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ABSTRACT: The planned US withdrawal from the Paris Agreement as well as uncertainty about federal climate policy has
raised questions about the country’s future emissions trajectory. Our model-based analysis accounts for uncertainty in fuel prices
and energy technology capital costs and suggests that market forces are likely to keep US energy-related greenhouse gas
emissions relatively flat or produce modest reductions: in the absence of new federal policy, 2040 greenhouse gas emissions
range from +10% to −23% of the baseline estimate. Natural gas versus coal utilization in the electric sector represents a key
trade-off, particularly under conservative assumptions about future technology innovation. The lowest emissions scenarios are
produced when the cost of natural gas and electric vehicles declines, while coal and oil prices increase relative to the baseline.

■ INTRODUCTION

The US is the second largest energy-related greenhouse gas
emitter1 and therefore critical to global efforts to mitigate
climate change. The US intends to formally withdraw from the
Paris Agreement, and key policies aimed at curbing greenhouse
gas emissions−in particular the Clean Power Plan and revised
CAFE standards−face a highly uncertain fate. Inaction on the
federal level is tempered by state-level action, including
California’s SB32,2 the Regional Greenhouse Gas Initiative
(RGGI) covering 9 northeastern states,3 and renewable
portfolio standards active in over 35 states.4 In addition to
federal and state policy, market forces will play a critical role in
shaping the future US energy system over the next several
decades. Reasons for optimism include low natural gas prices5 as
well as dramatic drops in the cost of solar photovoltaics6 and
lithium ion batteries used for grid storage and electric vehicles.7

While prevailing market forces are likely to temper uncon-
strained greenhouse gas emissions at the national level, the US
will eventually need to produce deep emissions reductions in
order to avoid the worst effects of climate change. The US had
previously acknowledged the need for such reductions. For
example, the US nationally determined contribution (NDC)
under the Paris Agreement is 26−28% below 2005 levels by

2025, and the Mid-Century Strategy suggests an 80% reduction
below 2005 levels by 2050.8

Given the anticipated lack of near-term federal action to
address climate change, it is critical to evaluate potential baseline
emissions scenarios in the absence of federal climate policy. In
addition, careful model-based analysis of baseline scenarios can
help inform discussions regarding the timing and structure of
future climate and energy policy. The US Energy Information
Administration (EIA) utilizes the National Energy Modeling
System (NEMS) to produce the Annual Energy Outlook
(AEO).9 The AEO includes a Base Case as well as several side
cases that typically focus on variations in economic growth, fuel
resource cost and availability, and rates of technology
innovation. For example, AEO 2017 includes a total of seven
cases that are repeated with and without implementation of the
EPA Clean Power Plan.9 While these internally consistent
scenarios provide a sketch of potential midterm energy futures,
they belie the underlying market uncertainty that could push the
US energy system in different directions in the absence of new
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policy. Several other recent modeling efforts have projected US
energy technology deployment and greenhouse gas emissions
but generally focus on scenarios under proposed or hypothetical
federal policy and use a limited number of scenarios to address
parametric uncertainty.10−18

In this analysis, we utilize Tools for Energy Model
Optimization and Analysis (Temoa),19 an open source, publicly
available energy system optimization model (ESOM), to
examine a large set of baseline US energy futures through
2040. Our objective is to rigorously explore the future decision
landscape and quantify greenhouse gas (GHG) emissions in a
future where energy system changes are driven by market forces
rather than top-down federal policy. We employ a sensitivity
technique called the Method of Morris20,21 to rank order the
input parameters that produce the largest effect on emissions.
We then incorporate the ten most sensitive parameters into a
suite of Monte Carlo simulations that indicate how US energy-
related GHG emissions may change under different future
assumptions. The full set of results is used to identify plausible
combinations of assumptions that can lead to either very high or
low emissions, which can inform our understanding of future
baseline emissions and suggest pathways to lower emissions in
the absence of new federal policy.

■ MODEL AND DATA
The analysis is performed with an open source energy system
optimizationmodel (ESOM) called Temoa, which operates on a
single region input database representing the continental United
States. The model source code and data are publicly available
through GitHub,22 and an exact copy of the files used to produce
this analysis is archived through Zenodo.23 Key features of the
model and input data set are described here, with additional
information provided in Section 1 of the Supporting
Information.
Tools for Energy Model Optimization and Analysis

(Temoa). Temoa19 is an open source, bottom-up ESOM,
similar to MARKAL/TIMES,24 OSeMOSYS,25 and MES-
SAGE.26 Temoa employs linear optimization to generate the
least-cost pathway for energy system development. The model
objective function minimizes the system-wide present cost of
energy provision over a user-specified time horizon by
optimizing the installation and utilization of energy technologies
across the system. Technologies in Temoa are explicitly defined
by a set of engineering-economic parameters (e.g., capital costs,
operations and maintenance costs, conversion efficiencies) and
are linked together in an energy system network through a flow

of energy commodities. Model constraints enforce rules
governing energy system performance, and user-defined
constraints can be added to represent limits on technology
expansion, fuel availability, and system-wide emissions. The
model formulation is detailed in Hunter et al.,19 and the Temoa
source code is publicly available on Github.22 Since the model
formulation evolves over time, revised model documentation
can be found on the project Web site.27

Input Data.The input database used in this analysis is largely
drawn from the EPA MARKAL database28 and represents the
US as a single region. The time horizon extends from 2015 to
2040, with 5-year time periods. For example, the 2015 period
covers the years 2015 to 2019. The results for each year within a
given time period are assumed to be identical. Temporal
variation in renewable resource supply and end-use demands is
captured through representation of three seasons (summer,
winter, intermediate) and four times of day (a.m., p.m., peak,
night). Fuel price trajectories are drawn from the Annual Energy
Outlook (AEO)9 and specified exogenously. While assuming a
fixed fuel price trajectory does not capture demand-price
feedbacks, it simplifies the execution and interpretation of the
sensitivity analysis. The model tracks emissions of CO2, NOx,
and SO2 as well as CH4 leakage rates from natural gas systems.
We assume a methane leakage rate equivalent to 1.4% of total
natural gas delivered,29 which is lower than both NETL30 and
EDF31 estimates of 1.6 and 1.65%, respectively. Given the ability
to mitigate methane leakage and the multidecadal time scale of
our analysis, use of the EPA estimate was deemed appropriate.
Methane emissions are transformed into CO2-equivalents using
a global warming potential (GWP) of 25.29 This GWP value
complies with the international inventory reporting guideline
under the United Nations Framework Convention on Climate
Change.29 The input database and baseline assumptions are
detailed in the Supporting Information, and a brief sectoral
description of the input data set is provided in Table 1.
The Temoa baseline scenario is designed to be conservative.

The baseline assumes that the Clean Power Plan is not
implemented and does not include California’s cap-and-trade
system or RGGI. The baseline includes the aggregate effect of
state-level renewable portfolio standards as well as prevailing tax
incentives, including the production tax credit for wind32 and a
10% tax credit on utility scale solar PV throughout the time
horizon.33 To orient our baseline to a familiar projection, our
input assumptions draw heavily on the AEO9 and Assumptions
to the AEO.34 The Temoa baseline results are compared with
AEO in Supporting Information Figures S2−S7.

Table 1. Sectoral-Level Detail in the Temoa Input Database

sector description

fuel supply Fuel prices are specified exogenously. Baseline projections are drawn from the 2017 Annual Energy Outlook.9 There is no limit on fuel availability
except for biofuel use in the transportation sector.35

electric The electric sector includes 34 generating technologies. Air pollution control retrofits for coal include low NOx burners, selective catalytic reduction,
selective noncatalytic reduction, and flue gas desulfurization. Costs and performance characteristics are largely drawn from the EPAU.S. nine-region
MARKAL database,28 and existing capacity estimates are drawn from the US EIA.9

transportation The transportation sector is divided into four modes: road, rail, air, and water. Road transport is modeled with greater detail by dividing it into three
subsectors: light duty transportation, heavy duty transportation, and off-highway transportation. The light duty sector includes 6 size classes and 9
different vehicle technologies. Data is largely drawn from the EPA U.S. nine-region MARKAL database.28

industrial Given the high degree of heterogeneity in the industrial sector, it is modeled simplistically as a set of fuel share constraints that are calibrated to the
2017 Annual Energy Outlook.9

commercial The commercial sector includes the following end-use demands: space heating, space cooling, water heating, refrigeration, lighting, cooking, and
ventilation. A total of 83 demand technologies are included to meet these end-use demands. Data is largely drawn from the EPA U.S. nine-region
MARKAL database.28

residential The residential sector includes the following end-use demands: space heating, space cooling, water heating, freezing, refrigeration, lighting, cooking,
and appliances. A total of 69 demand technologies are included tomeet these end-use demands. Data is largely drawn from the EPAU.S. nine-region
MARKAL database.28
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■ ANALYSIS FRAMEWORK

Our methodological approach shares common elements with
previous work. For example, we utilize large scale scenario
generation and cluster analysis similar to the Robust Decision
Making (RDM) approach;36,37 however, we are not attempting
to identify a policy strategy. In addition, recent studies have used
ESOMs to generate a large ensemble of near optimal scenarios
to derive policy relevant insights, but such work has focused on
European applications.38−40 Below we describe each element of
our framework in turn.
Method of Morris. Following work by Usher,41 we utilize a

global sensitivity method called Method of Morris20,21 to
identify the model inputs that produce the largest effect on
cumulative GHG emissions over the model time horizon. The
method produces a reliable sensitivity measure with a minimum
number of runs and can handle a large number of uncertain
parameters, making it suitable for use with data-intensive
ESOMs.41 We consider price variation in 6 different fuels and 35
technology-specific capital costs. (See the Supporting Informa-
tion for additional details on the Method of Morris formulation
and problem setup used in this analysis.) For simplicity, each
parameter is varied within a range representing ±20% of its
baseline value rather than trying to identify specific ranges for
each parameter separately, which are subject to considerable
future uncertainty.
Monte Carlo Simulation.Next, we perform a Monte Carlo

simulation where we consider variation in the ten most sensitive
parameters selected from the Method of Morris analysis. Our
objective is to quantify how variation in the ten most sensitive
technoeconomic parameters can affect the resultant range in
GHG emissions. Given the high uncertainty associated with
these future parameter values, we do not attempt to quantify
different ranges, probability distributions, or correlations
between parameters. Rather, a uniform distribution and range
is assumed for each parameter, similar to other studies.40,42−44

As a result, the full set of model results indicates the range of
future emissions pathways and suggests possible outcomes but
should not be interpreted probabilistically. When investigating
low emissions outcomes relying on specific combinations of

realized parameter values, we consider the plausibility of those
parameter combinations ex post. The required number of model
runs for the Monte Carlo simulation is assumed independent of
the number of uncertain inputs;45 1000 runs are conducted
within the simulation. To minimize the computational time, we
create an embarrassingly parallel46 implementation of the
framework. The model runs are parallelized using the “joblib”
Python library.47 We run the model using a workstation
containing two Multi-Core Intel Xeon E5-2600 series
processors, representing a total of 12 compute cores.

k-Means Clustering. Rather than examine the raw set of
1000 model runs, we employ k-means clustering to examine a
limited number of representative points. The k-means algorithm
partitions the data set by creating groups or clusters with similar
features. The algorithm minimizes the Euclidean distance
between the centroids of each cluster, where each cluster
consists of centroid values representing the 10 uncertain input
parameters plus cumulative emissions (see the Supporting
Information for more details). We separate the data into ten
clusters, which provide enough points to identify relationships
between input values and the resultant level of cumulative CO2
emissions. Larger numbers of clusters were tested, but the
configuration of centroids did not yield additional insights.
The k-means clustering algorithm is a well-established

methodology applied to separate data sets into homogeneous
groups of observations. The method was first developed by
Lloyd48 and has been widely used as a nonhierarchical clustering
approach. Other methods such as principal component
analysis,49 hierarchical and other nonhierarchical clustering
methods,50,51 and supervised and unsupervised learning
algorithms51 could also be used for our purpose. However, in
this work we make use of the k-means method for clustering due
to its simplicity, efficiency, and successful application in several
areas of the literature.52

Uncertainty Cases. We develop three different cases to
represent different levels of future uncertainty and repeat the
Monte Carlo simulation, consisting of 1000model runs, for each
case. We refer to the first case as ‘Stable World’, which denotes a
relatively stable future in which the ten most sensitive

Figure 1.Method of Morris results indicating the ten input parameters that produce the largest effect on cumulative GHG emissions (2015−2040),
ranked from largest to smallest effect. Parameters labeled “price” represent fuel prices, while all others represent capital costs. The horizontal axis
indicates the magnitude of the expected change in cumulative GHG emissions relative to the baseline value. Each input parameter is tested at 25
distinct values over a range representing ±20% of its baseline value. The length of the bar indicates the average effect, while the error bars indicate the
95% confidence intervals.
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parameters selected fromMethod ofMorris vary within±20% of
their baseline values. The second case, ‘Uncertain Fuels’, allows
natural gas and oil prices to vary within ±80% of their baseline
values, consistent with their longer-term historical range over
the last 50 years.53,54 The remaining eight parameters in the
Uncertain Fuels case vary within ±20% of their baseline values,
as in the Stable World case. The third case, ‘Uncertain World’,
allows natural gas and oil prices to vary within ±80% of their
base value, while the other eight uncertain input factors vary
within ±40% of their baseline values.

■ RESULTS AND DISCUSSION

The presentation of results follows the order described in the
Analysis Framework section. We begin by presenting results
from the Method of Morris sensitivity analysis, followed by the
Monte Carlo simulations associated with each of the three

uncertainty cases. The raw Monte Carlo results are used to
examine the range of future cumulative emissions and the role
that natural gas prices play in determining emissions. Finally, we
present results from k-means clustering to assess how variations
in technology cost and fuel prices lead to different emissions
outcomes.

Identifying Key Sensitivities. The Method of Morris
results (Figure 1) indicate that natural gas prices have the largest
overall effect on cumulative GHG emissions. In the electric
sector, coal prices and capital costs for solar photovoltaics, wind,
and combined-cycle gas turbines also have a measurable effect
on total emissions. The inclusion of capital costs associated with
battery electric vehicles, conventional gasoline vehicles, and
diesel vehicles indicates that the light duty vehicle sector can also
have an effect on emissions. Below the tenth most sensitive
parameter (heat pump capital cost), the average effect on

Figure 2. Kernel density estimates of cumulative GHG emissions from 2015 to 2040 for three cases: Stable World, Uncertain Fuels, Uncertain World.
The modeled baseline GHG emissions are estimated to be 169 Gtonnes of CO2 equivalent, represented by the black dot on the horizontal axis. Larger
ranges in input parameters produce large ranges in cumulative GHG emissions, with results skewed toward cumulative emissions below the baseline
value.

Figure 3. Ranges of projected CO2 emission pathways in the three modeled cases, with the baseline emissions scenario and the Mid-Century Strategy
(MCS) included for reference. All three cases could result in emission pathways significantly lower than the base case. In the first model time period
(2015−2019), technology capacity remains fixed except for new wind and solar, which have been experiencing rapid year-over-year growth. Thus,
emissions variations in the first time period are due to differences in the utilization of existing capacity as well as new installed renewable capacity. See
the Supporting Information for further discussion of the baseline scenario results.
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cumulative GHG emissions is less than 0.25% of the base case
cumulative emissions. In general, the small relative changes in
cumulative emissions reflect inertia in the energy system: a
change in any single parameter takes time to reach its full effect
on technology deployment and has a limited effect across the
system.
We repeated the Method of Morris analysis with a ±40%

input parameter range and found that it generates the same top
ten parameters as shown in Figure 1; however, oil price rises to
the second rank, while the relative order of the other inputs stays
the same.
Baseline GHG Emissions under Future Uncertainty.

The ten parameters with highest sensitivity (Figure 1) are
selected for inclusion in a suite of Monte Carlo simulations that
indicate how US energy-related GHG emissions may change
under different future assumptions. The distribution of
cumulative GHG emissions from the three cases is shown in
Figure 2 where kernel density estimation50 is employed to
smooth out the raw histogram results.
In the Stable World case, the distribution of cumulative GHG

emissions is clustered around the baseline scenario (169
GtCO2e), with a range extending to a minimum emissions
level of 153 GtCO2e. By comparison, both the Uncertain Fuels
and Uncertain World cases exhibit a wider range in cumulative
GHG emissions than Stable Word, but both are skewed toward
lower emissions. Thus, allowing a wider range in fuel prices

(±80%) flattens the distribution of cumulative emissions and
increases the proportion of scenarios with emissions lower than
the baseline. Moving from Uncertain Fuels to Uncertain World
increases the highest emissions scenario by 1% and decreases the
lowest emissions scenario by 3.2% relative to the cumulative
emissions level in the baseline scenario. Overall, Figure 2
indicates that wider input ranges related to fuel costs and
technology investment costs increase the proportion of
emissions scenarios below the baseline. For reference, our
baseline cumulative GHG emissions are 6.2% higher than the
AEO reference case without the Clean Power Plan.9 Part of this
discrepancy is due to our consideration of CO2-equivalent
emissions from methane leakage during natural gas production,
processing, and transport, which AEO does not report. If only
CO2 emissions are compared, the difference is 3.2%. Across all
modeled scenarios, methane leakage ranges from 1.6% to 4.1%
of total CO2e emissions.
TheCO2 emissions trajectories associated with the three cases

are presented in Figure 3 and compared with the energy-related
CO2 emissions from the Mid-Century Strategy (MCS) for deep
decarbonization.8 The MCS outlines a path for the US to meet
its commitments under the Paris Accord and ultimately achieve
an 80% reduction below 2005 emissions levels by 2050.
Figure 3 indicates that it may be possible to meet the US 2025

commitments in the absence of federal policy; however, market

Figure 4.Cumulative GHG emissions versus the ratio of natural gas to coal prices. Each subplot represents the full set of 1000 runs associated with each
case: (a) Stable World, (b) Uncertain Fuels, and (c) Uncertain World. In each case, the red circle represents the baseline projection. Each point in the
Stable World case is colored by the capital cost of combined-cycle natural gas turbines, while points in the other two cases are colored by the oil price.
These factors help explain the variability in cumulative GHG emissions at a given fuel price ratio. The color bar indicates the scalar value used to adjust
the input parameter value in the Monte Carlo simulation.

Environmental Science & Technology Policy Analysis

DOI: 10.1021/acs.est.8b01586
Environ. Sci. Technol. 2018, 52, 9595−9604

9599

http://dx.doi.org/10.1021/acs.est.8b01586


forces alone are not enough to sustain the emissions reductions
prescribed by the MCS post-2025.
The Effect of Fuel Prices in the Power Sector on GHG

Emissions. In addition to total GHG emissions, we examine the
underlying trends in technology deployment that drive the
emissions shown in Figures 2 and 3. Since the Method of Morris
results indicated that emissions are highly sensitive to natural gas
and coal prices, we plot cumulative GHG emissions versus the
average ratio of natural gas to coal prices across all model time
periods (Figure 4). In the StableWorld case (Figure 4a), there is
a linear increase in emissions as the natural gas price increases
relative to coal, which is due to the direct substitution of natural
gas with coal to produce baseload electricity. Around a price
ratio of approximately 1.8, however, the cumulative GHG
emissions reach a plateau because baseload electricity
production from coal reaches a maximum. At low price ratios,
the variation in emissions at a given fixed price ratio is largely
explained by variation in the capital cost of advanced natural gas
combined cycle capacity. However, at higher price ratios above
1.8, the variability in cumulative emissions increases as variations
in other input parameter values begin to exert their influence
under high natural gas prices.
In the Uncertain Fuels case (Figure 4b), coal and natural gas

prices still largely explain cumulative emissions when the price
ratio is below 1.8, as in the Stable World case. However, the
wider range associated with input natural gas and oil prices in the
Uncertain Fuels case leads to a wider range in cumulative GHG

emissions. The maximum variation in GHG emissions at a given
fuel price ratio is approximately 33 GtCO2e in the Uncertain
Fuels case and 18.4 GtCO2e in the Stable World case. While the
spread in cumulative emissions increases in the Uncertain Fuels
case, it is largely skewed toward lower emissions. At a given
natural gas to coal price ratio, oil prices help explain the variation
in cumulative emissions, particularly at price ratios less than two.
In the Uncertain World case (Figure 4c), the variability in

cumulative emissions as a function of fuel price ratio further
increases because other input parameters play a larger role in
determining emissions. Compared with the Uncertain Fuels
case, oil prices are not as clearly correlated with cumulative
emissions at a given price ratio. Emissions in all three cases are
skewed toward lower values. In addition, there is a fairly
consistent emissions ceiling; cumulative emissions do not
exceed 180 GtCO2e in any of the three cases.

The Effect of All Uncertain Inputs on GHG Emissions.
Figure 4 indicates that the cumulative GHG emissions are
strongly influenced by input parameters other than natural gas
and coal prices in the Uncertain Fuels and Uncertain World
cases. k-Means clustering is applied to Monte Carlo results to
condense the full set of 1000 runs from each case into a more
manageable 10 clusters, which can be used to identify other key
input parameters influencing cumulative emissions. Each of the
ten clusters is defined by ten centroids representing the input
parameter scaling factors used in the Monte Carlo simulation
and another centroid representing cumulative GHG emissions.

Figure 5. Centroid values associated with uncertain inputs (x-axis) versus cumulative GHG emissions (y-axis). The centroid values represent scaling
values, which are expressed as a fraction of the assumed baseline value. X-axis ranges correspond to the allowable ranges in the Uncertain Fuels and
Uncertain World cases. The Spearman rank correlation coefficients (ρ) and p-values help to identify the degree of monotonicity between each input
and emissions. Cumulative baseline emissions are shown by the black dot on the y-axis.
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The centroids are extracted from their clusters, grouped by input
parameter, and plotted versus the associated cumulative
emissions in Figure 5. Parameters that demonstrate a monotonic
relationship with cumulative emissions and a wider spread in
centroid values suggest a stronger effect on the emissions
outcome.
Spearman rank correlation coefficients are used to quantify

the relationship between the centroid values and associated
cumulative emissions. Spearman coefficients quantify the
correlation between parameter value ranks and are thus an
appropriate choice because they measure the degree of
monotonicity between variables and do not require a linear
relationship. High Spearman coefficients with low p-values
(<0.05) indicate that changing a given input parameter produces
a consistent directional change in emissions. The capital costs of
solar PV, wind, electric vehicles, and heat pumps as well as
natural gas, coal, and oil prices have high Spearman coefficients
(>0.6) and low p-values (<0.05) in at least one of the Uncertain
Fuels and Uncertain World cases. Coal and oil prices exhibit
negative correlation, while renewable and heat pump capital
costs as well as natural gas prices show positive correlation with
emissions. Although heat pump capital cost exhibited a low
coefficient of variation (3%) in the Uncertain World case, we
investigated the raw scenario results further and found that it had
little effect on cumulative emissions.
Assessment of the Highest and Lowest Emissions

Outcomes. The cluster results can also be used to identify the
parameter combinations that produce the highest and lowest
emissions outcomes, which can inform future policy discussions.
Clustering analysis is applied separately to the 50 model runs in
both the Uncertain Fuels and Uncertain World cases that
produce the highest and lowest 5% cumulative GHG emissions
(Figure 6). In Figure 6, centroids are grouped by cluster to
demonstrate how a particular set of centroids comprising a
cluster produces a given emissions outcome. We consider the six

input parameters with high Spearman correlation coefficients
(>0.6) that are statistically significant at the 5% level in either the
Uncertain Fuels andUncertainWorld cases and whose centroids
have a coefficient of variation greater than 10%. Two clusters per
case and emissions level (high or low) are generated; more
clusters tended to produce redundant results.
In the Uncertain Fuels case, both the highest and lowest

emissions regimes are characterized by opposing oil and natural
gas prices. The centroid values reflect the wider allowable range
in natural gas and oil prices (±80%) compared to coal prices and
capital costs for alternative technologies (±20%). Because
baseline natural gas prices are currently near the lower end of
their historical price range, the price reductions required to
produce the lowest emissions clusters would be difficult to
achieve. Furthermore, since this analysis does not account for
correlation between input parameters, we need to consider ex
post whether a future with low natural gas prices and high oil
prices is plausible. With the advent of shale gas in North
American markets, the historically strong correlation between
oil and natural gas prices has been weaker since 2007.53,54 While
there are studies indicating that this decoupling was a temporary
phenomenon,55 others show that Henry Hub prices are
decoupled fromWTI prices.56,57 Thus, the degree of decoupling
between oil and natural gas prices is uncertain, and the
assumption here of decoupled prices in the future is at least
plausible.
In the UncertainWorld case, the centroids associated with the

highest emissions clusters include low oil prices and high natural
gas prices, with a discernible shift toward lower coal prices and
higher capital costs for alternative technologies compared to the
base case.We investigated the individual scenarios that comprise
the two high emissions clusters, and all are consistent with the
centroid values. The centroids associated with the lowest
emissions clusters in the Uncertain World case merit careful
examination, as they suggest ways in which the lowest emissions
pathways can be achieved. In the Uncertain World low
emissions clusters, capital cost reductions in electric vehicles
coupled with low natural gas prices and high coal prices lead to
low electric sector emissions, relatively cheap electricity, and
therefore a cost-effective deployment of electric vehicles to
supplant gasoline vehicles. The comparison between C1 and C2
in Uncertain World is instructive: relative to C1, the C2 cluster
achieves lower emissions with higher coal prices and lower
electric vehicle costs. Cluster 2 of Uncertain World achieves the
lowest observed emissions with low natural gas prices (52% of
baseline), low electric vehicle prices (76% of baseline) coupled
with high oil (144% of baseline) and coal prices (122% of
baseline). Note that these centroid values do not indicate the
relative contribution that each parameter makes to emissions
reductions. However, inspection of Figure 6 indicates that the
drop in electric vehicle capital cost fromUncertain Fuels Cluster
1 to Uncertain World Cluster 2 is a significant contributor to the
4% drop in cumulative emissions relative the baseline. By
contrast, the total drop in cumulative emissions from the
baseline to the lowest emissions scenario is approximately 17%.
Thus, electric vehicle deployment is not the dominant factor
behind lower emissions, consistent with Babaee et al.35

While the k-means clustering results strongly suggest the need
for low natural gas prices coupled with high oil and coal prices,
they obscure some of the underlying variation in the individual
scenarios produced by the Monte Carlo simulation. For
example, Figure 7 shows the variation in electric sector installed

Figure 6. Application of k-means clustering to the 5% highest and
lowest emission runs from the Monte Carlo simulation for both the
Uncertain Fuels (“UF”) and Uncertain World (“UW”) cases. Each
horizontally aligned row represents a single cluster (“C1’ or ‘C2”), and
each colored dot represents the centroid value associated with a specific
parameter within the given cluster. The centroid values on the x-axis
represent the scaling factors applied to baseline estimates and used in
the Monte Carlo simulation; cumulative GHG emissions associated
with each cluster are plotted on the y-axis. Cumulative baseline
emissions are shown by the black dot on the y-axis.
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capacity between the baseline and two scenarios drawn from the
set of 50 lowest emissions scenarios.
The electricity capacity results shown in Figure 7 illustrate the

potential diversity in individual scenario results. “S2” shows a
much higher penetration of wind and solar PV compared to
either the baseline or “S1”. The “S2” scenario achieves among
the lowest cumulative greenhouse gas emissions (140 GtCO2e)
with high fossil fuel prices and high combined-cycle turbine cost
coupled with capital costs for wind, solar PV, and electric
vehicles that are more than 30% below their baseline value.
Policy Insights and Caveats. Energy system models are

often used to examine a limited number of scenarios that reflect
carefully considered states of the world; however, the results
often ignore high levels of future uncertainty and can thus be
misleading. There is a critical need to introspect energy models
to quantify key assumptions, sensitivities, and uncertainties. Real
world uncertainty includes a broader array of considerations,
such as the prevailing political climate, public acceptance of
alternative energy technology, and potential policy actions at the
state or regional level that are not captured here. Nonetheless, a
careful examination focused on technology cost and perform-
ance in a systems context can yield useful insight for policy
makers.
Our analysis focuses on technoeconomic uncertainty related

to fuel prices and technology-specific capital costs, thus
providing an indication of how changes in costs can produce
different base case outcomes. We do not attempt to model
different ranges or correlations among uncertain inputs, which
could affect the shape of the emissions distributions shown in
Figure 2. Even with a more sophisticated representation of input
data, we would not expect a change in the basic insight that
technoeconomic uncertainty skews cumulative emissions
toward values below the baseline. Our approach here is to
conduct the sensitivity analysis with a simplified representation
of input data and then examine key relationships ex post for
plausibility. This approach leaves open the possibility for new
insights. For example, the lowest emissions scenarios rely on low
natural gas prices and high oil and coal prices, which led us to

consider the degree of price decoupling between these
resources. While our assumption of decoupled prices is
plausible, future work could test price correlations and their
effect on emissions.
Overall, the model results indicate that market forces

operating in the absence of new federal climate or energy policy
will tend to produce emissions trajectories that remain relatively
flat or produce modest reductions: the 2040 emissions range
from −23% to +10% of the baseline estimate. By comparison,
the 2040 emissions across the AEO 2017 scenarios (without the
Clean Power Plan) range from +4% to −5% of the AEO
reference scenario.9 Thus, the broader consideration of input
uncertainty in this analysis produces a wider range in future
emissions, but the range skews toward lower emissions. Our
results show consistency with results from Barron et al.,58 where
most of the scenarios show relatively flat emissions trajectories
in comparison with historical levels. By contrast, Clark et al.14

and Zhu et al.59 project higher emissions over the next several
decades due to greater reliance on fossil fuels. In our analysis,
there are more parameter value combinations that decrease
emissions through the deployment of natural gas and renewables
than increase emissions through the increased deployment of
coal. For perspective, the cumulative difference between the
highest and lowest emissions scenario from 2020 to 2025 is
approximately 1.8 times the 2015 emissions level,29 and the
same cumulative difference from 2020 to 2040 grows to nearly
6.6 times the 2015 emissions level.29 These variations in
emissions are significant and illustrate the importance of
considering technoeconomic uncertainty in future no-policy
scenarios. Applying sensitivity techniques that extend beyond
conventional scenario analysis can broaden future energy and
emissions pathways, and could help inform subsequent policy
efforts.
If technology innovation remains low and technology costs

track close to their baseline values, then the key trade-off will be
natural gas versus coal utilization in the electric sector. The
model results suggest that the continuation of low natural gas
prices will lead to additional coal plant retirements, similar to

Figure 7.Comparison of electric sector capacities in three scenarios: the baseline scenario and two scenarios drawn from the set of 50 lowest emissions
scenarios. “S1” represents a low emissions scenario drawn fromUncertainWorld Cluster 2 that is consistent with the centroid values shown in Figure 6.
“S2” represents a low emissions scenario drawn from Uncertain World Cluster 1 that shows a result significantly different from the associated centroid
values.
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other studies.9,60 Market forces, policies, and regulations that
promote natural gas over coal in the electric sector will lead to
lower emissions, though concerted effort is required to minimize
upstream methane leakage from natural gas systems.61 The
cluster results (Figure 5) indicate that coal, oil, and natural gas
prices as well as capital costs for wind, solar PV, and electric
vehicles produce a statistically significant effect on cumulative
emissions. The lowest emissions scenarios generally rely on
lower natural gas prices and electric vehicle costs in addition to
higher oil and coal prices relative to the baseline. The full set of
centroids associated with renewable capital costs suggests that
they are playing a meaningful role in lowering emissions. For
example, Figure 5 indicates that lower solar PV costs (12%
below the baseline) play a role in achieving cumulative emissions
of 160 GtCO2e, which is 5% below the baseline level. Our choice
of the 50 scenarios with lowest emissions was illustrative;
changing the size of the lowest emissions set could also affect
centroid values.
We devised our base case to be conservative. More optimistic

assumptions about renewables in the baseline could shift the
cost threshold at which renewables are deployed at large scale. In
addition, our model does not include the EPA Clean Power
Plan.62 While the collective requirement under state-level
renewable portfolio standards is included, we did not explicitly
model emissions caps in California or the Northeastern states
under RGGI. These existing policies, combined with additional
state-level efforts to reduce emissions and increase the
deployment of renewables, could produce significant GHG
reductions beyond those estimated here. Our analysis indicates
that energy market forces, operating in the absence of significant
new policy, will hold emissions close to current levels or produce
modest reductions. While it is heartening that a hiatus in federal
energy and climate policy will not produce a dramatic rise in
emissions, aggressive policy action will be required to produce
the level of GHG reductions required to avoid the worst effects
of climate change.
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