150 3952628.1 110963.3 2.7%
750 3924632.1 90483.6 2.2%

1500 3922280.6 67669.3 1.7%

Table 4.3: Lower Bound Estimator LBEs From Scenario Trees of Growing Size

Consider zi
(
n′(1)

)
, i = 1, . . . , n` to be the i.i.d. lower bounds obtained

for each scenario tree with branch size n′(1). We define the order statistics

for the lower bounds obtained for each scenario tree with branch size n′(1) as

z(1)
(
n′(1)

)
≤ z(2)

(
n′(1)

)
≤ · · · ≤ z(n`)

(
n′(1)

)
. Now, using the order statistics

we can plot the different values of the obtained lower bounds in ascending

order. Figure 4.2 shows the lower bound for each of n` = 15 trees for each

114



scenario tree size in ascending order. Notice that the variability reduces and

the lines are becoming flatter and flatter around roughly 4.0 × 106 as the

scenario-tree size grows.
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Figure 4.2: Ln`
in Ascending Order for Each Scenario Tree Size

Figure 4.3 shows the lower bound estimator Ln`
and the confidence

interval width for each scenario tree size. It is possible to notice that the lower

bound estimator is increasing and the confidence interval width is decreasing

in value as the size of the sampled scenario trees grows. The estimator appears

to grow until it reaches a certain value and then it stays in the neighborhood

of that value as the scenario tree grows. The confidence interval width, on the

other hand, is decreasing as the size of the scenario trees grows.
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Figure 4.3: LBE Point Estimate and Halfwidth for Each Instance

4.5.3 Confidence Interval Analysis

Now we analyze the results of all the simulated instances for the confidence

interval errors. Table 4.4 presents the point estimate of the optimality gap,

(Unu −Ln`
)+, along with the confidence interval width, (Unu −Ln`

)+ + ε` + εu,

for scenario trees of increasing size. The first column, labeled “Branches,”

shows the sample size at each stage of the scenario trees, as described in the

previous two sections.

Figure 4.4 present the errors associated with the upper bound, lower

bound and gap between EU and z∗ for each instance. It is possible to notice

that the confidence interval error reduces as the sample size becomes bigger.

The confidence interval width shrinks as the scenario trees grow in size. As the
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Branches gap[R$] gap% CI for EU − z∗ CI%
10 / 8 1254716.3 26.4% 1912851.8 40.2%

20 / 15 15654.9 0.4% 678987.1 16.2%
60 / 45 245056.4 5.8% 550071.6 12.9%

100 / 75 139197.1 3.3% 337727.7 8.1%
200 / 150 168107.6 4.1% 340238.4 8.2%

1000 / 750 166040.4 4.1% 315046.3 7.7%
2000 / 1500 154542.1 3.8% 280722.9 6.9%

Table 4.4: Gap Estimator and CI Width From Scenario Trees of Growing Size

scenario tree size (based on n(1)) used for forming the policy grows, the point

estimate of upper bound tends to decrease. As the scenario tree size (based on

n′(1)) used in LBE grows, the lower bound tends to grow. Together this means

that the gap estimate (shown in green) tends to shrink. The sampling error

associated with the upper bound is relatively constant (shown in blue) because

the sample size for out-of-sample testing (nu = 12800) is held constant. Finally

as n′(t) grows the sampling error associated with the lower bound (shown in

red) tends to decrease.
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Figure 4.4: Confidence Interval Errors for Each Instance

4.5.4 Computational Time Analysis

Now we analyze the computational time regarding to the sampled scenario tree

used to define the collection of cuts for PGP for the different tree sizes. Figure

4.5 presents the computation time for each iteration for different sample sizes.

Clearly, we notice that the computational effort grows as the branch size in

the scenario trees grows. The computational effort per iteration grows as we

add more cuts to the subproblems at each stage because the constraint matrix

grows in size.

Figure 4.6 presents the total computation time for different sample

sizes. Again, it is clear that the total computational time is growing with
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Figure 4.5: Iteration Time in Minutes for Each Instance

larger scenario trees. Note that to run the SDDP for 45 iterations using

n(1) = 2000 for the first stage and n(t) defined by (4.3) for t = 2, . . . , T − 1

takes approximately 660 minutes or 11 hours using 128 cores.

Although the results of the solution quality are better when we have

bigger sample sizes, the computational time is also longer. For the remainder

of this dissertation, in Chapter 5, we use n(1) = 200 for the first stage and

n(t) defined as in (4.3) for t = 2, . . . , T − 1.
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Chapter 5

Case Study

The case study we describe in this chapter is focused on the Brazilian in-

terconnected power system. We describe a base case and consider three ex-

cursions from that base case by including new run-of-river hydro generation,

additional transmission capacity, and by increasing system demand. We used

the model for the hydro-thermal scheduling problem with the aggregate reser-

voir representation describe in Chapter 2 using water inflows forecasting from

a DLM model that provides an interstage dependent structure that satisfies

the additive form (3.24). As in Chapter 4, we define 24 monthly stages for

this medium horizon problem and we consider the formulation using the cut-

sharing methodology developed in Section 3.8.5 to solve the problem. Before

we go into more detail about each instance we describe in the next section the

main characteristics of the Brazilian interconnected power system.

5.1 The Brazilian Interconnected Power System

The Brazilian interconnected power system is different from most other coun-

tries around the world. The major portion of electricity is produced by hydro

generators. The system is divided in four regions, they are: Region 1 - South

121



East / Central, Region 2 - South, Region 3 - North East and Region 4 - North.

These four regions represent around 98% of the Brazilian electricity demand,

and the other 2% is isolated from the rest of the system. Figure 5.1 presents

each of the Brazilian regions considered by the independent system operator

when solving the hydro-thermal scheduling problem.

Isolated

South East / 

Central

South

North East

North

Figure 5.1: Brazilian Power System Regions

5.1.1 Power Generation Production and Capacity

In 2010, around 89% of the total electricity was produced by hydro plants

(ONS, 2011). Figure 5.2 presents the percentage of the total energy production
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produced by each source during the year 2010.

72%

17%

5%
2% 3% 1%

Brazil - Total Electricity Production 2010

Hydro

Hydro - Itaipu

Thermal - Natural Gas

Thermal - Other

Nuclear

Other

Total = 476352.6 GWh

Figure 5.2: Brazil’s Total Electricity Production in 2010

Region 1 (that includes the Itaipu hydro generator) is responsible for

63% of the total electricity production, Region 2 produces around 17.7%, Re-

gion 3 produces around 11.3% and Region 4 is responsible for 8.0% of the

total electricity production. In terms of generation capacity the picture above

changes. Figure 5.3 presents the percentage of the total generation capacity

for each source.
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Figure 5.3: Brazil’s Total Generation Capacity in 2010

5.1.2 Power System Demand

The average electricity demand for the interconnected power system during

the year 2010 was 54,251.6 [MW]. Most of the electricity demand is located in

Region 1, which represents the load center. Figure 5.4 presents the percentage

of electricity demand required by each Region. The total energy consumption

in 2010 was 475095.6 [GWh], and the percentages of each region are almost

the same as the ones presented in Figure 5.4.

5.1.3 Interconnections

In our version of the medium horizon hydro-thermal scheduling problem we

consider transmission lines that interconnect each region of the Brazilian power

system. Transmission lines within each region are not considered in our model

because of the aggregate reservoir representation that we assume. This is also

the current procedure used by the Brazilian independent system operator.

124



62%
16%

15%

7%

Region 1

Region 2

Region 3

Region 4

Demand = 54251.6 MW

Figure 5.4: Percentage of Total Electricity Demand in 2010 for Each Region

From Figure 5.1 it is possible to see the interconnections considered

in our model. Region 1 is connected to Region 2, to Region 3, and to a

virtual Region that has connection to Region 4. Region 3 is also connected

to the virtual Region. The transmission link capacities for the year 2010

are presented in Figure 5.5. Note that these values change for each month

depending on the maintenance schedule for the transmission lines and also

because of the addition of new lines into the system.

125



Isolated

South East / 

Central

South

North East
North

6300 MW
5300 MW

4000 MW

3500 MW
1000 MW

600 MW

2600 MW

3900 MW

2800 MW

∞

Figure 5.5: Transmission Capacities Between Regions for 2010

5.1.4 Simulation Considerations

As a base point for our case studies we consider the data available from the

Brazilian Commercialization Chamber website (CCEE, 2010). The input data

used is for the month of February of 2010. Because of the large amount of data

(contained in 34 different files), part of the inputs description are suppressed

in this document but one can download directly from that website.
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5.1.4.1 Power System Demand

The power system demand changes from month to month for each region.

Table C.1, in Appendix C, presents the power system demand for each region

for the 24-month horizon. From the total demand of each region we subtract

the electricity generation produced by small hydro plants, electricity produced

by hydro generators operating with fewer machines than their normal capacity,

and minimal thermal generation, which is inflexible. The result is the net

demand for each region that is used in the optimization model.

There is a considerable amount of electricity generation from small

hydro plants in the system which is not considered in the centralized dispatch

by the ISO. Because of that, this amount of power is subtracted from the

system demand presented in Table C.2, where the values represent the amount

of generation produced by small hydro plants for each month.

We consider also the amount of power that is produced by hydro plants

that are operating with fewer machines than their normal capacity (which is

not counted in the energy parameters computation described in Chapter 2).

These amounts are also subtracted from the demand, and they are presented

in Table C.3.

The minimal thermal generation required from each thermal plant is

also discounted from the demand. Table C.4 presents the minimal thermal

generation, or inflexible thermal generation, for each month in each region.

After subtracting all these terms we get the net demand for each region
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that is used as input for the optimization model. Table 5.1 presents the net

demand for each region in each month.

Month Region 01 Region 02 Region 03 Region 04
1 31554.1 8894.0 7578.5 3733.0
2 32225.2 9035.3 7607.5 3755.0
3 29661.9 7956.4 7667.5 3859.0
4 28185.8 7646.8 7509.5 3933.0
5 27874.5 7575.8 7356.5 3939.0
6 28317.5 7504.8 7329.5 3912.0
7 28465.5 7335.3 7301.5 3954.0
8 28488.1 6974.4 7389.5 3967.0
9 29090.3 6988.4 7485.5 3950.0
10 28551.0 7055.0 7525.5 3931.0
11 28002.6 7113.0 7537.5 3888.0
12 30289.6 8194.9 7810.5 4160.0
13 31005.9 8462.3 7769.5 4019.7
14 31640.9 8543.1 7874.5 3886.4
15 30637.6 7985.0 7826.5 3889.4
16 28838.6 7560.8 7637.5 3845.1
17 28483.5 7501.8 7472.5 3852.1
18 28719.6 7491.0 7409.5 3700.8
19 29290.6 7347.0 7409.5 3745.8
20 29377.6 7176.4 7492.5 4248.0
21 29596.6 7358.4 7609.5 4230.0
22 29440.6 7609.4 7661.5 4840.4
23 29926.2 7845.1 7677.5 4706.4
24 32032.6 8565.9 8189.5 4871.4

Table 5.1: Net Demand for Each Region [MW-month] - Optimization Input

As we describe in Chapter 3, we consider three load levels (low, medium

and high). The net demand from Table 5.1 is then transformed into demand

for each load level using the load level durations and load level base multipliers

from Tables C.5 and C.6 from Appendix C.
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5.1.5 Hydro Generation and Energy Parameters

There are a total of 150 hydro generators and 151 thermal generators that

participate in the hydro-thermal scheduling problem that we analyze. Note

that the hydro and thermal power system configuration is dynamic, changing

for each month depending on the addition of new generators in the system.

The generators also have scheduled maintenance that influence the production

capacity for each source for different months. The hydro generators that are

part of the centralized dispatch on the Brazilian system are presented in each

river basin in Appendix C.

Region 01 Region 02 Region 03 Region 04
146959.21 18396.65 37344.75 10707.87

Table 5.2: Initial Energy Storage for Each Aggregate Reservoir [MW-month]

Table 5.2 presents the initial hydro energy storage on each aggregate

reservoir that represent each region. Figure 5.6 presents the maximum hydro

generation as functions of the storage for the first month of the problem. We

present the other energy functions of the storage in Appendix C. Figures C.2,

C.3 and C.4 present the minimal outflow energy, evaporation losses and water

diversion functions of the storage for each region in the first month respectively.

Note that these functions change from region to region depending on the hydro

system configuration.
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Value at Min Storage Value at Max Storage

Region 01 4.71E-02 4.01E+04

Region 02 1.30E-01 1.13E+04

Region 03 2.59E-02 9.41E+03

Region 04 5.12E-01 4.15E+03
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Figure 5.6: Max Hydro Generation Functions for Each Region - 1st Month

5.1.6 Thermal Generation and Costs

The maximum thermal generation capacity, already reduced by the minimal

thermal generation from Table C.4, for each region is presented in Table 5.3.

Note that we deal with thermal generation using individual thermal plants, but

because of the large number of generators we prefer to show the total thermal

generation capacity for each region instead. Figure 5.7 show the thermal gen-

eration capacity versus cost for the first month for the Brazilian system. The

thermal generation versus cost presented in Figure 5.7 changes from month to

month, and we just present them for the first month here.

We consider also four different load deficit levels with different cost and

different curtailment magnitudes. Table 5.4 presents the different load deficit
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Month Region 01 Region 02 Region 03 Region 04
0 4794 1235 2305 153
1 4749 1057 2305 306
2 4586 680 2446 306
3 4598 780 2446 306
4 5218 1021 2446 306
5 4758 1002 2729 306
6 4933 858 3047 306
7 5164 858 3202 306
8 4940 858 3202 306
9 4940 1004 3358 306
10 6079 1197 3358 306
11 5158 1122 3106 306
12 5320 1210 3379 306
13 5340 1074 3379 306
14 5340 1017 3379 306
15 5473 1014 5053 306
16 5759 1014 5053 306
17 5473 1046 5053 306
18 5473 946 5378 306
19 5473 988 5053 306
20 5473 1112 5703 306
21 5472 1213 5703 363
22 5546 1171 5789 363
23 5781 1146 6210 705

Table 5.3: Max Thermal Generation Capacity for Each Region [MW-month]

costs and the associated levels of curtailment.

Level 01 Level 02 Level 03 Level 04
Cost [R$/MW] 1031.76 2225.84 4651.31 5285.67

Load Curtailment 5% 5% 10% 80%

Table 5.4: Load Deficit Levels and Costs

In order to discount future costs to present values a discount factor

of 12% a year is used in the objective function coefficients that represent the
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Figure 5.7: Thermal Generation Capacity x Cost - Brazilian System 1st Month

expected future cost.

5.1.7 Water Inflows

We consider the water inflows forecast produced by a dynamic linear model

(DLM) from Marangon Lima (2011). Then a scenario tree is created according

to SSTIDM procedure (see Chapter 3), and used in the optimization model.

Note that once we have the water inflow forecasts and the productivity of

each hydro plant the model computes all the necessary parameters, described

in Chapter 2, for each stage and each scenario during the optimization process.
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5.2 Problem Instances

In our case study, we solve four problem instances, in addition to the instance

which we describe in Chapter 4. These problem instances differ from the base

case in that they have increased hydro generation capacity, increased trans-

mission capacity, and increased system load. After describing these instances,

we examine their affect on key decision variables such as energy storage, con-

trollable energy generation, thermal generation, power exchanges, and total

expected cost to operate the system. We also compare some outputs of these

new instances with the outputs of Instance 05 of Chapter 4.

5.2.1 Instance A - Base Case

Instance A is the basis of our analysis. It is an instance with 24 monthly

stages with n(t) = 200 for t = 1 and n(t) defined according to (4.3) for

t = 2, . . . , T − 1, where we consider ρ = 0.8 and nmin = 20. We consider that

the aggregate reservoir levels are initially at 50% of the values presented in

Table 5.2 for the month of February of 2010. By choosing 50% we expect to

create instances where we start from average hydro conditions and we believe

that this assumption will represent that some flexible thermal generation has

to be dispatched in order to satisfy demand. As a result, we should have

positive total expected costs.

Based on our analyses in Chapter 4, we let the SDDP algorithm run

for 45 iterations and then output the first stage solution and the collection

of cuts to be used by the PGP procedure. We run PGP with nu = 12800 in
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order to evaluate the policy by computing the upper bound estimator Unu and

the sampling error, εu. We consider the input parameters described in Section

5.1.4 to create this instance.

Instance 05 of Chapter 4 is the same as our base case, except that the

reservoirs storage starts with 10% of their capacity instead of 50%. We denote

this instance as Instance E for future reference.

5.2.2 Instance B - Addition of New Hydro Generation

In the input files obtained from CCEE (2010), there is information about new

hydro generators that will start to operate up to five years in the future. One

of these new generators is the Jirau run-of-river hydro plant to be installed in

the system to supply the Southeast / Central Region in Brazil.

According to the information contained in the input files, the Jirau

power generator is supposed to have the first machine in operation by February

of 2013. This hydro plant has a total of 44 machines with nominal power of

75 MW each. The minimal number of machines specified for this hydro plant

to start to contribute to the total energy production of the aggregate reservoir

system is 27.

In instance B we decide to anticipate the startup operation date for

this hydro plant in order to see the modifications in the total cost to operate

the system. So, in order to do that we defined that the three first machines

would start its operation in February of 2010, this means that we consider

that the reservoir of this hydro plant is already complete when we start our
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simulation. From March 2010 to October 2010 three new machines start to

operate in each month, so by the beginning of October we already have the

minimal number of machines in operation. This case represents the addition

of 2025 MW of capacity that may produce hydroelectricity by October 2010

in comparison with the base case.

5.2.3 Instance C - Addition of New Transmission Lines

From the input files we also have information about new transmission lines that

will be constructed in the near future. In January of 2012 new transmission

lines will be start to operate and increase the transmission capacity between

the Southeast / Central region and the South region. The new lines will

represent an increase of 1000 MW in the direction South East to South and

500 MW in the other direction.

In order to create instance C, we decided to add 1000 MW of capacity

in each direction beginning in February of 2010 in order to see the effect

compared with the current system conditions. We also decided to increase the

transmission capacity between the Southeast / Central Region with the North

East and North regions by 1000 MW in all directions. With this instance it is

possible to see if we have a lack of transmission capacity in the base case.

5.2.4 Instance D - Increase System Demand

For instance D we decide to increase the electricity demand for the regions

in the South and in the North East. The demand used in the input files
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is a forecast for the whole horizon, updated at each month during the new

simulations. The forecast values used for the year 2011 for the two mentioned

regions was around 2% below what happened during that month. So in order

to create this instance we decided to increase by 2% the demand of both

regions from February of 2010 up to the last month that we analyze, which is

January 2013. With this instance it is possible to analyze how the total cost

to operate the system will behave considering the current generation capacity

under increased demand.

5.3 Case Study Results

We present the results obtained for some output parameters of our hydro-

thermal scheduling model for each instance. We also compare the expected

total cost resulting from the different runs of PGP.

5.3.1 Energy Storage

One of the most important decision variables is the energy storage that is car-

ried forward to the next stage. Table 5.5 presents the energy storage decisions

for the first stage for each instance. Note that the storage amount in Instance

E is the smallest of all because the reservoirs levels start from 10% and in the

other instances the initial levels are 50%.

Table 5.5 also presents the energy storage for the whole system for

Instances A through E. Note that the total energy storage for the system has

a slight difference, around 200 MW larger, for Instances B in comparison with

136



Region / Instance E A B C D
01 49328.6 108473.7 105180.8 109287.5 108337.8
02 2824.7 9973.4 9222.2 10734.2 9909.3
03 1876.7 16046.1 20292.6 14471.5 15846.1
04 6640.1 8731.2 8731.2 8731.2 8731.2

Total 60670.1 143224.4 143426.9 143224.4 142824.4

Table 5.5: Hydro Energy Storage Decisions [MW-month]

A and C. Note that this difference is because of the new run-of-river capacity

that Instance B has, which allows the aggregate reservoirs to store more energy.

Instance D has higher demand, so it needs to produce more energy to supply

its demand than Instances A, B and C which implies in smaller storage, about

400 MW, at the first stage. Instance E that is about 82500 MW smaller than

the others, because of its low initial storage.

5.3.2 Hydro and Thermal Generation

We present the controllable hydro generation for each region and each instance

in Table 5.6. Note that the controllable hydro generation is the amount of

energy that we decide to produce from our energy storage, so the behavior of

these values is the opposite of those presented for the energy storage.

Region / Instance E A B C D
01 5935.5 5237.5 8530.4 4423.7 5373.4
02 8868.2 9027.1 9778.2 8266.3 9091.2
03 3766.7 4329.0 82.4 5903.6 4529.0
04 3851.7 5805.2 5805.2 5805.2 5805.2

Total 22422.0 24398.7 24196.2 24398.7 24798.7

Table 5.6: Controllable Hydro Generation Decisions [MW-month]
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Table 5.6 also presents the controllable hydro generation for the whole

system for all instances. Note that the total controllable hydro generation for

the system has a slight difference, around 200 MW smaller, for Instance B in

comparison with A and C. This difference is because of the new run-of-river

capacity that Instance B has, which allows the system to use less controllable

energy. Instance D has higher demand, so it needs to produce more energy to

supply its demand than Instances A, B and C which implies in smaller storage,

about 400 MW, at the first stage. Instance E produces about 2000 MW less

than Instances A and C because of its low initial storage, and also because it

prefers to store hydro energy for future use. This difference in the controllable

hydro generation from Instance E in comparison with the other instances is

supplied by thermal generation, which makes the present cost for Instance

E larger than for the others. Table 5.7 presents the thermal generation on

the first stage for the whole system for each instance. Note that the thermal

generation for instances A through D is very small, around 40 MW, and the

thermal generation for Instance E is much larger, around 2700 MW.

Instance E A B C D
Total 2711.1 40.8 40.8 40.8 40.8

Table 5.7: Total Thermal Generation Decision for the System [MW-month]

5.3.3 Power Exchanges

We present the results of the power exchanges between regions for Instance A,

the base case, and Instance C, where we have additional transmission capac-
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ity. Table 5.8 presents the power exchanges between regions. The row entry

represents represents the total amount that goes in or out of that Region. If

the amount is positive it means that power is flowing into that Region, and if

the amount is negative power is flowing out of that Region. Note that for the

Virtual Region we have a “±” symbol, which represents that the same amount

in going in and out of the Virtual Region. Note that the amounts are different

for Regions 01 through 03 for the two instances.

Instance / Region 01 02 03 04 Virtual
A 6453.52 -2807.52 -491.97 -3154.03 ± 3203.04
C 7267.35 -2046.72 -2066.60 -3154.03 ± 4792.64

Table 5.8: Power Exchanges Between Regions for Instances A and C [MW-
month]

5.3.4 Total Cost

Figure 5.8 presents the total expected cost for instances A through D. We

carried out a paired Student-t test in order to assess whether the apparent

decrease or increase in cost with different instances is statistically significant.

Table 5.9 shows the results of this test. A positive difference for the point

estimate indicates a larger cost. So we can see that the expected cost for

Instance E is the largest one, because we start only with 10% of the reservoir

volumes. The cost of Instance A is around three times larger than the cost of

Instance B, which is expected because of the addition of new hydro generation

capacity in Instance B. The cost of Instance A is slightly larger than the cost

in Instance C, meaning that the addition of new transmission capacity did not
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have much influence in the expected cost in this case. The cost of Instance

A is around 1.5 times smaller than the cost of the higher demand of Instance

D, which means that with the current generation installed if the demand has

the modifications described earlier the system operational costs are expected

to be higher.
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Figure 5.8: Upper Bound Point Estimate and CI Width for Instances

de Carvalho (2008) presents an analysis of the cost per MWh to build

the hydro generators of Santo Antonio and Jirau that are located in the same

river basin. The total power of both generators is 6450 MW where 3300 MW

are from the Jirau hydro plant. de Carvalho considers an amortization period

of 30 years with internal rate of return of 10% per year. The considered in-

vestment cost for both hydro generators is roughly around R$ 17.5 billion and
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Instance E A B C

A
Pt 4065888.9

HW 60031.6

B
Pt 4105836.8 39948.0

HW 61059.6 4384.6

C
Pt 4066048.5 159.6 -39788.4

HW 59993.2 1436.1 4324.0

D
Pt 4037508.5 -28380.4 -68328.4 -28540.0

HW 59564.5 2592.8 6388.9 2899.8

Table 5.9: Paired Student-t Test for Expected Cost of Different Instances
Paired Student-t tests using common random numbers and a 90% level with

a sample size of 12800. The table contains confidence intervals for the
column entry less the row entry; e.g., the first entry is 4065888.6 ± 60031.6 is
a confidence interval for Unu(E)− Unu(A), where Unu(E) and Unu(A) denote
the point estimates from Instances E and A respectively. Note that the test

is not an all pairwise test. Rather the results hold individually for each pair.

the estimated generation cost is 77 R$/MWh (de Carvalho, 2008). Seventy

percent of the total generation production from Jirau hydro plant is meant

for long-term contracts with 30 years (EPE, 2008). According to EPE (2008),

the electricity price for long term contracts for the Jirau hydro generator was

settled at 71.37 R$/MWh. As mentioned before, we consider a two year hori-

zon in our problem instance and the generation amount provided by Jirau

hydro plant is 2025 MW per month. In order to compute the annualized cost

(to represent the investment) we multiply the long term electricity price by

the generation amount required and the number of days in a month and the

number of hours in a day to obtain the monthly cost for the hydro generator,

then we discount with a discount rate of 12%. So we have:

MG = 71.37× 2025× 30× 24 = R$ 104.06 Million
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TG = R$ 2.245 Billion.

Here, MG represents the monthly cost for the new generation and TG

represents the total cost for two years for the new generation (two years to

match the time horizon of our optimization model). Now, if we consider the

difference in total cost of Instance A and B, we notice that the difference is

about R$ 39947.9, and we have to multiply this amount by the number of days

in a month and the number of hours in a day in order to get the total cost

saved due to additional hydro capacity of 2025MW over the two year horizon.

So we have:

PtG = 39947.9× 30× 24 = R$ 28.76 Million.

Here, PtG represents the difference between the point estimates of In-

stance B and A. Now if we compare the value of PtG with TG it is clear that

the investment in new hydro generation is not justified for this case. The

investment cost for new hydro capacity has to be analyzed for future plan-

ning and expansion conditions of the power system, e.g., under an increase

in system demand, under the possibility of shrinking hydro supply, which in

combination would correspond to operating at a higher rate on the thermal

cost curve. Our analysis indicates that only under such conditions would new

hydro capacity become an interesting option.

The addition of new transmission capacity between Region 01 and the

others, Instance C, barely changed the total operational cost (if we compare

with Instance A). In order to increase these capacities by 1000 MW we consider
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the construction of transmission lines at voltage level of 525 kV. It is necessary

to construct about 180 km of transmission lines to connect Region 01 and 02,

950 km of lines to connect Region 01 and 04, and 900 km of lines to connect

Region 01 and 03. We use the standard costs per km for transmission lines

of 500 kV, 314510.0 R$/km, from (ANEEL, 1999) in order to compute the

revenue requirement per year from these transmission links. We also consider

the year cost of the buses for the transmission lines from (ANEEL, 1999), R$

3751450.0 for each bus. Approximately, for the two years horizon we have for

the revenue requirement of the new transmission capacity:

TC = 2×
(
314510×(180+950+900)+2×3751450

)
= R$ 1.292 Billion

PtC = 159.6× 30× 24 = R$ 0.12 Million.

Here, TC represents the total transmission revenue requirement for the

new capacity for the two years and PtC represents the difference between the

point estimates of Instance C and A. Now if we compare the value of PtC with

TC it is clear that the investment in new transmission capacity is not justified

for this case. As mentioned for the addition of new hydro generation, the

investment cost for new transmission capacity has to be analyzed for future

planning and expansion conditions of the power system.

For Instance D, the increase in system demand represents the addition

of about 400 MW per month if compared to the demand of Instance A. Let

PtD be the difference between the point estimates of Instance E and A given

by:
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PtD = −28380.4× 30× 24 = −R$ 20.43 Million.

Note that the negative sign in PtD represents the increase in cost in-

curred by the additional load. Now, we can obtain the cost to serve the

additional load in terms of R$/MWh by:

CD = 20.43×106

24×30×400
= 70.9 R$/MWh.

Here, CD represents the cost to serve the additional demand in terms

of R$/MWh. Note that, if we compare CD with the thermal generation costs

presented in Figure 5.7, CD has the cost of a cheap thermal plant.

It is possible to notice from the performed analysis that many different

things can be analyzed with our model. Many interesting questions arise:

What is the increment in demand that will justify the addition new generation?

What is the optimal point that we can obtain if we consider investment and

operational costs? How well prepared is the current hydro-thermal system

to handle changes in the climate, which may result in drier hydro conditions

and reduced hydro supply? Given the current conditions, what is the load

curtailment risk for the next stages? The developed model gives the possibility

to deal with these and many other questions and also it is a valuable tool to

analyze investment opportunities in generation and transmission.
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Chapter 6

Conclusions and Future Work

6.1 Research Contributions

Hydro-thermal scheduling is a challenging problem that we modeled as a large-

scale multi-stage stochastic program with stochastic monthly inflows. In the

literature there are two main representations of such a problem. One represen-

tation of the hydro-thermal scheduling problem is with the modeling resolution

of individual hydro generators and stochastic monthly inflows of water. The

second approach uses an energy-based aggregate reservoir representation with

stochastic monthly inflows of energy. The representation with individual hydro

generators can be more precise since we can better represent the relationship

of the hydro plants in each river basin. Also, this representation uses forecast-

ing models that can exploit local predictors to forecast the stochastic water

inflows. But the computational effort to solve such a model grows with the

number of hydro generators, the level of representation of the system details,

the number of stages and the branches in the scenario tree. On the other

hand, the representation of the problem using the aggregate reservoir scheme

is more appealing from the computational point of view, since the number of

decision variables and constraints shrinks considerably for large systems. How-

ever applications of the aggregate reservoir representation, as the one used in
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Brazil, are tied to the forecasts of energy inflows that may not represent well

the behavior of the water inflows at each hydro generator.

We present in this dissertation a model for the hydro-thermal schedul-

ing problem using the aggregated reservoir representation and water inflow

forecasts instead of energy forecasts. In this way, we can use forecast models

that better represent the real stochastic parameter and also exploit computa-

tional efficiency. Once the stochastic inflow forecasts are given to the model,

they are transformed into energy that contributes to hydro energy generation,

to energy storage for the aggregate reservoirs or even to spillage.

Our approach to solve this problem is based on the SDDP algorithm,

which has been in the literature since 1991 (Pereira and Pinto, 1991). The cut-

sharing methodology presented by Infanger and Morton (1996) for the SDDP is

very important for practical applications of the algorithm, when inflows exhibit

interstage dependency. In order to deal with the hydro-thermal scheduling

problem with the aggregate reservoir representation, presented in Chapter 2,

and with forecasts of water inflows at each hydro generator we had to extend

previous work and create a novel approach for cut-sharing. We present in

Chapter 3 this extension of the cut-sharing methodology (and the proof of its

validity) for the SDDP algorithm to handle an aggregate energy-based scheme

with water inflows represented by an additive interstage dependency model.

In Chapter 4, we assess the solution quality of a policy generated with

a sample average approximation with respect to the true problem. We propose

a procedure for forming an out-of-sample upper bound estimator for the true
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problem using the collection of cuts and first stage optimal solution of the

sampled average approximation problem. We also propose a procedure to

create a lower bound estimator for the true problem by generating several

scenario trees and running the SDDP algorithm on each of them. For the

two proposed procedures we also compute the sample variance estimators.

Then we construct confidence intervals for the true problem based on these

estimators. We investigate how to increase various sample sizes in order to

shrink the width of these intervals. From the results obtained, it is possible to

notice that the confidence interval width and error reduces as the sample size

grows.

In Chapter 5, we used scenario trees and further sample sizes based

on our analysis in Chapter 4 on assessing solution quality. We compared

a base case problem instance with three modeling excursions based on cur-

rently planned improvements to, and demands on, the hydro-thermal system

in Brazil. These include expansion in hydro generation capacity, expansion in

transmission capacity, and additional system load. Our analysis suggested that

the additional transmission capacity provided little, if any, benefit in reduc-

ing expected system costs. Additional run-of-river hydro generation capacity

had a significant effect in decreasing expected costs. The modeling scenario we

considered with additional system load significantly increased expected system

cost.
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6.2 Final Remarks and Future Research Goals

The theory developed in Chapter 3 proposes that approaching the problem

via: (a) a decomposition algorithm that uses the cut-sharing methodology to

handle additive interstage dependency, and (b) a model with interstage inde-

pendence but an extended state variable, i.e., additional decision variables and

constraints, are mathematically equivalent. The model with the extend-state

formulation does not have to compute the cuts in a complicated way because

the extended state allows us to model the problem using interstage indepen-

dence. On the other hand, the constraint matrix is larger due to an increased

number of decision variables and constraints, compared to the formulation that

makes use of the cut-sharing methodology. One future research goal is to per-

form a computational study in order to analyze the computational efficiency

of both formulations as the problem size scales large.

The results presented in Chapter 4 shows that the solution quality as-

sessment with respect to the true problem is possible for a multi-stage stochas-

tic program. Our results become better and better as the sample size grows,

but also the computational effort required to solve such problems grows. The

question that arises is how large should the sample size be because of the trade-

off between solution quality and computational effort. In our case, we choose

during the case study to use the number of branches n(1) = 200 scenarios for

the first stage and n(t) defined as in equation (4.3) for t = 2, . . . , T−1, because

the results of Chapter 4 show that besides the gain in quality of larger samples

the computational effort increases considerably. We believe that a promis-
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ing research direction would be to assess the solution quality in multi-stage

stochastic programs using smart sampling ideas to better select the scenarios

to create the sampled scenario trees. If such sampling schemes are embedded

in the creation of the scenario tree, we may be able to solve instances and

still obtain reasonable results, avoiding unnecessary computational effort.

We solve several instances of the hydro-thermal scheduling problem

considering 24-monthly stages. One interesting idea for future work is the

assessment of the policy quality as the time horizon grows. It would possible to

analyze how the estimators from PGP and LBE procedures and the optimality

gap behave as the number of stages increase.

All of our analysis has been developed considering a risk neutral ap-

proach. Another research direction is to employ risk measures such as the

conditional value at risk (CVaR) within the SDDP algorithm, as developed

in Shapiro (2011). Assessing solution quality in such a setting would require

extension of the current techniques.
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Appendix A

Solution Quality Instances

A.1 Instance 01 - HTSPM: 24STG-10SCN-A

We start our analysis with an instance of the 24-stage problem considering

n(t) = 10 scenarios for all stages (24STG-10SCN-A). We use the full sampled

tree with a total of 1023 nodes to generate cuts. The cuts are then used to

compute the upper bound estimator during the policy generation procedure

(PGP). We consider 128 forward paths in the first tree to estimate the local

upper bound (local, in that it applies only within the SDDP algorithm) at

each iteration and we use 32 of these paths to compute the backward step of

the SDDP algorithm, where we generate the cuts. The lower bound for the

sample average approximation is given by the optimal value, c1x
k
1 + θk1 , of the

first stage problem when the SDDP algorithm stops at iteration k.

At each iteration of the algorithm new forward paths are chosen using

Monte Carlo sampling. We run the algorithm for a certain number of iterations

until the lower bound obtained by the sampled scenario tree does not show

considerable improvement and its value is close enough to the upper bound.

Figure A.1 presents the convergence process of the SDDP algorithm

during 45 iterations. Table B.1 in Appendix B, presents the results of the
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lower bound, upper bound, confidence interval halfwidth for the upper bound,

and the computation time for each iteration for this problem instance. The

problem was solved using the supercomputer Ranger from Texas Advanced

Computing Center (TACC) using 128 cores. The algorithm parallelization was

developed using message passing interface (MPI). While a detailed analysis

of the effectiveness of the parallelization is not one of our research goals, in

Chapter 3 we describe further the algorithm parallelization that was necessary

to solve such large instances.

Once the first instance is solved we use the optimal solution of the first

stage and the collection of cuts obtained for each stage to determine the upper

bound estimator as described in Section 4.1. As mentioned before a new

collection of forward paths is sampled from the distribution of the inflows.

Note that this collection of paths is independent of the first tree, because now

we are interested in analyzing the out-of-sample performance. We sampled

nu = 12800 forward paths and computed the estimator Unu and the variance

S2
u described in the PGP procedure. The estimated cost, sample standard

deviation and confidence interval width obtained for PGP are presented in

Table A.1. Note that here we consider α = 0.05 so zα = 1.645, so we can

compute εu = zα.Su/
√
nu.

Once the PGP estimators have been formed, we form the lower bound

estimator, Ln`
. We use the procedure described for LBE, using a total of

n` = 15 independent scenario trees with branch size n′(t) = 8 for t = 1, . . . , T−

1. We have now 15 trees with 8 scenarios per stage and we run the SDDP

152



0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

1.10E+08

1.20E+08

1.30E+08

1.40E+08

1.50E+08

1.60E+08

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

C
o

st
 [

R
$

]

Iteration

Zub - Δ

Zlb

Zub

Zub + Δ

Figure A.1: SDDP Convergence for Instance 01
Referring to the SDDP algorithm presented in Section 3.6, Zlb is the lower

bound zk at iteration k, Zub is the sample mean upper bound zk at iteration
k, and ∆ is a 95% confidence interval halfwidth associated with upper bound

estimator.

algorithm on each of those trees to estimate Ln`
and S2

` . Figure A.2 shows the

different values of the lower bound for each one of the 15 trees. We run the

SDDP algorithm for 20 iterations for each tree. The values obtained for Ln`
,

S` and ε` are presented in Table A.2.

The gap between Unu and Ln`
and the error associated with this gap is

presented in Table A.3. The (1−α)-level confidence interval on the optimality

gap EU − z∗ and its associated error with respect to Unu for this instance are
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Unu [R$] Su[R$] εu[R$] εu%
4755388.8 4294897.6 62257.5 1.3%

Table A.1: Output of PGP for Instance 01
To form the cuts we use n(t) = 10 for all stages and run SDDP for 45

iterations. To estimate the upper bound we use nu = 12800.
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Figure A.2: Lower Bound for Each Tree on Instance 01

presented in Table A.4.

The error associated with the CI for this instance is around 40%, and it

can be explained by the large variability of the water inflows. We increase the

sample size for the next instances in order to reduce the CI error. We present

next other instances with larger sample sizes.
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Ln`
[R$] S`[R$] ε`[R$] ε`%

3500672.5 1310520.0 595878.0 12.5%

Table A.2: Output of LBE for Instance 01

gap[R$] gap%
1254716.3 26.4%

Table A.3: Gap Between Unu and Ln`
and Associated Error for Instance 01

A.2 Instance 02 - HTSPM: 24STG-20SCN-A

For the second instance we consider a 24-stage problem with n(t) = 20 for

all stages (24STG-20SCN-A). As in Section A.1 we use the full sampled tree,

now with 2023 nodes, to generate cuts. The cuts are then used to compute the

upper bound estimator during the PGP. As before, we consider 128 forward

paths in this tree to estimate the local upper bound at each iteration and we

use 32 of these paths to compute the backward step of the SDDP algorithm.

Figure A.3 presents the convergence process of the SDDP algorithm

during 45 iterations. Table B.2 in Appendix B, presents the results of the

lower bound, upper bound, confidence interval halfwidth for the upper bound

and the computation time for each iteration for this problem instance. The

problem was solved again solved using 128 cores.

As in Section A.1, once the instance is solved we use the optimal so-

lution of the first stage and the collection of cuts obtained for each stage

to determine the upper bound estimator with a new collection of forward
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CI for EU − z∗ CI%
[0, 1912851.8] 40.2%

Table A.4: CI for EU − z∗ and Associated Error for Instance 01

paths sampled from the distribution of the inflows. Again for this instance

we sampled nu = 12800 forward paths and computed the estimator Unu and

the variance S2
u described in the PGP procedure. The estimated cost, sam-

ple standard deviation and confidence interval width obtained for PGP are

presented in Table A.5.

Unu [R$] Su[R$] εu[R$] εu%
4182477.9 4394349.1 63699.1 1.5%

Table A.5: Output of PGP for Instance 02

Once the PGP estimators for this problem instance have been formed,

we estimate the lower bound Ln`
using the procedure LBE. We selected a

total of n` = 15 different scenario trees with branch size n′(t) = 15 for t =

1, 2, . . . , T − 1. We now have 15 trees with 15 scenarios per stage and we

run the SDDP algorithm on each of those trees to form Ln`
and S2

` . Figure

A.4 shows the different values of the lower bound for each one of the 15 trees

used. We run the SDDP algorithm for 20 iterations for each tree. The values

obtained for Ln`
, S` and ε` are presented in Table A.6.

The gap between Unu and Ln`
and the error associated to this gap is

presented in Table A.7. The (1−α)-level confidence interval on the optimality
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Figure A.3: SDDP Convergence for Instance 02
The terms Zlb, Zub and ∆ have the same interpretation as in Figure A.1

gap EU − z∗ and its associated error with respect to Unu for this instance are

presented in Table A.8. The error associated with the CI for this instance is

around 16.2%.
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Figure A.4: Lower Bound for Each Tree on Instance 02

Ln`
[R$] S`[R$] ε`[R$] ε`%

4166823.0 1318778.4 599633.0 14.3%

Table A.6: Output of LBE for Instance 02

A.3 Instance 03 - HTSPM: 24STG-60SCN-F-*SCN-O

For the third instance we consider a 24-stage problem with n(1) = 60 and a

different number of scenarios for the other stages (24STG-60SCN-F-*SCN-O),

where n(t) is defined by (4.3) for t = 2, . . . , T − 1. We use (4.3) to reduce the

number of scenarios as the stage index t grows in order to reduce computational

effort. We choose ρ = 0.8 and nmin = 20 in (4.3). As before we consider 128

forward paths in this tree to estimate the local upper bound at each iteration

and we use 32 of these paths to compute the backward step of the SDDP
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gap[R$] gap%
15654.9 0.4%

Table A.7: Gap Between Unu and Ln`
and Associated Error for Instance 02

CI for EU − z∗ CI%
[0, 678987.1] 16.2%

Table A.8: CI for EU − z∗ and Associated Error for Instance 02

algorithm.

Figure A.5 presents the convergence process of the SDDP algorithm

during 45 iterations for this instance. Table B.3 in Appendix B, presents the

results of the lower bound, upper bound, confidence interval halfwidth for the

upper bound and the computation time for each iteration for this problem

instance. The problem was solved again using 128 cores.

The same procedure was used to determine the upper bound estimator

with PGP with an independent collection of forward paths. Again for this

instance we sampled nu = 12800 forward paths and computed the estimator

Unu and the variance S2
u. The estimated cost, sample standard deviation and

confidence interval width obtained for PGP are presented in Table A.9.

Unu [R$] Su[R$] εu[R$] εu%
4256700.1 4027352.1 58379.2 1.4%

Table A.9: Output of PGP for Instance 03

Once the PGP estimators for this problem instance have been formed,

159



0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

1.10E+08

1.20E+08

1.30E+08

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

C
o

st
 [

R
$

]

Iteration

Zub - Δ

Zlb

Zub

Zub + Δ

Figure A.5: SDDP Convergence for Instance 03
The terms Zlb, Zub and ∆ have the same interpretation as in Figure A.1

we estimate the lower bound Ln`
using the LBE procedure. We selected a

total of n` = 15 different scenario trees with branch size n′(t) = 45 for t = 1

and n′(t) defined by (4.3) for t = 2, . . . , T − 1. We now have 15 trees with 45

scenarios on the first stage and a different number of scenarios defined using

(4.3), with n(1) replaced by n′(1), for the other stages. We run the SDDP

algorithm on each of those trees for 20 iterations to form Ln`
and S2

` . Figure

A.6 shows the different values of the lower bound for each one of the 15 trees

used. The values obtained for Ln`
, S` and ε` are presented in Table A.10.

The gap between Unu and Ln`
and the error associated to this gap is
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Figure A.6: Lower Bound for Each Tree on Instance 03

Ln`
[R$] S`[R$] ε`[R$] ε`%

4011643.7 542428.7 246636.0 5.8%

Table A.10: Output of LBE for Instance 03

presented in Table A.11. The (1−α)-level confidence interval on the optimality

gap EU − z∗ and its associated error with respect to Unu for this instance are

presented in Table A.12. The error associated with the CI for this instance is

around 12.9%.

gap[R$] gap%
245056.4 5.8%

Table A.11: Gap Between Unu and Ln`
and Associated Error for Instance 03

Note that the improvement in the percentage error if we compare with
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CI for EU − z∗ CI %
[0, 550071.6] 12.9%

Table A.12: CI for EU − z∗ and Associated Error for Instance 03

Instance 02 was about 3%. In order to reduce even more the error associ-

ated with the CI we further increase even more the sample size for the other

instances.
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A.4 Instance 04 - HTSPM: 24STG-100SCN-F-*SCN-O

For the fourth instance we consider a 24-stage problem with n(1) = 100 and

a different number of scenarios for the other stages (24STG-100SCN-F-*SCN-

O), where n(t) is defined by (4.3) for t = 2, . . . , T − 1. We choose ρ = 0.8 and

nmin = 20 in (4.3). As before we consider 128 forward paths in this tree to

estimate the local upper bound at each iteration and we use 32 of these paths

to compute the backward step of the SDDP algorithm.

Figure A.7 presents the convergence process of the SDDP algorithm

during 45 iterations for this instance. Table B.4 in Appendix B, presents the

results of the lower bound, upper bound, confidence interval halfwidth for the

upper bound and the computation time for each iteration for this problem

instance. The problem was solved again using 128 cores.

The same procedure was used to determine the upper bound estimator

with PGP with an independent collection of forward paths. Again for this

instance we sampled nu = 12800 forward paths and computed the estimator

Unu and the variance S2
u. The estimated cost, sample standard deviation and

confidence interval width obtained for PGP are presented in Table A.13.

Unu [R$] Su[R$] εu[R$] εu%
4171942.8 4368341.8 63322.1 1.5%

Table A.13: Output of PGP for Instance 04

Once the PGP estimators for this problem instance have been formed,

we estimate the lower bound Ln`
using the LBE procedure. We selected a
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Figure A.7: SDDP Convergence for Instance 04
The terms Zlb, Zub and ∆ have the same interpretation as in Figure A.1

total of n` = 15 different scenario trees with branch size n′(t) = 75 for t = 1

and n′(t) defined by (4.3) for t = 2, . . . , T − 1. We now have 15 trees with 75

scenarios on the first stage and a different number of scenarios defined using

(4.3), with n(1) replaced by n′(1), for the other stages. We run the SDDP

algorithm on each of those trees for 20 iterations to form Ln`
and S2

` . Figure

A.8 shows the different values of the lower bound for each one of the 15 trees

used. The values obtained for Ln`
, S` and ε` are presented in Table A.14.

The gap between Unu and Ln`
and the error associated to this gap is

presented in Table A.15. The (1−α)-level confidence interval on the optimality
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Figure A.8: Lower Bound for Each Tree on Instance 04

Ln`
[R$] S`[R$] ε`[R$] ε`%

4032745.6 297365.2 135208.5 3.2%

Table A.14: Output of LBE for Instance 04

gap EU − z∗ and its associated error with respect to Unu for this instance are

presented in Table A.16. In this case, the error associated with the CI is

around 8%.

gap[R$] gap%
139197.1 3.3%

Table A.15: Gap Between Unu and Ln`
and Associated Error for Instance 04
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CI for EU − z∗ CI%
[0, 337727.74] 8.1%

Table A.16: CI for EU − z∗ and Associated Error for Instance 04

A.5 Instance 05 - HTSPM: 24STG-200SCN-F-*SCN-O

For the fifth instance we consider a 24-stage problem with n(1) = 200 and a

different number of scenarios for the other stages (24STG-200SCN-F-*SCN-

O), where n(t) is defined by (4.3) for t = 2, . . . , T − 1. We choose ρ = 0.8 and

nmin = 20 in (4.3). As before we consider 128 forward paths in this tree to

estimate the local upper bound at each iteration and we use 32 of these paths

to compute the backward step of the SDDP algorithm.

Figure A.9 presents the convergence process of the SDDP algorithm

during 45 iterations for this instance. Table B.5 in Appendix B, presents the

results of the lower bound, upper bound, confidence interval halfwidth for the

upper bound and the computation time for each iteration for this problem

instance. The problem was solved again using 128 cores.

The same procedure was used to determine the upper bound estimator

with PGP with an independent collection of forward paths. Again for this

instance we sampled nu = 12800 forward paths and computed the estimator

Unu and the variance S2
u. The estimated cost, sample standard deviation and

confidence interval width obtained for PGP are presented in Table A.17.

Once the PGP estimators for this problem instance have been formed,

we estimate the lower bound Ln`
using the LBE procedure. We selected a
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Figure A.9: SDDP Convergence for Instance 05
The terms Zlb, Zub and ∆ have the same interpretation as in Figure A.1

total of n` = 15 different scenario trees with branch size n′(t) = 150 for t = 1

and n′(t) defined by (4.3) for t = 2, . . . , T − 1. We now have 15 trees with 150

scenarios on the first stage and a different number of scenarios defined using

(4.3), with n(1) replaced by n′(1), for the other stages. We run the SDDP

algorithm on each of those trees for 20 iterations to form Ln`
and S2

` . Figure

A.10 shows the different values of the lower bound for each one of the 15 trees

used. The values obtained for Ln`
, S` and ε` are presented in Table A.18.

The gap between Unu and Ln`
and the error associated to this gap is

presented in Table A.19. The (1−α)-level confidence interval on the optimality
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Unu [R$] Su[R$] εu[R$] εu%
4120735.7 4219702.7 61167.5 1.5%

Table A.17: Output of PGP for Instance 05
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Figure A.10: Lower Bound for Each Tree on Instance 05

gap EU − z∗ and its associated error with respect to Unu for this instance are

presented in Table A.20. The error associated with the CI for this instance is

around 8.2%.
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Ln`
[R$] S`[R$] ε`[R$] ε`%

3952628.1 244042.6 110963.3 2.7%

Table A.18: Output of LBE for Instance 05

gap[R$] gap%
168107.6 4.1%

Table A.19: Gap Between Unu and Ln`
and Associated Error for Instance 05

CI for EU − z∗ CI%
[0, 340238.4] 8.3%

Table A.20: CI for EU − z∗ and Associated Error for Instance 05
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A.6 Instance 06 - HTSPM: 24STG-1000SCN-F-*SCN-
O

For the sixth instance we consider a 24-stage problem with n(1) = 1000 and a

different number of scenarios for the other stages (24STG-1000SCN-F-*SCN-

O), where n(t) is defined by (4.3) for t = 2, . . . , T − 1. We choose ρ = 0.8 and

nmin = 20 in (4.3). As before we consider 128 forward paths in this tree to

estimate the local upper bound at each iteration and we use 32 of these paths

to compute the backward step of the SDDP algorithm.

Figure A.11 presents the convergence process of the SDDP algorithm

during 45 iterations for this instance. Table B.6 in Appendix B, presents the

results of the lower bound, upper bound, confidence interval halfwidth for the

upper bound and the computation time for each iteration for this problem

instance. The problem was solved again using 128 cores.

The same procedure was used to determine the upper bound estimator

with PGP with an independent collection of forward paths. Again for this

instance we sampled nu = 12800 forward paths and computed the estimator

Unu and the variance S2
u. The estimated cost, sample standard deviation and

confidence interval width obtained for PGP are presented in Table A.21.

Unu [R$] Su[R$] εu[R$] εu%
4090672.5 4037218.8 58522.3 1.4%

Table A.21: Output of PGP for Instance 06

Once the PGP estimators for this problem instance have been formed,
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Figure A.11: SDDP Convergence for Instance 06
The terms Zlb, Zub and ∆ have the same interpretation as in Figure A.1

we estimate the lower bound Ln`
using the LBE procedure. We selected a

total of n` = 15 different scenario trees with branch size n′(t) = 750 for t = 1

and n′(t) defined by (4.3) for t = 2, . . . , T − 1. We now have 15 trees with 750

scenarios on the first stage and a different number of scenarios defined using

(4.3), with n(1) replaced by n′(1), for the other stages. We run the SDDP

algorithm on each of those trees for 20 iterations to form Ln`
and S2

` . Figure

A.12 shows the different values of the lower bound for each one of the 15 trees

used. The values obtained for Ln`
, S` and ε` are presented in Table A.22.

The gap between Unu and Ln`
and the error associated to this gap is
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Figure A.12: Lower Bound for Each Tree on Instance 06

Ln`
[R$] S`[R$] ε`[R$] ε`%

3924632.1 199001.4 90483.6 2.2%

Table A.22: Output of LBE for Instance 06

presented in Table A.23. The (1−α)-level confidence interval on the optimality

gap EU − z∗ and its associated error with respect to Unu for this instance are

presented in Table A.24. The error associated with the CI for this instance is

around 7.7%.

gap[R$] gap%
166040.4 4.1%

Table A.23: Gap Between Unu and Ln`
and Associated Error for Instance 06
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CI for EU − z∗ CI%
[0, 315046.3] 7.7%

Table A.24: CI for EU − z∗ and Associated Error for Instance 06

A.7 Instance 07 - HTSPM: 24STG-2000SCN-F-*SCN-
O

For the seventh instance we consider a 24-stage problem with n(1) = 2000

and a different number of scenarios for the other stages (24STG-2000SCN-

F-*SCN-O), where n(t) is defined by (4.3) for t = 2, . . . , T − 1. We choose

ρ = 0.8 and nmin = 20 in (4.3). As before we consider 128 forward paths in

this tree to estimate the local upper bound at each iteration and we use 32 of

these paths to compute the backward step of the SDDP algorithm.

Figure A.13 presents the convergence process of the SDDP algorithm

during 45 iterations for this instance. Table B.7 in Appendix B, presents the

results of the lower bound, upper bound, confidence interval halfwidth for the

upper bound and the computation time for each iteration for this problem

instance. The problem was solved again using 128 cores.

The same procedure was used to determine the upper bound estimator

with PGP with an independent collection of forward paths. Again for this

instance we sampled nu = 12800 forward paths and computed the estimator

Unu and the variance S2
u. The estimated cost, sample standard deviation and

confidence interval width obtained for PGP are presented in Table A.25.

Once the PGP estimators for this problem instance have been formed,
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Figure A.13: SDDP Convergence for Instance 07
The terms Zlb, Zub and ∆ have the same interpretation as in Figure A.1

we estimate the lower bound Ln`
using the LBE procedure. We selected a total

of n` = 15 different scenario trees with branch size n′(t) = 1500 for t = 1 and

n′(t) defined by (4.3) for t = 2, . . . , T − 1. We now have 15 trees with 1500

scenarios on the first stage and a different number of scenarios defined using

(4.3), with n(1) replaced by n′(1), for the other stages. We run the SDDP

algorithm on each of those trees for 20 iterations to form Ln`
and S2

` . Figure

A.14 shows the different values of the lower bound for each one of the 15 trees

used. The values obtained for Ln`
, S` and ε` are presented in Table A.26.

The gap between Unu and Ln`
and the error associated to this gap is
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Unu [R$] Su[R$] εu[R$] εu%
4076822.7 4036476.5 58511.5 1.4%

Table A.25: Output of PGP for Instance 07
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Figure A.14: Lower Bound for Each Tree on Instance 07

presented in Table A.27. The (1−α)-level confidence interval on the optimality

gap EU − z∗ and its associated error with respect to Unu for this instance are

presented in Table A.28. The error associated with the CI for this instance is

around 6.9%.
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Ln`
[R$] S`[R$] ε`[R$] ε`%

3922280.6 148825.7 67669.3 1.7%

Table A.26: Output of LBE for Instance 07

gap[R$] gap%
154542.1 3.79%

Table A.27: Gap Between Unu and Ln`
and Associated Error for Instance 07

CI for EU − z∗ CI%
[0, 280722.9] 6.9%

Table A.28: CI for EU − z∗ and Associated Error for Instance 07
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Appendix B

SDDP Convergence Tables
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Iteration Zub - ∆ Zlb Zub Zub + ∆ Time [s]
0 1.09E+08 0.00E+00 1.17E+08 1.25E+08 5.53
1 1.49E+08 4.40E+04 1.55E+08 1.60E+08 6.06
2 6.03E+07 4.37E+05 6.42E+07 6.80E+07 7.07
3 4.32E+07 7.10E+05 4.55E+07 4.78E+07 8.06
4 2.67E+07 1.37E+06 2.83E+07 2.98E+07 9.18
5 1.78E+07 1.90E+06 1.89E+07 2.00E+07 10.14
6 1.41E+07 2.97E+06 1.55E+07 1.68E+07 11.00
7 8.45E+06 3.63E+06 9.30E+06 1.01E+07 12.03
8 8.16E+06 4.15E+06 9.09E+06 1.00E+07 12.94
9 5.57E+06 4.54E+06 6.32E+06 7.08E+06 13.95

10 5.54E+06 4.69E+06 6.46E+06 7.38E+06 15.00
11 4.36E+06 4.77E+06 4.97E+06 5.57E+06 16.06
12 4.65E+06 4.84E+06 5.34E+06 6.04E+06 17.37
13 4.71E+06 4.89E+06 5.46E+06 6.22E+06 18.41
14 5.36E+06 4.92E+06 6.23E+06 7.10E+06 19.62
15 4.43E+06 4.95E+06 5.23E+06 6.03E+06 20.88
16 4.54E+06 5.00E+06 5.23E+06 5.93E+06 22.11
17 4.88E+06 5.01E+06 5.74E+06 6.60E+06 23.23
18 4.08E+06 5.02E+06 4.90E+06 5.73E+06 24.42
19 4.10E+06 5.03E+06 4.66E+06 5.22E+06 25.66
20 4.43E+06 5.04E+06 5.21E+06 5.99E+06 26.88
21 4.29E+06 5.04E+06 4.93E+06 5.58E+06 28.01
22 4.68E+06 5.05E+06 5.45E+06 6.22E+06 29.56
23 4.27E+06 5.05E+06 4.90E+06 5.52E+06 30.68
24 4.36E+06 5.06E+06 4.99E+06 5.62E+06 31.90
25 4.27E+06 5.06E+06 4.92E+06 5.58E+06 33.11
26 4.37E+06 5.06E+06 5.36E+06 6.36E+06 34.63
27 4.48E+06 5.07E+06 5.18E+06 5.88E+06 35.62
28 4.43E+06 5.07E+06 5.18E+06 5.93E+06 36.73
29 4.29E+06 5.07E+06 4.91E+06 5.54E+06 37.88
30 4.42E+06 5.07E+06 5.16E+06 5.89E+06 39.99
31 4.12E+06 5.08E+06 4.65E+06 5.17E+06 40.99
32 4.58E+06 5.08E+06 5.36E+06 6.14E+06 42.40
33 4.70E+06 5.08E+06 5.42E+06 6.15E+06 43.41
34 4.48E+06 5.08E+06 5.15E+06 5.82E+06 44.93
35 4.25E+06 5.08E+06 4.95E+06 5.64E+06 46.49
36 4.00E+06 5.08E+06 4.61E+06 5.22E+06 47.87
37 5.12E+06 5.08E+06 6.01E+06 6.90E+06 48.61
38 4.80E+06 5.08E+06 5.63E+06 6.45E+06 49.97
39 4.67E+06 5.09E+06 5.32E+06 5.97E+06 50.70
40 4.35E+06 5.09E+06 4.95E+06 5.55E+06 52.62
41 4.14E+06 5.09E+06 4.80E+06 5.47E+06 54.18
42 4.44E+06 5.09E+06 5.08E+06 5.71E+06 55.01
43 3.91E+06 5.09E+06 4.54E+06 5.17E+06 56.68
44 3.98E+06 5.09E+06 4.53E+06 5.09E+06 57.71
45 4.39E+06 5.09E+06 5.05E+06 5.71E+06 60.56

Table B.1: SDDP Convergence Instance 01. Zlb is the lower bound, Zub is
the sample mean upper bound, and ∆ is a 95% confidence interval half-width
associated with upper bound estimator. The column labeled time is the time
in seconds, required for that iteration.
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Iteration Zub - ∆ Zlb Zub Zub + ∆ Time [s]
0 8.77E+07 0.00E+00 9.47E+07 1.02E+08 9.99
1 1.42E+08 5.59E+02 1.48E+08 1.54E+08 11.28
2 5.00E+07 1.57E+05 5.30E+07 5.60E+07 13.07
3 2.90E+07 2.69E+05 3.08E+07 3.26E+07 14.59
4 1.90E+07 8.45E+05 2.01E+07 2.12E+07 16.31
5 1.11E+07 1.30E+06 1.22E+07 1.33E+07 17.78
6 7.06E+06 1.76E+06 7.92E+06 8.78E+06 19.26
7 5.12E+06 2.06E+06 6.26E+06 7.39E+06 20.83
8 4.44E+06 2.30E+06 5.51E+06 6.59E+06 22.19
9 3.40E+06 2.52E+06 4.17E+06 4.94E+06 24.13

10 3.87E+06 2.72E+06 4.86E+06 5.84E+06 25.73
11 3.41E+06 2.83E+06 4.69E+06 5.96E+06 27.53
12 6.91E+06 2.89E+06 7.89E+06 8.87E+06 29.59
13 3.62E+06 2.92E+06 4.48E+06 5.34E+06 31.58
14 3.14E+06 2.95E+06 3.76E+06 4.38E+06 33.58
15 2.79E+06 2.98E+06 3.59E+06 4.38E+06 35.50
16 2.92E+06 3.00E+06 3.52E+06 4.12E+06 37.91
17 2.68E+06 3.01E+06 3.37E+06 4.06E+06 39.51
18 2.56E+06 3.02E+06 3.12E+06 3.68E+06 41.52
19 1.99E+06 3.03E+06 2.45E+06 2.91E+06 43.65
20 3.17E+06 3.04E+06 3.88E+06 4.58E+06 45.34
21 2.32E+06 3.04E+06 2.83E+06 3.33E+06 47.22
22 2.44E+06 3.04E+06 2.99E+06 3.54E+06 49.52
23 2.70E+06 3.05E+06 3.34E+06 3.97E+06 52.35
24 2.35E+06 3.05E+06 2.85E+06 3.34E+06 53.98
25 2.10E+06 3.05E+06 2.51E+06 2.93E+06 55.61
26 2.73E+06 3.06E+06 3.37E+06 4.00E+06 58.96
27 2.35E+06 3.06E+06 2.85E+06 3.35E+06 61.31
28 2.52E+06 3.06E+06 3.06E+06 3.61E+06 63.79
29 2.56E+06 3.06E+06 3.18E+06 3.79E+06 64.76
30 2.71E+06 3.06E+06 3.26E+06 3.81E+06 68.04
31 2.38E+06 3.06E+06 2.93E+06 3.47E+06 70.48
32 2.50E+06 3.07E+06 3.12E+06 3.73E+06 74.18
33 2.44E+06 3.07E+06 2.99E+06 3.55E+06 75.52
34 2.51E+06 3.07E+06 3.17E+06 3.84E+06 78.94
35 2.67E+06 3.07E+06 3.27E+06 3.87E+06 82.54
36 2.19E+06 3.07E+06 2.70E+06 3.22E+06 85.51
37 2.53E+06 3.07E+06 3.03E+06 3.54E+06 87.93
38 2.60E+06 3.07E+06 3.13E+06 3.66E+06 89.39
39 2.62E+06 3.07E+06 3.20E+06 3.77E+06 90.96
40 2.61E+06 3.07E+06 3.22E+06 3.83E+06 93.65
41 2.40E+06 3.07E+06 2.94E+06 3.48E+06 96.71
42 1.98E+06 3.07E+06 2.40E+06 2.81E+06 99.30
43 2.56E+06 3.07E+06 3.05E+06 3.54E+06 101.57
44 2.69E+06 3.07E+06 3.37E+06 4.05E+06 103.93
45 2.47E+06 3.07E+06 3.07E+06 3.66E+06 108.05

Table B.2: SDDP Convergence Instance 02. The columns in this table are
analogous to those in Table B.1.
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Iteration Zub - ∆ Zlb Zub Zub + ∆ Time [s]
0 1.06E+08 0.00E+00 1.15E+08 1.23E+08 10.62
1 1.11E+08 1.54E+04 1.17E+08 1.23E+08 12.09
2 4.03E+07 1.67E+05 4.31E+07 4.59E+07 14.11
3 2.46E+07 1.13E+06 2.65E+07 2.84E+07 15.89
4 1.43E+07 2.09E+06 1.57E+07 1.71E+07 17.96
5 9.54E+06 3.44E+06 1.07E+07 1.19E+07 19.75
6 6.51E+06 3.67E+06 7.19E+06 7.87E+06 21.50
7 5.88E+06 4.02E+06 6.90E+06 7.92E+06 23.96
8 5.63E+06 4.23E+06 6.38E+06 7.14E+06 25.07
9 4.89E+06 4.37E+06 5.75E+06 6.60E+06 27.36

10 4.61E+06 4.46E+06 5.36E+06 6.11E+06 29.33
11 4.11E+06 4.52E+06 4.69E+06 5.27E+06 31.56
12 3.56E+06 4.57E+06 4.13E+06 4.71E+06 34.10
13 4.40E+06 4.61E+06 5.08E+06 5.76E+06 36.43
14 3.82E+06 4.65E+06 4.44E+06 5.05E+06 39.02
15 4.71E+06 4.66E+06 5.49E+06 6.27E+06 41.84
16 3.74E+06 4.68E+06 4.31E+06 4.88E+06 45.06
17 4.10E+06 4.69E+06 4.75E+06 5.41E+06 47.26
18 4.07E+06 4.70E+06 4.75E+06 5.42E+06 50.04
19 4.11E+06 4.71E+06 4.78E+06 5.45E+06 52.70
20 4.24E+06 4.73E+06 5.10E+06 5.96E+06 56.35
21 4.02E+06 4.73E+06 4.91E+06 5.79E+06 59.13
22 4.24E+06 4.74E+06 4.88E+06 5.53E+06 61.82
23 3.85E+06 4.74E+06 4.58E+06 5.32E+06 64.02
24 4.09E+06 4.74E+06 4.75E+06 5.42E+06 67.46
25 4.74E+06 4.75E+06 5.70E+06 6.66E+06 70.66
26 3.80E+06 4.75E+06 4.51E+06 5.22E+06 73.67
27 3.78E+06 4.75E+06 4.34E+06 4.89E+06 76.30
28 4.24E+06 4.76E+06 5.11E+06 5.99E+06 79.89
29 3.64E+06 4.76E+06 4.22E+06 4.79E+06 81.50
30 4.23E+06 4.76E+06 4.86E+06 5.49E+06 85.58
31 3.89E+06 4.76E+06 4.62E+06 5.34E+06 87.85
32 3.88E+06 4.76E+06 4.51E+06 5.14E+06 91.62
33 4.00E+06 4.76E+06 4.76E+06 5.52E+06 94.07
34 3.89E+06 4.77E+06 4.92E+06 5.94E+06 95.41
35 3.95E+06 4.77E+06 4.68E+06 5.40E+06 100.83
36 4.00E+06 4.77E+06 4.70E+06 5.41E+06 103.78
37 3.85E+06 4.77E+06 4.52E+06 5.19E+06 104.93
38 4.06E+06 4.77E+06 4.90E+06 5.73E+06 107.39
39 4.24E+06 4.77E+06 4.90E+06 5.56E+06 109.35
40 3.92E+06 4.77E+06 4.74E+06 5.55E+06 112.70
41 4.19E+06 4.77E+06 4.81E+06 5.43E+06 117.04
42 4.05E+06 4.77E+06 4.85E+06 5.64E+06 119.44
43 4.26E+06 4.77E+06 4.93E+06 5.59E+06 124.19
44 4.04E+06 4.77E+06 4.69E+06 5.35E+06 126.46
45 4.46E+06 4.78E+06 5.22E+06 5.97E+06 128.78

Table B.3: SDDP Convergence Instance 03. The columns in this table are
analogous to those in Table B.1.
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Iteration Zub - ∆ Zlb Zub Zub + ∆ Time [s]
0 8.81E+07 0.00E+00 9.52E+07 1.02E+08 11.65
1 1.19E+08 1.16E+04 1.24E+08 1.30E+08 13.59
2 5.77E+07 1.67E+05 6.10E+07 6.44E+07 16.07
3 2.88E+07 3.58E+05 3.08E+07 3.27E+07 18.33
4 2.20E+07 1.40E+06 2.37E+07 2.54E+07 20.68
5 1.14E+07 1.83E+06 1.25E+07 1.36E+07 22.95
6 6.79E+06 2.26E+06 7.65E+06 8.50E+06 25.00
7 5.89E+06 2.62E+06 6.88E+06 7.87E+06 27.34
8 4.09E+06 2.88E+06 4.74E+06 5.40E+06 29.55
9 4.16E+06 3.09E+06 5.05E+06 5.94E+06 32.25

10 3.06E+06 3.21E+06 3.61E+06 4.16E+06 34.85
11 3.01E+06 3.30E+06 3.56E+06 4.11E+06 37.44
12 3.27E+06 3.34E+06 3.88E+06 4.48E+06 40.14
13 3.11E+06 3.37E+06 3.78E+06 4.45E+06 43.05
14 3.24E+06 3.39E+06 3.90E+06 4.56E+06 46.37
15 2.66E+06 3.41E+06 3.19E+06 3.71E+06 49.46
16 2.37E+06 3.43E+06 2.82E+06 3.27E+06 52.47
17 2.92E+06 3.45E+06 3.47E+06 4.03E+06 55.14
18 3.00E+06 3.46E+06 3.55E+06 4.10E+06 58.36
19 3.34E+06 3.47E+06 3.98E+06 4.63E+06 61.40
20 2.64E+06 3.47E+06 3.20E+06 3.76E+06 64.09
21 3.66E+06 3.48E+06 4.30E+06 4.94E+06 67.16
22 2.96E+06 3.48E+06 3.57E+06 4.19E+06 70.55
23 2.83E+06 3.49E+06 3.45E+06 4.06E+06 72.71
24 3.11E+06 3.50E+06 3.73E+06 4.34E+06 76.12
25 3.19E+06 3.50E+06 3.87E+06 4.56E+06 78.43
26 3.08E+06 3.50E+06 3.66E+06 4.24E+06 82.65
27 3.29E+06 3.50E+06 3.96E+06 4.63E+06 85.54
28 3.27E+06 3.51E+06 3.95E+06 4.64E+06 88.69
29 2.39E+06 3.51E+06 2.86E+06 3.32E+06 89.71
30 3.10E+06 3.52E+06 3.76E+06 4.41E+06 94.70
31 2.51E+06 3.52E+06 3.06E+06 3.60E+06 97.97
32 2.75E+06 3.52E+06 3.51E+06 4.26E+06 102.26
33 2.80E+06 3.52E+06 3.62E+06 4.44E+06 103.55
34 2.22E+06 3.53E+06 2.67E+06 3.12E+06 108.11
35 3.07E+06 3.53E+06 3.77E+06 4.47E+06 110.84
36 2.96E+06 3.53E+06 3.54E+06 4.12E+06 114.02
37 2.67E+06 3.53E+06 3.34E+06 4.01E+06 116.31
38 3.11E+06 3.53E+06 3.79E+06 4.47E+06 118.75
39 3.20E+06 3.53E+06 3.80E+06 4.41E+06 121.41
40 2.87E+06 3.53E+06 3.52E+06 4.17E+06 124.65
41 3.27E+06 3.53E+06 3.95E+06 4.63E+06 128.00
42 2.71E+06 3.53E+06 3.24E+06 3.78E+06 131.36
43 3.24E+06 3.54E+06 3.96E+06 4.68E+06 136.15
44 2.72E+06 3.54E+06 3.26E+06 3.81E+06 136.64
45 3.65E+06 3.54E+06 4.26E+06 4.88E+06 141.41

Table B.4: SDDP Convergence Instance 04. The columns in this table are
analogous to those in Table B.1.
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Iteration Zub - ∆ Zlb Zub Zub + ∆ Time [s]
0 9.19E+07 0.00E+00 9.94E+07 1.07E+08 14.93
1 1.13E+08 3.18E+04 1.18E+08 1.23E+08 18.07
2 4.82E+07 1.35E+05 5.07E+07 5.31E+07 21.83
3 3.06E+07 7.06E+05 3.29E+07 3.51E+07 25.60
4 1.83E+07 8.98E+05 1.93E+07 2.03E+07 29.68
5 1.22E+07 1.71E+06 1.38E+07 1.53E+07 33.57
6 7.17E+06 2.27E+06 8.33E+06 9.48E+06 37.06
7 5.56E+06 2.58E+06 6.47E+06 7.39E+06 41.04
8 4.29E+06 2.85E+06 5.10E+06 5.90E+06 44.69
9 4.25E+06 3.08E+06 5.38E+06 6.52E+06 49.42

10 3.48E+06 3.18E+06 4.09E+06 4.71E+06 53.77
11 3.56E+06 3.27E+06 4.33E+06 5.09E+06 57.88
12 3.77E+06 3.36E+06 4.81E+06 5.84E+06 62.28
13 3.26E+06 3.42E+06 4.28E+06 5.29E+06 67.37
14 2.66E+06 3.46E+06 3.15E+06 3.64E+06 72.87
15 2.86E+06 3.49E+06 3.42E+06 3.98E+06 77.35
16 2.82E+06 3.50E+06 3.59E+06 4.36E+06 82.55
17 3.61E+06 3.52E+06 4.32E+06 5.03E+06 85.66
18 2.93E+06 3.54E+06 3.64E+06 4.35E+06 90.93
19 2.84E+06 3.54E+06 3.55E+06 4.26E+06 97.04
20 2.86E+06 3.55E+06 3.37E+06 3.89E+06 100.53
21 3.28E+06 3.56E+06 4.00E+06 4.72E+06 104.40
22 3.48E+06 3.57E+06 4.26E+06 5.05E+06 111.05
23 2.86E+06 3.57E+06 3.53E+06 4.20E+06 116.09
24 2.74E+06 3.58E+06 3.41E+06 4.09E+06 121.36
25 2.96E+06 3.58E+06 3.76E+06 4.56E+06 123.74
26 2.66E+06 3.59E+06 3.34E+06 4.03E+06 131.08
27 3.06E+06 3.59E+06 3.80E+06 4.54E+06 137.15
28 3.20E+06 3.59E+06 3.83E+06 4.47E+06 142.30
29 3.10E+06 3.60E+06 3.65E+06 4.21E+06 143.52
30 2.80E+06 3.60E+06 3.38E+06 3.95E+06 152.47
31 3.07E+06 3.60E+06 3.58E+06 4.10E+06 156.78
32 2.59E+06 3.60E+06 3.24E+06 3.88E+06 163.43
33 3.10E+06 3.60E+06 3.91E+06 4.72E+06 166.83
34 3.17E+06 3.61E+06 3.88E+06 4.60E+06 164.84
35 3.34E+06 3.61E+06 3.95E+06 4.57E+06 169.13
36 3.25E+06 3.61E+06 4.08E+06 4.91E+06 172.74
37 2.88E+06 3.61E+06 3.47E+06 4.05E+06 176.90
38 2.94E+06 3.61E+06 3.53E+06 4.12E+06 181.21
39 2.87E+06 3.61E+06 3.57E+06 4.27E+06 184.84
40 2.80E+06 3.62E+06 3.45E+06 4.10E+06 189.50
41 3.16E+06 3.62E+06 3.91E+06 4.66E+06 194.43
42 3.25E+06 3.62E+06 3.84E+06 4.42E+06 197.98
43 2.67E+06 3.62E+06 3.36E+06 4.05E+06 205.63
44 3.01E+06 3.62E+06 3.63E+06 4.24E+06 208.58
45 3.37E+06 3.62E+06 4.13E+06 4.88E+06 213.70

Table B.5: SDDP Convergence Instance 05. The columns in this table are
analogous to those in Table B.1.
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Iteration Zub - ∆ Zlb Zub Zub + ∆ Time [s]
0 1.07E+08 0.00E+00 1.16E+08 1.24E+08 48.10
1 5.42E+07 3.53E+04 5.76E+07 6.11E+07 61.68
2 6.17E+07 1.16E+05 6.75E+07 7.33E+07 77.64
3 2.64E+07 3.92E+05 2.77E+07 2.90E+07 92.00
4 1.50E+07 8.92E+05 1.61E+07 1.73E+07 105.98
5 1.32E+07 2.28E+06 1.45E+07 1.58E+07 119.67
6 8.89E+06 2.70E+06 1.03E+07 1.18E+07 133.01
7 5.20E+06 2.94E+06 6.01E+06 6.82E+06 147.83
8 4.46E+06 3.11E+06 5.15E+06 5.84E+06 161.12
9 4.69E+06 3.34E+06 5.56E+06 6.43E+06 178.91

10 3.82E+06 3.58E+06 4.40E+06 4.98E+06 195.39
11 4.10E+06 3.68E+06 4.90E+06 5.69E+06 214.52
12 3.65E+06 3.77E+06 4.23E+06 4.81E+06 232.12
13 3.59E+06 3.83E+06 4.41E+06 5.24E+06 248.51
14 2.86E+06 3.88E+06 3.45E+06 4.04E+06 268.79
15 3.39E+06 3.90E+06 4.10E+06 4.81E+06 288.89
16 3.71E+06 3.92E+06 4.52E+06 5.33E+06 312.10
17 3.38E+06 3.93E+06 3.89E+06 4.40E+06 327.58
18 3.71E+06 3.94E+06 4.46E+06 5.21E+06 349.79
19 3.22E+06 3.95E+06 3.76E+06 4.31E+06 367.42
20 3.78E+06 3.97E+06 4.40E+06 5.01E+06 385.90
21 3.86E+06 3.98E+06 4.52E+06 5.17E+06 403.99
22 3.77E+06 3.98E+06 4.56E+06 5.35E+06 426.87
23 3.23E+06 3.98E+06 3.83E+06 4.42E+06 443.54
24 3.07E+06 3.99E+06 3.62E+06 4.17E+06 461.84
25 2.85E+06 4.00E+06 3.43E+06 4.00E+06 477.15
26 3.85E+06 4.00E+06 4.67E+06 5.49E+06 502.64
27 3.52E+06 4.00E+06 4.30E+06 5.08E+06 524.18
28 3.35E+06 4.01E+06 4.10E+06 4.85E+06 544.33
29 3.38E+06 4.01E+06 4.10E+06 4.81E+06 548.81
30 2.99E+06 4.01E+06 3.47E+06 3.96E+06 586.93
31 3.53E+06 4.01E+06 4.20E+06 4.86E+06 602.12
32 3.18E+06 4.02E+06 3.81E+06 4.44E+06 630.99
33 3.19E+06 4.02E+06 3.79E+06 4.40E+06 638.96
34 3.26E+06 4.02E+06 3.85E+06 4.45E+06 670.54
35 3.94E+06 4.02E+06 4.78E+06 5.63E+06 690.56
36 3.46E+06 4.02E+06 4.17E+06 4.88E+06 705.73
37 2.93E+06 4.03E+06 3.66E+06 4.39E+06 720.06
38 3.44E+06 4.03E+06 3.97E+06 4.49E+06 740.68
39 4.06E+06 4.03E+06 4.68E+06 5.29E+06 750.80
40 2.86E+06 4.03E+06 3.36E+06 3.86E+06 773.49
41 2.64E+06 4.03E+06 3.21E+06 3.78E+06 796.42
42 3.30E+06 4.03E+06 3.93E+06 4.56E+06 810.05
43 3.09E+06 4.03E+06 3.69E+06 4.28E+06 836.66
44 3.34E+06 4.03E+06 3.99E+06 4.63E+06 851.37
45 3.60E+06 4.03E+06 4.22E+06 4.85E+06 869.42

Table B.6: SDDP Convergence Instance 06. The columns in this table are
analogous to those in Table B.1.
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Iteration Zub - ∆ Zlb Zub Zub + ∆ Time [s]
0 9.87E+07 0.00E+00 1.07E+08 1.15E+08 94.18
1 1.38E+08 3.56E+03 1.43E+08 1.49E+08 120.81
2 5.46E+07 9.39E+04 5.82E+07 6.18E+07 152.23
3 3.17E+07 7.26E+05 3.34E+07 3.51E+07 180.34
4 1.97E+07 1.45E+06 2.10E+07 2.23E+07 207.62
5 1.15E+07 2.62E+06 1.26E+07 1.37E+07 235.04
6 7.44E+06 3.24E+06 8.53E+06 9.62E+06 260.78
7 6.28E+06 3.50E+06 7.35E+06 8.43E+06 292.29
8 4.55E+06 3.64E+06 5.38E+06 6.20E+06 316.71
9 4.87E+06 3.73E+06 5.75E+06 6.63E+06 352.50

10 4.30E+06 3.82E+06 5.31E+06 6.32E+06 381.89
11 3.70E+06 3.88E+06 4.41E+06 5.12E+06 417.74
12 3.76E+06 3.91E+06 4.49E+06 5.23E+06 456.20
13 3.13E+06 3.93E+06 3.88E+06 4.64E+06 492.25
14 3.31E+06 3.94E+06 3.94E+06 4.58E+06 537.44
15 3.48E+06 3.95E+06 4.21E+06 4.94E+06 575.35
16 3.75E+06 3.96E+06 4.67E+06 5.60E+06 611.37
17 3.24E+06 3.98E+06 3.96E+06 4.67E+06 647.16
18 2.87E+06 3.98E+06 3.58E+06 4.29E+06 679.98
19 3.40E+06 3.99E+06 4.14E+06 4.88E+06 723.73
20 3.76E+06 4.01E+06 4.69E+06 5.62E+06 759.28
21 3.79E+06 4.01E+06 4.48E+06 5.18E+06 794.67
22 4.10E+06 4.01E+06 4.86E+06 5.62E+06 840.84
23 2.98E+06 4.02E+06 3.61E+06 4.23E+06 881.82
24 3.21E+06 4.02E+06 3.91E+06 4.61E+06 912.92
25 3.44E+06 4.03E+06 4.15E+06 4.85E+06 947.24
26 3.30E+06 4.03E+06 3.90E+06 4.50E+06 997.94
27 3.49E+06 4.03E+06 4.22E+06 4.95E+06 1039.28
28 2.99E+06 4.04E+06 3.78E+06 4.57E+06 1071.48
29 3.21E+06 4.04E+06 3.85E+06 4.49E+06 1085.47
30 3.16E+06 4.04E+06 3.74E+06 4.33E+06 1166.31
31 3.46E+06 4.04E+06 4.12E+06 4.79E+06 1205.69
32 3.42E+06 4.04E+06 4.10E+06 4.77E+06 1252.01
33 3.55E+06 4.05E+06 4.14E+06 4.73E+06 1269.85
34 3.62E+06 4.05E+06 4.52E+06 5.41E+06 1323.57
35 3.58E+06 4.05E+06 4.31E+06 5.05E+06 1358.18
36 3.73E+06 4.05E+06 4.46E+06 5.19E+06 1398.16
37 3.39E+06 4.05E+06 4.28E+06 5.17E+06 1431.09
38 3.42E+06 4.05E+06 4.06E+06 4.70E+06 1471.88
39 3.52E+06 4.05E+06 4.39E+06 5.26E+06 1490.13
40 3.12E+06 4.06E+06 3.83E+06 4.55E+06 1536.66
41 3.35E+06 4.06E+06 4.09E+06 4.84E+06 1576.45
42 3.95E+06 4.06E+06 4.76E+06 5.57E+06 1601.00
43 3.29E+06 4.06E+06 4.08E+06 4.88E+06 1664.50
44 3.86E+06 4.06E+06 4.60E+06 5.34E+06 1682.40
45 3.64E+06 4.06E+06 4.32E+06 5.00E+06 1726.67

Table B.7: SDDP Convergence Instance 07. The columns in this table are
analogous to those in Table B.1.
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Appendix C

Study Case Parameters

Month Region 01 Region 02 Region 03 Region 04
1 35632 9647 8181 3772
2 36269 9747 8212 3792
3 34882 9329 8242 3904
4 34248 9095 8109 3971
5 34091 9080 7960 3975
6 34141 9017 7980 3944
7 34596 8968 8073 3983
8 34739 8876 8254 3995
9 34903 8926 8440 3980
10 34521 9017 8464 3968
11 33973 9156 8422 3933
12 36223 9841 8793 4201
13 37169 10061 8740 4191
14 37658 10165 8760 4180
15 36940 9729 8683 4179
16 36200 9485 8542 4250
17 36038 9469 8386 4255
18 36146 9403 8407 4222
19 36638 9353 8505 4264
20 36706 9257 8695 4276
21 36999 9308 8892 4260
22 36614 9404 8917 5385
23 36139 9548 8873 5259
24 38070 10250 9226 5420

Table C.1: Electricity Demand in MW-month for Each Region

185



Month Region 01 Region 02 Region 03 Region 04
1 1660 407 253 39
2 1727 378 255 37
3 2782 650 225 45
4 3603 715 250 38
5 3766 748 254 36
6 3667 779 301 32
7 3894 780 422 29
8 3907 838 515 28
9 3950 874 605 30
10 3859 852 589 37
11 3111 783 535 45
12 3178 782 410 41
13 3316 788 398 49
14 3170 761 313 49
15 3547 826 284 45
16 4606 898 332 38
17 4775 941 341 36
18 4671 972 425 32
19 4592 967 523 29
20 4573 1020 630 28
21 4647 1013 710 30
22 4418 959 683 37
23 3443 864 623 45
24 3282 820 464 41

Table C.2: Generation From Small Hydro Plants in MW-month for Regions
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Month Region 01 Region 02 Region 03 Region 04
1 105.98 0 0 0
2 0 0 0 0
3 121.23 0 0 0
4 142.38 0 0 0
5 133.65 22.95 0 0
6 52.2 0 0 0
7 52.2 0 0 0
8 0 192.42 0 0
9 0 192.42 0 0
10 95.67 384.84 0 0
11 95.67 384.84 0 0
12 0 0 0 0
13 91.71 34.65 0 122.31
14 91.71 0 0 244.62
15 0 0 0 244.62
16 0 105.03 0 366.93
17 24.12 105.03 0 366.93
18 0 0 0 489.24
19 0 0 0 489.24
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 14.4 0 0 0
24 0 0 0 0

Table C.3: Hydro Generation From Plants Operating in State I [MW-month]
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Month Region 01 Region 02 Region 03 Region 04
1 2311.92 346 349.5 0
2 2316.84 333.69 349.5 0
3 2316.84 722.59 349.5 0
4 2316.84 733.21 349.5 0
5 2316.84 733.21 349.5 0
6 2104.28 733.21 349.5 0
7 2184.35 852.74 349.5 0
8 2343.94 871.19 349.5 0
9 1862.74 871.19 349.5 0
10 2015.35 725.19 349.5 0
11 2763.71 875.19 349.5 0
12 2755.4 864.09 572.5 0
13 2755.4 776.09 572.5 0
14 2755.4 860.92 572.5 0
15 2755.4 917.96 572.5 0
16 2755.4 921.13 572.5 0
17 2755.4 921.13 572.5 0
18 2755.4 939.96 572.5 0
19 2755.4 1038.96 572.5 0
20 2755.4 1060.63 572.5 0
21 2755.4 936.63 572.5 0
22 2755.4 835.59 572.5 507.62
23 2755.4 838.92 572.5 507.62
24 2755.4 864.09 572.5 507.62

Table C.4: Minimal Thermal Generation for Each Region [MW-month]
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Month High Med Low
1 0.1025 0.5171 0.3804
2 0.1089 0.5349 0.3562
3 0.1 0.5083 0.3917
4 0.1008 0.5108 0.3884
5 0.1042 0.5208 0.375
6 0.1089 0.5349 0.3562
7 0.1048 0.5228 0.3724
8 0.1042 0.5208 0.375
9 0.1009 0.5114 0.3877
10 0.1 0.5083 0.3917
11 0.1048 0.5228 0.3724
12 0.1008 0.5108 0.3884
13 0.107 0.5305 0.3625
14 0.1048 0.5228 0.3724
15 0.1 0.5083 0.3917
16 0.1048 0.5228 0.3724
17 0.1042 0.5208 0.375
18 0.1048 0.5228 0.3724
19 0.1089 0.5349 0.3562
20 0.1042 0.5208 0.375
21 0.1009 0.5114 0.3877
22 0.1 0.5083 0.3917
23 0.1089 0.5349 0.3562
24 0.1048 0.5228 0.3724

Table C.5: Load Levels Duration
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Region 01 Region 02 Region 03 Region 04
Month High Med Low High Med Low High Med Low High Med Low

1 1.15 1.07 0.86 1.1 1.1 0.84 1.15 1.03 0.92 1.07 1.01 0.96
2 1.18 1.07 0.84 1.15 1.09 0.81 1.15 1.04 0.89 1.08 1.02 0.95
3 1.21 1.08 0.84 1.23 1.11 0.8 1.17 1.05 0.89 1.09 1.02 0.95
4 1.24 1.08 0.83 1.26 1.11 0.79 1.17 1.05 0.89 1.09 1.02 0.95
5 1.24 1.07 0.83 1.26 1.1 0.79 1.18 1.04 0.89 1.08 1.02 0.95
6 1.24 1.07 0.82 1.26 1.1 0.77 1.18 1.04 0.88 1.08 1.02 0.95
7 1.23 1.07 0.83 1.25 1.1 0.79 1.18 1.05 0.88 1.08 1.02 0.95
8 1.22 1.07 0.84 1.25 1.1 0.79 1.17 1.05 0.88 1.09 1.02 0.95
9 1.2 1.08 0.84 1.21 1.11 0.8 1.16 1.05 0.89 1.09 1.01 0.96
10 1.17 1.08 0.85 1.16 1.12 0.81 1.16 1.05 0.9 1.09 1.01 0.96
11 1.17 1.07 0.85 1.12 1.1 0.83 1.16 1.03 0.91 1.08 1.01 0.96
12 1.13 1.08 0.86 1.07 1.1 0.85 1.13 1.04 0.91 1.07 1.01 0.96
13 1.15 1.07 0.86 1.09 1.09 0.84 1.15 1.03 0.91 1.07 1.01 0.96
14 1.18 1.08 0.84 1.16 1.1 0.82 1.15 1.04 0.9 1.08 1.02 0.95
15 1.21 1.08 0.84 1.23 1.11 0.8 1.17 1.05 0.89 1.09 1.02 0.95
16 1.23 1.08 0.83 1.25 1.1 0.78 1.17 1.05 0.88 1.09 1.02 0.95
17 1.24 1.07 0.83 1.26 1.1 0.79 1.18 1.04 0.89 1.08 1.02 0.95
18 1.25 1.07 0.83 1.27 1.11 0.78 1.18 1.05 0.88 1.08 1.02 0.95
19 1.23 1.07 0.83 1.24 1.09 0.78 1.17 1.05 0.88 1.08 1.02 0.95
20 1.22 1.07 0.84 1.25 1.1 0.79 1.17 1.05 0.88 1.09 1.02 0.95
21 1.2 1.08 0.84 1.21 1.11 0.8 1.16 1.05 0.89 1.09 1.01 0.96
22 1.17 1.08 0.85 1.16 1.12 0.81 1.16 1.05 0.9 1.09 1.01 0.96
23 1.17 1.07 0.85 1.12 1.09 0.83 1.16 1.03 0.91 1.08 1.01 0.96
24 1.13 1.07 0.86 1.06 1.1 0.84 1.12 1.04 0.91 1.07 1.01 0.96

Table C.6: Load Levels Base Multipliers
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Figure C.1 represents the hydro generators scheme for each basin. The

Parana basin has the highest hydroelectric potential, around 54 GW, which

represents more than 50% of the total capacity. It can be further subdivided

into six minor basins based on its major rivers - Paranaiba, Grande, Tiete,

Paranapanema, Parana and Iguacu - as seen on C.1d.

The blue lines represent the rivers. The triangles and the circles repre-

sent the conventional generators and run-of-river generators respectively. Some

of the triangles and circles are half colored signaling new plants will begin op-

eration during the planning horizon. The squares are water pumping units.

The triangles inside a square are water reservoirs only, sometimes they are

followed by a doted blue lines that correspond to water detours.

(a) Paraguay (b) Uruguay (c) South Atlantic

Figure C.1: Power Plants Cascade Scheme by Basin, source: ONS (2009)
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(d) Parana

Figure C.1: Power Plants Cascade Scheme by Basin, source: ONS (2009)
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(e) Southeast Atlantic (f) Amazon

(g) East Atlantic (h) Parnaiba (i) Sao Francisco (j) Tocantins

Figure C.1: Power Plants Cascade Scheme by Basin, source: ONS (2009)
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Value at Min Storage Value at Max Storage

Region 01 5.47E-03 6.23E+03

Region 02 6.01E-03 7.10E+02

Region 03 5.93E-03 3.58E+03

Region 04 5.59E-02 7.83E+02
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Figure C.2: Minimal Outflow Energy Functions of Storage for Each Region -
1st Month
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Value at Min Storage Value at Max Storage

Region 01 7.28E-04 9.88E+01

Region 02 5.29E-04 2.59E+00

Region 03 1.31E-02 2.95E+02

Region 04 1.30E-03 4.05E+00
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Figure C.3: Evaporation Losses Functions of Storage for Each Region - 1st

Month

Value at Min Storage Value at Max Storage

Region 01 1.38E-04 2.86E+02

Region 02 3.59E-04 3.92E+01

Region 03 3.80E-04 3.14E+02

Region 04 6.75E-04 9.44E+00
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Figure C.4: Water Diversion Functions of Storage for Each Region - 1st Month
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