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a b s t r a c t

Sampling-based decomposition algorithms (SBDAs) solve multi-stage stochastic programs. SBDAs can
approximately solve problem instances with many time stages when the stochastic program exhibits
interstage dependence in its right-hand side parameters by appropriately sharing cuts. We extend
previous methods for sharing cuts in SBDAs, establishing new results under a novel interaction between
a class of interstage dependency models, and how they appear in the stochastic program.

© 2013 Published by Elsevier B.V.

1. Introduction

Wedescribe a sampling-baseddecomposition algorithm (SBDA)
for a multi-stage stochastic linear program in which the stochas-
tic process governing the right-hand side (RHS) parameters is
interstage dependent. Our SBDA has its roots in the L-shaped
method [20] and its multi-stage counterpart [2].

Sampling provides a means for dealing with models in which
the underlying stochastic process is continuous or yields a sce-
nario tree too large for direct computation. The idea of incorpo-
rating sampling in decomposition algorithms goes back to Dantzig
and Madansky [5]. Such algorithms have been developed for
both two-stage models [4,8,10] and multi-stage models [14,15]
with the latter algorithm known as stochastic dual dynamic pro-
gramming (SDDP). SDDP was motivated by multi-stage hydro-
thermal scheduling under inflow uncertainty, as is our work, and
a number of variants of SDDP have been developed and analyzed
[3,7,9,16–19].

SDDP algorithms approximate the expected future cost func-
tion at each stage using cuts that form an outer piecewise linear
convex approximation, which is iteratively refined. SDDP main-
tains one set of cuts at each stage under interstage independence
of the stochastic parameters. Under interstage dependence the ex-
pected future cost function depends on the history of the stochastic
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process up to that stage, and the cuts must be adapted to reflect
that conditional state. Infanger and Morton [11] show that when
dependence is restricted to the RHS vector, and the structure of
the dependence satisfies an additive model then the conditional
history can be captured by shifting the intercept term of the cuts
using a closed-form expression.

Current long-termplanningmodels for hydro-thermal schedul-
ing in Brazil employ an aggregate reservoir representation (ARR)
[1,6,13]. An ARR model aggregates individual hydrological reser-
voirs with similar characteristics and represents storage in units of
energy rather than in units of volume ofwater. Yet stochasticmod-
els that forecast water inflows are most naturally constructed, and
importantly most naturally validated, using individual reservoirs.
A linear transformation maps forecasts of spatial water inflows to
energy inflows in aggregate reservoirs under an ARR formulation.

Forecasting at a finer resolution and then transforming such
forecasts for use in a planning-based stochastic optimization
model is not unique to hydro-thermal scheduling. Forecasts for de-
mand might be constructed, and validated, at the level of individ-
ual retail stores in a chain or at individual hotels in a chain, and
yet supply chain optimization models and regional capacity plan-
ningmodels,may take amore aggregate view. Thework of Infanger
and Morton [11] cannot capture this form of dependence, and the
purpose of this article is to fill this gap. First, we extend the re-
sults of [11] to capture thismore general formof dependence, again
achieving a closed-form expression for adjustment factors for cut
intercepts. Second, we describe a general procedure bywhich such
formulas may be derived.
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2. A multi-stage stochastic linear program

We consider a T -stage stochastic linear program with recourse
(SLP-T ) of the following form:

min
x1

c1x1 + Eb2|b1h2(x1, b2)

s.t. A1x1 = B1x0 + ρ1b1 + k1 (1)
x1 ≥ 0,

where for t = 2, . . . , T ,

ht(xt−1, bt) = min
xt

ctxt + Ebt+1|b1,...,bt ht+1(xt , bt+1)

s.t. Atxt = Btxt−1 + ρtbt + kt (2)
xt ≥ 0,

and where hT+1 ≡ 0.
Matrix At ∈ Rmt×dt , the random vector bt has dimension qt ,

and deterministicmatrixρt ∈ Rmt×qt , t = 1, . . . , T . The remaining
matrices and vectors are dimensioned to conform.Wedenote stage
t ’s sample space by Ωt , andωt ∈ Ωt is a sample point (scenario). A
stage t > 1 scenario,ωt , has a unique stage t −1 ancestor denoted
a(ωt), and a stage t < T scenario has a set of stage t+1descendants
denoted ∆(ωt). We denote a realization of bt by bωt

t and when the
scenario tree is finite, we denote bt ’s probability mass function by
P(bt = bωt

t ) = pωt
t and conditional probability mass function by

P(bt+1 = bωt+1
t+1 | bt = bωt

t ) = pωt+1|ωt
t+1 , where ωt+1 ∈ ∆(ωt).

We assume that At , Bt , ct , ρt , and kt , t = 2, . . . , T , are deter-
ministic, and that {bt}Tt=1 comprises the only randomness inmodel
(1). That said, all that we describe also holds when (At , Bt , ct , kt),
t = 2, . . . , T , are random but interstage independent. Parameters
(A1, B1, c1, k1), x0,ρ1, . . . , ρT , and b1 are deterministic, but for sim-
plicity we sometimes treat b1 in our notation as if it were random.
We assume thatmodel (1) has relatively complete recourse; i.e., for
any realizations of b1, . . . , bt−1, and for any history of feasible de-
cisions, the stage t model (2) is feasible with probability one.

If {bt}Tt=1 is interstage independent, Ebt+1|b1,...,bt ht+1(xt , bt+1)
simplifies toEbt+1ht+1(xt , bt+1). This, in turn, simplifies application
of a decomposition algorithm. However, in many settings, includ-
ing hydro-thermal scheduling with stages representing months
and bt representing stochastic inflows, interstage independence
does not provide a good probabilistic model.

An important and widely used dependency model has form:

bt+1 = Rtbt + ηt+1, t = 1, . . . , T − 1, (3a)
ηt , t = 2, . . . , T , are independent. (3b)

Model (3) generalizes an autoregressive lag-onemodel to allow for
time dependence in Rt ∈ Rqt+1×qt , t = 1, . . . , T − 1, which we as-
sume are known. This can capture seasonality and time-dependent
trends. Lag-onemodel (3a) generalizes to allow for dependence on
multiple time stages. The cut-sharing ideaswedescribe also extend
in a straightforward, if notationally cumbersome, way to handle
higher-order lag dependence.

The setup we outline above deviates from a standard multi-
stage stochastic linear program,which simply has RHS ‘‘Btxt−1+bt ’’
in model (2). Our motivation comes from the desire to develop,
and validate, probabilistic models at a finer grain resolution but
employ them in a more aggregate planning model. As indicated
above, the random vectors bt have dimension qt and determinis-
tic matrix ρt ∈ Rmt×qt . In a hydro-thermal scheduling model in
the ARR setting, qt represents the number of individual hydro gen-
eration plants, which in Brazil is about 150, while mt = 4 is the
number of aggregate reservoirs [12,13]. The matrices ρt transform
water inflows at hydro plants into energy inflows in the aggregate
reservoirs. We separate ρtbt and kt to distinguish stochastic pa-
rameters from constant terms. In the hydro-thermal setting ρtbt

denotes random energy inflows while kt includes demand, which
is not modeled as stochastic.

Our stochastic program (1)/(2) offers no newmodeling flexibil-
ity relative to the standard model with RHS Btxt−1 + bt until we
consider its interaction with stochastic model (3). Suppose {bt}Tt=1
satisfies (3), and consider process {ρtbt}Tt=1. Random vector
ρt+1bt+1 cannot be expressed in the formof (3)with predictorsρtbt
and independent increment ρtηt . The aggregated predictor ρtbt is
insufficient to forecast ρt+1bt+1. Instead we require the unaggre-
gated predictor bt , and this is the central reason why the results of
Infanger & Morton [11] do not apply.

There is a compelling argument for forecasting water inflows at
individual hydro plants rather than energy inflows into aggregate
reservoirs. The former allows us to exploit local predictors like pre-
cipitation and soil type in hydrological run-off models. Forecasting
water inflows better lends itself to validation because individual
reservoir inflows are measurable. Moreover, when the configura-
tion of the hydro power system changes over time this complicates
an energy-inflow forecast because a different forecasting model is
required for each configuration. Forecasting energy inflows unnec-
essarily ties a forecasting model of a natural process to the decision
process associated with the hydro-thermal system.

SDDP requires a finite scenario tree of a particular form as input,
and above we allow ηt and bt to be continuous. Below we assume
{bt}Tt=1 are interstage dependent according to model (3). Thus the
expectation in (2) simplifies to Ebt+1|bt ht+1(xt , bt+1), and we form
a sample scenario tree under this interstage dependency model
using the following algorithm.
SSTIDM algorithm:
Input: Multivariate distributions Ft governing ηt , t = 2, . . . , T , as-
sumed to be interstage independent. A procedure for drawing i.i.d.
observations from each Ft . Dependency model (3) with known Rt
matrices. Branch size n(t) for each stage, t = 2, . . . , T ; e.g., n(t) =

20, ∀t .
Output: A finite sample scenario tree with the property that
its random vectors satisfy model (3), where the independent
increments ηt have an empirical distribution.
1. Let b1 denote the known first stage realization.

2. Sample η1
2, . . . , η

n(2)
2 i.i.d. from F2. Use Eq. (3a) with t = 1 to

form b12, . . . , b
n(2)
2 ; i.e., bi2 = R1b1 + ηi

2, i = 1, . . . , n(2), form the
descendant nodes of b1.

3. Sample η1
3, . . . , η

n(3)
3 i.i.d. from F3, independent of those in stage

2. For each of the i = 1, . . . , n2 ≡ n(2) stage 2 nodes use Eq. (3a)
with t = 2 to form the descendant nodes bi,13 , . . . , bi,n(3)3 using the
same set of increments {η1

3, . . . , η
n(3)
3 }.

...

t . Sample η1
t , . . . , η

n(t)
t i.i.d. from Ft , independent of those in stages

2, . . . , t−1. For each of the i = 1, . . . , nt−1 ≡
t−1

t=2 n(t) stage t−1
nodes use Eq. (3a) to form the descendant nodes bi,1t , . . . , bi,n(t)t

using the same set of increments {η1
t , . . . , η

n(t)
t }.

...

T . Sampleη1
t , . . . , η

n(T )
T i.i.d. from FT , independent of those in stages

2, . . . , T − 1. For each of the i = 1, . . . , nT−1 ≡
T−1

t=2 n(t)
stage T − 1 nodes use Eq. (3a) with t = T − 1 to form the de-
scendant nodes bi,1T , . . . , bi,n(T )

T using the same set of increments
{η1

T , . . . , η
n(T )
T }. �

In the SSTIDM Algorithm we sample η1
t , . . . , η

n(t)
t in an i.i.d.

manner for simplicity and concreteness. However, other schemes
that sample independently at each stage are also viable. For
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example, Latin hypercube sampling or randomized quasi-Monte
Carlo sampling can also be applied, and the cut-sharing formulas
we describe remain valid.

Henceforth, we assume that the output of the SSTIDM Algo-
rithm defines the stochastic process which specifies model (1).
Thus, stage t ’s sample space satisfies |Ωt | = nt , the set of stage t
descendants satisfies |∆(ωt)| = n(t + 1), pωt

t = 1/nt , and pωt+1|ωt
t+1

= 1/n(t + 1). Given the form of the dependency model (3), we in-
troduce one additional construct. The stage t sample space may be
expressed as Ωt = Σ2 × Σ3 × · · · × Σt , for t = 2, . . . , T , where
Σt is ηt ’s sample space and |Σt | = n(t).

3. Sampling-based decomposition algorithm

This section states, in general form, the SDDP algorithm of
Pereira and Pinto [15] applied to model (1). Section 4 then derives
details of the cut computations when the stochastic parameters
satisfymodel (3).While we formalize the SDDP algorithm below, it
is easy to visualize the algorithm’s forward and backward passes,
as shown in Fig. 1, although the practical scale of problems SDDP
can address is much larger. For example, Maceira et al. [12] con-
sider a sample scenario tree with n(t) = 20 scenarios per stage
and T = 120 stages.

SDDP uses a master program at each stage, which accumu-
lates cuts approximating the expected future cost function. Let
G⃗t ∈ Rℓt×dt and g⃗t ∈ Rℓt denote a cut-gradient matrix and a cut-
intercept vector. Each backward pass of SDDP along a sample path
(there are three in Fig. 1) augments G⃗t and g⃗t with one additional
row (incrementing ℓt ), in amannerwemake precise below.Wede-
fine a stage t model that serves as a master program with respect
to its stage t + 1 descendants and as a subproblem with respect to
its stage t − 1 ancestor:

min
xt ,θt

ctxt + θt (4a)

s.t. Atxt = Btxt−1 + ρtbt + kt : πt (4b)

−G⃗txt + e θt ≥ g⃗t : αt (4c)
xt ≥ 0. (4d)

Here, θt in the objective function (4a), coupled with cut con-
straints (4c), forms an outer linearization of Ebt+1|bt ht+1(xt , bt+1).
Constraint (4c)’s e is the ℓt-vector of all 1s. The structural and non-
negativity constraints (4b) and (4d) repeat from model (2). Model
(4) holds for t = 1, . . . , T , except that for t = T the cut constructs
are absent. The πt and αt represent dual (row) vectors associated
with constraints (4b) and (4c), respectively. It is model (4) that is
solved at each node in the forward and backward paths in Fig. 1.
When we let bt = bωt

t and xt−1 = xa(ωt )
t−1 , we refer to model (4) as

sub(ωt). When we specialize model (4) in this way, we similarly
append ωt superscripts to the primal and dual solutions, (xωt

t , θ
ωt
t )

and (π
ωt
t , α

ωt
t ). When {bt}Tt=1 is interstage independent then one

set of cuts (G⃗t , g⃗t) can be shared for sub(ωt) for all ωt ∈ Ωt . How-
ever, under the interstage dependency model (3) cuts vary by sce-
nario. As we see in Section 4, this dependence only appears in the
cut intercepts and for this reason we label the cuts (G⃗t , g⃗

ωt
t ) when

referring to sub(ωt). We formalize the SDDP algorithm below.
SDDP algorithm:

Input: Instance of model (1) with scenario tree from the
SSTIDM Algorithm.

Output: Cut information that yields policy for model (1),
first stage solution, x1, and bounds z and z.

0. let k = 0; append lower bounding cuts:
θt ≥ 0, t = 1, . . . , T − 1;

1. solve the stage 1 master program, i.e., (4) with t = 1, and
obtain (xk1, θ

k
1 ); let z

k
= c1xk1 + θ k

1 ;

2. sample i.i.d. paths from ΩT and index them by Sk;
do ω ∈ Sk

do t = 2 to T
form RHS of sub(ωt): Bt [x

a(ωt )
t−1 ]

k
+ ρtb

ωt
t + kt ;

form cut intercept vector for sub(ωt): g⃗
ωt
t ;

solve and obtain [xωt
t ]

k;
enddo
enddo
let zk = c1xk1 +

1
|Sk|


ω∈Sk

T
t=2 ct [x

ωt
t ]

k;

3. if stopping criterion, given zk and zk, is satisfied then stop and
output: (i) cut information for each stage, (ii) first stage solution
x1 = xk1, and (iii) bounds z = zk and z = zk;

4. do t = T − 1 downto 1
do ω ∈ Sk

do ωt+1 ∈ ∆(ωt)

form RHS of sub(ωt+1): Bt [x
a(ωt )
t−1 ]

k
+ ρtb

ωt
t + kt ;

form cut intercept vector for sub(ωt): g⃗
ωt
t ;

solve to obtain dual vectors π
ωt+1
t+1 , αωt+1

t+1 ;
enddo
Form cut gradient Gt and information required to compute
scenario dependent cut intercept gωt

t ;
enddo
enddo

5. let k = k + 1; goto step 1; �

Our statement of the SDDP algorithm assumes, in step 0, that
Ebt+1|bt ht+1(xt , bt+1) ≥ 0.When this is not the case, the initial cuts
θt ≥ 0 should replace ‘‘0’’ with a valid lower bound. Steps 2 and 4
of the SDDP algorithm carry out the forward and backward passes
depicted in Fig. 1. In step 2 at the k-th iteration, we select a set of
random sample paths from the root node to the stage T leaf nodes
denoted Sk, and an elementω ∈ Sk has the formω = (σ2, . . . , σT )
with ωt = (σ2, . . . , σt). In step 4 we construct the cut gradient
Gt and the scenario dependent cut intercept in a manner that Sec-
tion 4 details.

As Section 1 indicates, multiple authors have proposed im-
provements to the basic SDDP algorithmwe outline. We do not re-
view those improvements here, except to say that the cut-sharing
procedures we provide can also be used in those refined algo-
rithms. Our statement of the SDDP algorithm is purposively vague
on how to compute and store cuts. Specificity in this regard re-
quires the development in the next section.

4. Sharing cuts under the dependency model

This section derives a closed-form expression for cut intercepts,
which allows a cut computed for one stage t subproblem, sub(ωt),
to be adjusted so that the cut is valid for any other stage t
subproblem, sub(ω′

t). The dual of model (4) is:

max
πt ,αt

πt [Btxt−1 + ρt (Rt−1bt−1 + ηt) + kt ] + αt g⃗t (5a)

s.t. πtAt − αt G⃗t ≤ ct : xt (5b)
e⊤αt = 1 : θt (5c)
αt ≥ 0, (5d)

where Eq. (3a) substitutes for bt in (5a). When t = T constraints
(5c) and the other terms with αt are absent.

The dual variables for the descendants of sub(ωt), denoted
(π

ωt+1
t+1 , α

ωt+1
t+1 )ωt+1∈∆(ωt ), are feasible to the dual of the descendants

of any other stage t subproblem, say, sub(ω′
t); see [11, Proposition

1], and hence we can index them by (π
σt+1
t+1 , α

σt+1
t+1 )σt+1∈Σt+1 . From

model (5), with t incremented to t + 1, we therefore compute the
cut gradient as:

Gt =


ωt+1∈∆(ωt )

pωt+1| ωt
t+1 π

ωt
t+1Bt+1 = π̄t+1Bt+1, (6)
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Fig. 1. Overview of SDDP scheme.

and this forms one row of G⃗t . Note that pωt+1| ωt
t+1 = pσt+1

t+1 does not
depend on ωt . Thus the cut gradient for sub(ωt) is identical to the
cut gradient for sub(ω′

t)when that cut is shared. In Eq. (6), we have
π̄t+1 =


σt+1∈Σt+1

pσt+1
t+1 π

σt+1
t+1 , and in what follows we use Eσt [·]

to denote


σt∈Σt
pσt
t [·].

The cut intercept calculation is more subtle, and it is instructive
to start with the simplest nontrivial case of SLP-3 for t = 2. The
cut’s gradient is given by (6) with t = 2, and the cut’s intercept is
given by:

gω2
2 =


ω3∈∆(ω2)

pω3| ω2
3 π

ω3
3


ρ3b

ω3
3 + k3


= Eσ3π

σ3
3


ρ3


R2b

ω2
2 + η

σ3
3


+ k3


= g ind

2 + gdep
2 (ω2),

where

g ind
2 = Eσ3π

σ3
3 ρ3η

σ3
3 + π̄3k3 (7a)

gdep
2 (ω2) = π̄3ρ3R2b

ω2
2 . (7b)

This means that to run SDDP for SLP-3, for each stage t = 2 cut
we must store: (i) the cut gradient, G2, (ii) the independent com-
ponent of the cuts intercept, g ind

2 , as given by (7a), and (iii) them3-
dimensional row vector, π̄3 ≡ Eσ3π

σ3
3 . Then when we must ‘‘form

cut intercept vector for sub(ω2)’’ in steps 2 and 4 in the SDDP algo-
rithm,we do so for each stage t = 2 cut by taking the inner product
of π̄3 from (iii) with ρ3R2b

ω2
2 to form gdep

2 (ω2) and then adding that
to g ind

2 from (ii) to form gω2
2 . This is done for each component of g⃗ ω2

2 .
The SLP-3 case is simple because forming gdep

2 (ω2) does not
involve dual variables associated with the cuts in the descendant
nodes because there are no cuts in the third stage. For SLP-T the
general form of a cut intercept calculation for sub(ωt−1) is:

gωt−1
t−1 =


σt∈Σt

pσt
t π

σt
t


ρt


Rt−1b

ωt−1
t−1 + η

σt
t


+ kt


+


σt∈Σt

pσt
t α

σt
t g⃗ (ωt−1,σt )

t .
(8)

The computation for stage T − 1 parallels that for the second stage
in SLP-3, but the effect of the α

σt+1
t+1 g⃗ (ωt ,σt+1)

t+1 term in (8) recurses to
earlier stages in a way we characterize in Theorem 1.

Theorem 1. Consider model (1) under dependency model (3). Let
(π

σt+1
t+1 , α

σt+1
t+1 )σt+1∈Σt+1 denote the dual variables used to compute a

stage t cut as in Eq. (8), t = 1, . . . , T − 1, with αT absent under
t = T − 1. Let ℓt be the number of stage t cuts, and define Pt+1 to
be the ℓt ×mt+1 matrix whose rows contain π̄t+1 ≡ Eσt+1π

σt+1
t+1 , and

similarly define At+1 to be the ℓt × ℓt+1 matrix whose rows contain
ᾱt ≡ Eσt+1α

σt+1
t+1 .

Then the stage t = 2, . . . , T − 1 cut intercepts are given by:

gωt
t = g ind

t + gdep
t (ωt) (9a)

g ind
t = Eσt+1π

σt+1
t+1 ρt+1η

σt+1
t+1 + π t+1kt+1 + αt+1g⃗ ind

t+1

+ Eσt+1α
σt+1
t+1 Dt+1η

σt+1
t+1 ,

(9b)

gdep
t (ωt) = [π t+1ρt+1 + αt+1Dt+1] Rtb

ωt
t , (9c)

where for t = 2, . . . , T the matrix Dt is defined recursively as:

Dt = [Pt+1ρt+1 + At+1Dt+1] Rt , DT = 0. (10)

Proof. We proceed by induction with base case t = T − 1. The cut
intercept gωT−1

T−1 can be computed using the method above for SLP-
3, leading to Eq. (7) and in this case we have that (9) holds because
DT = 0 and ᾱT = 0.

The inductive hypothesis is (9). We verify the same expressions
with t decremented by 1. The vector analog of (9c) is:

g⃗ dep
t (ωt) = [Pt+1ρt+1 + At+1Dt+1] Rtb

ωt
t = Dtb

ωt
t .

A stage t − 1 cut intercept is given by Eq. (8). The first term on the
RHS of (8) is:

π tρtRt−1b
ωt−1
t−1 + Eσt π

σt
t ρtη

σt
t + π̄tkt . (11)

Applying the inductive hypothesis (9a) and (9c) and model (3)
to the second term of (8), the second term becomes:

αt g⃗ ind
t + αt [Pt+1ρt+1 + At+1Dt+1] RtRt−1b

ωt−1
t−1

+ Eσt α
σt
t [Pt+1ρt+1 + At+1Dt+1] Rtη

σt
t .

(12)

Using the definition of Dt from (10) and summing (11) and (12) we
obtain:

gωt−1
t−1 = π tρtRt−1b

ωt−1
t−1 + Eσt π

σt
t ρtη

σt
t + π̄tkt

+ αt g⃗ ind
t + αtDtRt−1b

ωt−1
t−1 + Eσt α

σt
t Dtη

σt
t .

(13)

We partition expression (13) into its scenario dependent and
independent parts to obtain (9), with t decremented to t − 1. �
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When running SDDP for model (1) under dependency model
(3), it is necessary to store for each computed cut: (i) the cut
gradient Gt , calculated using Eq. (6), (ii) the scenario independent
cut intercept g ind

t from Eq. (9b), and (iii) the cumulative expected
dual vector [π t+1ρt+1 + αt+1Dt+1] Rt ; i.e., one row of Dt from
Eq. (10). At a particular stage t , we can form valid cuts for sub(ωt)
with the stored information by calculating the dependent part
of the cut intercept using the closed-form scenario-dependent
correction term (9c) and then the cut intercept using Eq. (9a). The
first time we compute a cut, the cumulative expected dual vector
associated with this cut can be created from the set of cumulative
expected dual vectors from its descendant scenarios. In order to
perform such computation we use (9c) and (10). Relative to the
case of interstage independence we require additional storage of
the qt-vector [π t+1ρt+1 + αt+1Dt+1] Rt for each cut.

5. Expanding the state

Another way to handle dependency model (3) is to reformulate
model (1) so it exhibits interstage independence. This can be done
by increasing the dimension of the decision vectors to capture the
history of the stochastic process. Let yt be an auxiliary decision
vector with yt = Rt−1bt−1 + ηt . Then we have:

min
x1,y1

c1x1 + Eη2h2(x1, y1, η2)

s.t. A1x1 − ρ1y1 = B1x0 + k1
y1 = b1
x1 ≥ 0,

(14)

where for t = 2, . . . , T ,

ht(xt−1, yt−1, ηt) = min
xt ,yt

ctxt + Eηt+1ht+1(xt , yt , ηt+1)

s.t. Atxt − ρtyt = Btxt−1 + kt
yt = Rt−1yt−1 + ηt

xt ≥ 0,

and where hT+1 ≡ 0.
Applying the decomposition algorithm to model (14) we arrive

at the master program:

min
xt ,yt ,θt

ctxt + θt (15a)

s.t. Atxt − ρtyt = Btxt−1 + kt : πt (15b)

−G⃗x
t xt − G⃗ y

t yt + e θt ≥ g⃗t : αt (15c)
yt = Rt−1yt−1 + ηt : γt (15d)
xt ≥ 0, (15e)

where G⃗x
t and G⃗ y

t are the cut-gradient matrices related to xt and yt ,
respectively.

The dual of (15) is:

max
πt ,αt ,γt

πt (Btxt−1 + kt) + αt g⃗t + γt (Rt−1yt−1 + ηt) (16a)

s.t. πtAt − αt G⃗x
t ≤ ct : xt (16b)

−πtρt − αt G⃗
y
t + γt = 0 : yt (16c)

e⊤αt = 1 : θt (16d)
αt ≥ 0. (16e)

Thus the cut gradients for xt and yt are:

Gx
t = Eσt+1π

σt+1
t+1 Bt+1, (17a)

Gy
t = Eσt+1γ

σt+1
t+1 Rt . (17b)

The cut intercept for the new formulation is computed using:

gt = Eσt+1γ
σt+1
t+1 η

σt+1
t+1 + π̄t+1kt+1 + ᾱt+1g⃗t+1. (18)

With these constructswe can apply SDDPwithout requiring the
cut correction terms of Section 4. Rather, for each cut we store:
(i) the cut gradients, Gx

t and Gy
t using Eqs. (17) and (ii) the cut in-

tercept term, gt , using Eq. (18). (Because of interstage indepen-
dence, we need not index these cut coefficients by ωt .) That said,
we do not see this as a good idea, recalling that for the Brazilian
hydro-thermal system the number of aggregate reservoirs is 4 and
the number of hydro plants is about 150. So we have dramatically
increased the size of the linear programs by introducing decision
variables yt , and the associated constraints.

The above development has value because it provides a simple,
and more generally applicable, means by which we can derive
the scenario-dependent cut correction terms of Theorem 1. This is
made precise in Theorem 2.

Theorem 2. Applying the SDDP algorithm to model (1) under the
scenario-dependent cut intercept correction terms of Theorem 1 is
equivalent to applying the SDDP algorithm to model (14) under
interstage independence. The mapping between the two is as follows:
Let (πt , αt) solve model (5), let G⃗t be the matrix version of Eq. (6) in
primal–dual pair (4)–(5), and let g⃗ ind

t and g⃗ dep
t (ωt) be defined

via (9b)–(9c). Then G⃗x
t , G⃗

y
t , and g⃗t from (17) and (18) in primal–

dual pair (15)–(16) satisfy

G⃗x
t = G⃗t (19a)

G⃗ y
t = Dt (19b)

g⃗t = g⃗ ind
t (19c)

G⃗ y
t b

ωt
t = g⃗ dep

t (ωt), (19d)

and

(πt , αt , πtρt + αtDt) (20)

solves model (16).

Proof. Consider primal–dual pairs (4)–(5) and (15)–(16) for t = T
with the usual caveat that the cut constructs are absent. If xT and
πT solve (4)–(5) then it is straightforward to show, using linear
programming optimality conditions, that (xT , bT ) and (πT , πTρT )

solve (15)–(16). This establishes (20) for t = T , and hence (19) for
t = T − 1. This provides the base case of an inductive argument.

Now consider primal–dual pairs (4)–(5) and (15)–(16) for t
and assume (19a)–(19c) hold in those models. If (xt , θt) and
(πt , αt) solve (4)–(5) then it is again straightforward to show that
(xt , bt , θt) and (πt , αt , πtρt + αtDt) solve (15)–(16). With this
mapping of the dual variables we compute cuts for stage t − 1.
Using Eq. (17a), we have that Eq. (17b) follows, where both have
t decremented by 1. Similarly, using Eq. (17b) we have Gy

t−1 =

Eσt


π

σt
t ρt + α

σt
t Dt


Rt−1, which in vector form yields G⃗ y

t−1 =

[Ptρt + AtDt ] Rt−1 = Dt−1. Eq. (19c) holds upon substituting
π

σt
t ρt + α

σt
t Dt into (18). Given (19b), (9c) in vector form, and

Eq. (10), we have that Eq. (19d) is immediate. �

The value of formulation (14) is two-fold. First, this reformula-
tion clarifies what interstage dependency models are tractable us-
ing cut-sharing formulas. Second, Theorem 2 provides a means to
derive the type of cut-sharing formulaswe obtain in Theorem1un-
der different interstage dependency models. In particular, we see
that Eq. (19d) provides the correction term for the cut intercept.
The cut-gradient matrix satisfies Eq. (19b). So the appropriate Dt-
matrix for a different interstage dependencymodel can be foundby
unfolding the recursion specified byγt = πtρt+αtDt and Eq. (19b),
which we can see follows from constraint (16c) in model (16).



Author's personal copy

316 A.R. de Queiroz, D.P. Morton / Operations Research Letters 41 (2013) 311–316

Acknowledgments

We thank Erlon Finardi and Vitor de Matos for valuable discus-
sions regarding the ideas of Section 5, and we thank Area Editor
Rüdiger Schultz and an anonymous referee for their comments on
our initial manuscript. This paper is part of the first author’s disser-
tation research, whichwas funded by the Capes/Fulbright Program
through process 2800-06-3/2007 and grant 15073707. The second
author’s research was partially supported by the Defense Threat
Reduction Agency through grant HDTRA1-08-1-0029.

References

[1] N.V. Arvanitidis, J. Rosing, Composite representation of a multireservoir
hydroelectric power system, IEEE Transactions on Power Apparatus and
Systems 89 (1970) 319–329.

[2] J. Birge, Decomposition and partitioning methods for multistage stochastic
linear programs, Operations Research 33 (1985) 989–1007.

[3] Z. Chen, W. Powell, Convergent cutting-plane and partial-sampling algorithm
for multistage stochastic linear programs with recourse, Journal of Optimiza-
tion Theory and Applications 102 (1999) 497–524.

[4] G.B. Dantzig, P.W. Glynn, Parallel processors for planning under uncertainty,
Annals of Operations Research 22 (1990) 1–21.

[5] G.B. Dantzig, A.Madansky, On the solution of two-stage linear programs under
uncertainty, in: J. Neyman (Ed.), Proceedings of the Fourth Berkeley Sympo-
sium onMathematical Statistics and Probability, University of California Press,
Berkeley, 1961, pp. 165–176.

[6] V.L. de Matos, E.C. Finardi, E.L. da Silva, Comparison between the energy
equivalent reservoir per subsystem and per cascade in the long-term
operation planning in Brazil, in: EngOpt 2008—International Conference on
Engineering Optimization, Rio de Janeiro, Brazil, 2008.

[7] C.J. Donohue, J.R. Birge, The abridged nested decomposition method for
multistage stochastic linear programs with relatively complete recourse,
Algorithmic Operations Research 1 (2006) 20–30.

[8] J.L. Higle, S. Sen, Stochastic decomposition: an algorithm for two-stage linear
programs with recourse, Mathematics of Operations Research 16 (1991)
650–669.

[9] T. Homem-de-Mello, V. de Matos, E. Finardi, Sampling strategies and stopping
criteria for stochastic dual dynamic programming: a case study in long-term
hydrothermal scheduling, Energy Systems 2 (2011) 1–31.

[10] G. Infanger, Monte Carlo (importance) sampling within a Benders decomposi-
tion algorithm for stochastic linear programs, Annals of Operations Research
39 (1992) 69–95.

[11] G. Infanger, D.P. Morton, Cut sharing for multistage stochastic linear
programs with interstage dependency, Mathematical Programming 75 (1996)
241–256.

[12] M.E.P. Maceira, V.S. Duarte, D.D.J. Penna, L.A.M. Moraes, A.C.G. Melo, Ten years
of application of stochastic dual dynamic programming in official and agent
studies in Brazil: description of the NEWAVE program, in: 16th Power Systems
Computation Conference, Glasgow, 2008.

[13] M.E.P. Maceira, V.S. Duarte, D.D.J. Penna, M.P. Tcheou, An approach to consider
hydraulic coupled systems in the construction of equivalent reservoir model
in hydrothermal operation planning, in: 17th Power Systems Computation
Conference, Stockholm, 2011.

[14] M. Pereira, Optimal stochastic operations scheduling of large hydroelectric
systems, International Journal of Electrical Power and Energy Systems 11
(1989) 161–169.

[15] M. Pereira, L. Pinto, Multi-stage stochastic optimization applied to energy
planning, Mathematical Programming 52 (1991) 359–375.

[16] A. Philpott, V. de Matos, Dynamic sampling algorithms for multi-stage
stochastic programs with risk aversion, Technical Report Electric Power
Optimization Centre, University of Auckland, 2010.

[17] A. Philpott, Z. Guan, On the convergence of stochastic dual dynamic
programming and related methods, Operations Research Letters 36 (2008)
450–455.

[18] S. Rebennack, A unified state-space and scenario tree framework for multi-
stage stochastic optimization: an application to emission-constrained hydro-
thermal scheduling, Ph.D. Thesis, University of Florida, 2010.

[19] A. Shapiro, Analysis of stochastic dual dynamic programming method,
European Journal of Operational Research 209 (2011) 63–72.

[20] R.M. Van Slyke, R.Wets, L-shaped linear programswith applications to optimal
control and stochastic programming, SIAM Journal onAppliedMathematics 17
(1969) 638–663.


