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H I G H L I G H T S

• We propose a cost-effective energy management algorithm for PV-storage in the context of a shared community.

• Uncertainties related with electricity demand and solar power generation are used in the decision-making process.

• The impact of energy management is included for net present value (NPV) calculation of each system design.

• An approach to identify the optimal storage sizing using NPV is presented and applied to each house of the community.
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A B S T R A C T

The aim of this paper is to propose a new energy management framework and storage sizing for a community
composed of multiple houses and distributed solar generation. Uncertainties associated with solar generation
and electricity demand are included to make the mathematical models more realistic, and as a result, provide
more accurate control strategies to manage storage devices utilization. To evaluate that, a multi-stage stochastic
program model designed to minimize community electricity purchase cost per day is used to support decision-
making by creating control policies for energy management. Two different strategies are created to represent the
interest of a single household (the individual energy management - IEM) and households that share their assets
with the community (shared energy management - SEM). Our strategies consider time-of-use rates (ToU), load
and resource variation during different seasons, with their distinct days of the year, to calculate net present value
(NPV) associated with the energy savings. IEM and SEM are then used in a framework designed to establish the
requirement of optimal energy storage size for each house of the community based on NPV values. The results of
this study for an analysis considering a community with five houses show that the proposed SEM strategy
reduces the overall electricity purchase costs for a summer day up to 11% and 3% compared with heuristic and
IEM control respectively. Moreover, our results suggest that the application of the methodology increases peak
energy savings up to 17%, scales up solar generation usage up to 23%, and the optimal storage size obtained in
the shared community case reduces up to 50%.

1. Introduction

Solar photovoltaic (PV) energy is emerging as one of the most ef-
fective and important alternatives of distributed generation resources at
the household level. Integration of rooftop solar PV is considered as an
interesting investment opportunity to reduce electricity purchases from
the grid and to provide cost savings to homeowners. Sadly, the use of
solar PV generation alone may not be extremely attractive because the
generated electricity cannot always be used to supply the demand when

needed. Most of the electricity production from solar PV panels is
available during daytime when the owner is less likely be at home
(smaller demand) and cannot be used to supply demand at night time.
Thus, energy storage devices are often considered as an alternative to
be used alongside with solar PV panels to store surplus energy and
deliver it to the homeowner when needed. Energy storage devices may
not only increase solar PV energy usage but also reduce the home-
owner’s electricity purchases from utility distribution grid. However,
these devices may not always be considered as the most economical
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solution for investment at the individual household level due to their
investment costs [1,2]. Nonetheless, shared utilization of energy sto-
rage may be viewed as a robust and attractive alternative to a com-
munity as a whole [3]. Recent work [4] argues that the reduction in
costs of energy storage and the increasing demand for local flexibility
are creating possibilities for storage devices to be deployed at local
communities. Shared energy storage not only brings economic benefits
to the users but also helps to improve peak shaving and solar PV usage
when compared with a system considering individual PV-based storage
devices.

This paper presents a new energy management framework that ac-
commodates the uncertainties of electricity demand and solar PV gen-
eration. We use results from different energy management strategies to
propose optimal storage capacity sizing for a community of households,
which is an essential step for maximizing the benefits for individuals.

The idea of energy sharing at the community level has gained attention
recently [5]. The work of [6] proposed a simulation method to obtain
energy the sizing of storage systems for a community where the leve-
lized cost of electricity and other metrics are evaluated. The sig-
nificance of community storage in microgrids for load smoothing and
peak shaving based on model predictive control for time-of-use (ToU)
rate has been discussed in [7]. The authors in [8] proposed a two-level
hierarchical optimization method for microgrid community and com-
munity level devices’ energy management system to minimize opera-
tional costs considering deterministic demand and renewable genera-
tion in a smart grid environment. A modified auction based on joint
energy storage ownership scheme has been suggested in [9] for a
number of households to determine the fraction of their energy storage
capacity that they were willing to share with the community. The work
presented in [10] adopted a dynamic noncooperative game with a

Nomenclature

Acronyms

PV Solar photovoltaic technology
IEM Individual energy management based-strategy
SEM Shared energy management based-strategy
ToU Electricity time-of-use rates

Indices & sets

T Set of time periods indexed by t in [minute]
Ωt

PV Set of stochastic scenarios for solar generation at stage t
for all houses

Ωt
L Set of stochastic scenarios for electricity demand at stage t

for all houses
s Number of seasons of the year
k Solar panel life time in [years]
I Set of houses indexed by i or j
N Total number of houses

Parameters

R Correlation matrix between electricity demand and solar
PV generation estimated from past data

L Cholesky decomposition matrix
Y Base scenario matrix
X Independent draws for solar generation and electricity

demand matrix
Ct Electricity time-of-use (ToU) rate at stage t in [$/kWh]

̂yt i, Scenario realization value of the ith house at stage t in
[kW]

Ct Electricity time-of-use (ToU) rate at stage t in [$/kWh]
Δt Time interval in [minute]
Pdem t

i ω
,

, t Household electricity demand forecast of the ith house at
stage t in [kW]

PPV t
i ω

,
, t Solar generation at scenario ω of the ith house at stage t in

[kW]
η Energy storage device charging/discharging efficiency
SOCi

_
Minimum state of charge (SoC) for the ith storage device in
[%]

SOCi Maximum state of charge for the ith storage device in [%]
P

C

i
_

Minimum allowable power charge for the ith storage de-

vice in [kW]
PC

i Maximum allowable power charge for the ith storage de-
vice in [kW]

P
D

i
_

Minimum allowable power discharge for the ith storage

device in [kW]

PD
i Maximum allowable power discharge for the ith storage

device in [kW]
ωL

i Sampled electricity demand profile of the ith house at stage
t in [kW]

ωPV
i Sampled solar photovoltaic (PV) generation of the ith

house at stage t in [kW]
Gt Cut gradient matrix
gt Cut intercept vector
Cb Battery investment cost during solar PV panel life time in

[$]
q storage size in [kWh]
Ψ Number of replacements for storage devices
γ Storage device cost in [$/kWh]
Fs Energy savings during season s in [kWh]
r Discount rate
Fk Energy savings during year k in [kWh]

ToUΔ Deviation of ToU rate
qi Optimal storage size for the ith house based on IEM control

in [kWh]
Qc Overall optimal storage size for the community based on

SEM control in [kWh]
Qi Storage size for the ith house based on SEM control in

[kWh]

Decision variables

Pg t
i
, Electricity purchases from the ith house at stage t in [kW]

PC t
i

, Charging power from the storage of the ith house at stage t
in [kW]

PD t
i

, Discharging power from the storage of the ith house at
stage t in [kW]

−Pi j t
j

, Power generated from the ith house and received by the jth

house at stage t in [kW]
−Pj i t
j

, Power generated from the jth house and sent to the ith

house at stage t in [kW]
Pdef t

i
, Deferred solar PV energy from the ith house at stage t in

[kW]
SOCt

i Storage state-of-charge of the ith house at stage t in [kW]
xt Decision vector at staget
Pk Net savings obtained in year k in [$]

Functions

+h (.)t 1 Recursive function
 + ++ h x b( , )b b t t t1 1t t1 Expected cost function of stage +t 1
|⋅| Represents the cardinality of a set, i.e., the number of

elements in that set.
NPV Net present value
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decentralized approach to determine the optimal energy trading for the
day-ahead considering energy surplus from solar PV generation in
community with energy storage devices. Another technical approach
using community energy storage was proposed in [11] to overcome the
shortcomings of an unbalanced allocation of one-phase solar PV units.
The work of [12] investigates the use of community energy storage to
perform solar PV energy time-shift and demand load shifting for two
distinct scenarios in the United Kingdom. But none of these works
considered the uncertainties associated with electricity demand and
solar PV generation in the context of the energy management problem.

Uncertainty associated with wind power generation has been con-
sidered in multi-stage stochastic programs by [13], where the authors
propose the use of the Stochastic Dual Dynamic Programming (SDDP)
algorithm to prescribe the amount of energy to procure, store and
discharge from the storage in a microgrid configuration. The SDDP, that
was initially developed by [14], has been applied with a lot of success
in the energy literature over the years in centralized planning / dispatch
schemes [15] with conventional generation [16] and renewable gen-
eration [13], but the application of such algorithm in modern power
systems with distributed generation resources and battery storage is
limited with one analysis of energy storage at the household level [17]
and one devoted to analyze the use of batteries from electric vehicles to
reduce household electricity costs [18]. In [19], a study about charging
and discharging behaviors of energy storage devices among residents in
a cooperative community is carried out, where electricity prices are
considered as a source of uncertainty and a genetic algorithm is em-
ployed to operate the system. Previously referenced literature have not
considered the variation of weather affecting variables and parameters
of interest, which has been considered in [20], based on 1-day ahead
forecasts. The work reported in [21] represents a stochastic model of a
community including wind power generation and a storage system. But
none of these works considered the creation of control policies for
storage devices based on multi-stage stochastic programming models.

Similar to energy management strategy for storage, different tools
for energy storage sizing [22] to shift generation and reduce prosumers’
usage in a community have been proposed in [23]. Uncertainties in
solar PV and wind energy for capacity sizing of a community storage

have been included in the analysis presented in [24], although the
scheduling of charging and discharging operations for energy storage
devices have not been considered. The work of [25] employs the re-
maining power curve method considering the uncertainties related to
solar PV generation and electricity demand to determine the minimum
energy storage requirement to install devices at different locations
seeking to prevent overvoltage issues. A two-stage stochastic pro-
gramming model has been suggested in [26], where the goal was to
determine the optimal size for storage devices along with their control
strategy considering uncertainty introduced by wind power forecast
errors. The authors in [27,28] used a probabilistic-based approach to
reduce back feeding of energy into the grid. All these papers have not
discussed the impact of overall economic benefits considering the sav-
ings from shared energy management strategy for storage sizing of in-
dividual members of a community, which is the primary concern of this
paper.

The overall goal of this research is to achieve reductions in total
costs for a community, including electricity purchases per day from the
utility company and energy storage devices investment costs associated
with each house in the community. In this regard, we carry out energy
management for a community composed of several houses (each with
their own solar PV generation and storage devices) to attain individual
household’s needs while minimizing the overall electricity purchase
costs of the community. The energy management is performed through
the individual energy management (IEM) and shared energy manage-
ment (SEM) control strategies obtained by solving multi-stage sto-
chastic programs. In this novel approach, we explore a more realistic
representation of the stochasticity associated with solar PV generation
and electricity demand, and also create a mechanism to represent the
potential correlation between these two uncertain sources and establish
an accurate and reliable energy management framework. As the im-
portance of correlation between electricity demand and solar PV is
noted in [29], Cholesky decomposition [30] is used to represent the
correlation in within the model framework, similarly to what was done
in previously in [31] for wind and water inflow scenario generation and
[32] for solar PV and load at the household level. Moreover, we employ
the SDDP algorithm to solve multi-stage stochastic programs and

Fig. 1. Systems considered for designing energy management strategies. (a) Individual PV-storage system for IEM strategy, (b) Shared community system for SEM
strategy.
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establish reliable control strategies (IEM and SEM) for the problem.
Finally, we seek to maximize the economic benefits for each individual
house when defining the optimal storage sizing for the community. This
approach considers different storage sizes in combination with the IEM
and SEM strategies to estimate the energy net savings and define the
optimal configuration based on net present values (NPV) [33]. The
methodology developed here is general and can be used for designing
any system with distributed generation and shared storage devices
considering uncertainties.

The remainder of the paper is organized as follows: Section 2 pre-
sents the stochastic energy management problem for the community
system, the scenario generation procedure, the multi-stage stochastic
program formulation, and the storage capacity sizing method. Simula-
tion results from our proposed methodologies are presented in Section
3. Section 4 provides a discussion on storage sizing and performance
improvement based on the simulation results and Section 5 concludes
this paper.

2. Stochastic energy management and storage sizing strategies

2.1. Energy management strategies

An individual owned solar PV-based storage system and a commu-
nity system composed of N houses are shown in Fig. 1(a) and (b) re-
spectively. The hybrid PV-panel and battery system is considered to be
connected on a DC bus. The IEM strategy is designed considering the
system depicted in Fig. 1(a) and it is used for energy management in
each separate house that is part of the community system. To ensure a
higher ratio of solar utilization, we assume that the storage devices are
not allowed to store energy by charging from the grid.

The SEM strategy is designed considering together all the house-
holds that are part of the community along with their respective solar
PV panels and storage devices as the system depicted in Fig. 1(b). In this
scheme, energy produced by solar PV panels from all houses can flow
between the storage devices and the households through a common dc
bus [34]. The inverters of the storage devices are considered to have
bidirectional capabilities; however, this is used only to satisfy the needs
within the community. We assume that the storage devices will only
store energy generated from the solar PV panels and discharge to meet
the different household demands, but as in the IEM strategy it is not
allowed to store electricity from grid purchases and there is no back-
feed power to the utility grid. More details of how the IEM and SEM
strategies are created can be found in Section 2.4.

The shared community system can be managed by a communication
system composed of smart meters and a charge control unit as described
in [35]. The central controller communicates with each house to con-
trol the usage of the overall solar PV production between households
and charge/discharge patterns of the storage devices through an energy

management scheme, which is shown in Fig. 2. Data from electricity
demand forecasts as well as solar PV generation are required to use in
an optimization model designed to create the control policies and use
them to obtain the optimal energy management including handling
storage devices’ charging/discharging and power flow among the
houses in a given day. For solar PV generation and electricity demand
information, a stochastic representation based on data from point
forecasts is employed in the scenario generation procedure (Section 2.2
and Supplementary information). It is assumed that each house will
receive an equal amount of credits that will be compensated by the
other houses that will use their generated solar PV considering the
utility ToU rate as a monetary metric. In this assumption, we consider
that the smart meter can measure the electricity usage from the grid
and also can track the generated solar PV provided to the community
from each household.

2.2. Scenario generation procedure

One important step to model and solve the energy management
problem under uncertainty (or stochastic energy management) in a
multi-stage context is to develop a scenario tree to represent possible
events associated with the existent random parameters. Solar PV gen-
eration and electricity demand are sampled from probability distribu-
tions, defined using information based on existent data, in order to
construct a sampled scenario tree with different scenarios. A straight-
forward way to model random variables that represent solar PV gen-
eration and electricity demand in a scenario tree is to assume that
vectors are interstage independent, similar to the procedure described
in [36]. Inter stage independence from one period to the next means
that the realization of the random variable at a future stage has no
relationship with the realization of random variables from previous
stages. As solar generation and electricity demand varies due to
weather, temperature, cloud cover and other patterns it is reasonable to
assume that this information can be treated as independent over time,
something similar was done by [37] to forecast solar radiation. For
example, one could imagine a forecasting model (e.g. a Multi-layer
perceptron neural network model) for electricity demand based on
temperature forecasts, i.e., once trained, this model would receive fu-
ture temperature forecasts and come up with demand forecasts without
relying on the previous information.

In order to generate more realistic scenarios for demand and solar
PV generation, it is important to represent the correlation between
these two random variables. To accomplish that, we use past data to
estimate the existing correlation between solar PV generation and
electricity consumption. Once the correlation is computed, one way to
represent this information and generate combined scenarios for solar
PV generation and electricity demand is to perform independent draws
from normal distributions μ σ[ , ]2N (where μ is the average and σ2 is

Electricity Demand data
Household 1,2,…,N

Time-of-use (ToU) rates for 
different periods

…

Solar PV Generation data
Household 1,2,…,N

…

Scenario Generation 
Procedure

Energy Management 
Strategy

SDDP based Optimal 
Control

Electricity Exchanges 
(sending and receiving) 

between households 1,2,…,N 
with themselves

Battery Storage Charge and 
Discharge actions for each 

household

Electricity Purchases from the 
grid for each household

Centralized Control Scheme

Fig. 2. Proposed framework for central control based on a shared community system with solar PV and storage.
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the variance of the probability distribution) and then pass the corre-
lation between the parameters using the Cholesky decomposition ap-
proach [32]. Suppose the number of stages is T and number of un-
certain parameters is n. Let X be a matrix ( ×T n) with independent
identically distributed draws from a normal distribution [0, 1],N and
let R be the correlation matrix between electricity demand and solar PV
generation. The Cholesky decomposition of R is a lower triangular
matrix L such that:

=R LL' (1)

=Y LX (2)

where Y will then be a matrix with correlated draws. Thus, Y will
correspond to draws from [0, Σ]N . The original draws are from a N

[0,1], and the covariance matrix = RΣ . If we want correlated draws for
electricity demand and solar PV generation, for households

=i N1, 2, ..., at some stage t given by μ σ[ , ]j i i i,
2N , we can multiply the

draws from column i of the Y matrix by σi and add the mean μi asso-
ciated with electricity demand (when generating values for demand)
and solar PV generation (when generating values for solar PV) that
were estimated using past data. For example, an element of the matrix
Y, say yj i, corresponding to the j-th draw, can be defined as (3):

̂ = +y μ y σ·j i i j i i, , (3)

Thus (3) will be a draw from μ σ[ , ]i i
2N . By following this procedure

it is possible to generate scenarios for our random parameters taking
into account the correlation structure among them. We note that during
the time periods that correspond to the night time, the scenario reali-
zations of solar PV generation are considered to be zero and the cor-
relation between electricity demand and solar PV generation is not
considered. In other words, during the night period, the generated solar
PV generation values are zero and random for the electricity demand,
which are generated considering only its own probability distribution.
We note that a description of a procedure to generate a interstage in-
dependent scenario tree with correlated draws is presented in the
Supplementary information.

2.3. Mathematical model formulation

The model formulation under specific scenario realizations defined
by ω for the energy management of the shared community is presented
in (4)–(11). The model’s objective function defined by z is represented
in (4), where the goal is to minimize electricity purchases from the grid.
In this setting, a one-day cycle from 0 hr to 24 hr with a 1-minute re-
solution is considered. The models’ constraints are stated in (5)–(11).
The forecasted household electricity demand and corresponding solar
PV generation profiles for N houses are used as input for the community
system model and represented in the scenario ω realization, in other
words, Pdem t

i ω
,

, t and PPV t
i ω

,
, t are changed based on each individual household

and scenario realization.
A. Electricity purchases cost minimization:

∑ ∑= ⎛

⎝
⎜

⎞

⎠
⎟

= =

C Pz min ·
t

T

t
i

I

g t
i

1 1
,

(4)

where z represents the deterministic model objective function value;
T represents the set of time stages indexed by t ; I is the set of houses
indexed by i or j; |·| represents the operator that defines the cardinality
of the set, i.e., the number of elements in that set. For example, I| | is
equal to N , which is the number of houses in the community; Ct is the
electricity ToU rate at stage t ; Pg t

i
, is the electricity purchases from the

grid by household i at period t.
B. Power balance constraint for each individual house:

∑ ∑= − + − + −

+ ∀ ∈ ∀ ∈

= ≠
−

= ≠
−P P P P P P P

P t T i I, ,

g t
i

dem t
i ω

PV t
i ω

C t
i

D t
i

j j i

N

i j t
j

j j i

N

j i t
j

def t
i

, ,
,

,
,

, ,
1,

,
1,

,

,

t t

(5)

Based on Eq. (5), the amount of power exchanges among houses can
be determined by analyzing the variables −Pi j t

j
, and −Pj i t

j
, . Here, Pdef t

i
, is

the deferred solar PV power, PC t
i

, is the charge and PD t
i

, is the discharge
power of the storage device from house i. This information also can be
used to compute the net credit and the electricity bill per day for each
house. It ensures that the deferral of generated solar PV energy, also
referred in the literature as solar curtailment [38], is reduced by al-
lowing the model to exchange the produced energy exchanges with
other houses. This idea presents a new and important model enhance-
ment that to our knowledge was not previously considered in the re-
lated literature such as the work of [39].

C. Charge balance constraint for the individual house:

= + − ∀ ∈ ∀ ∈−SOC SOC
P η t

Q
P t

Q η
t T i I

Δ Δ
, ,t

i
t
i C t

i

i

D t
i

i
1

, ,

(6)

where SOCt
i defines the state of charge of the storage device i for par-

ticular time t . Constraint (6) has the purpose to track the state of charge
associated with the energy storage devices over time. This constraint is
responsible to couple decision stages in time as well.

Based on the modeling choice, constraint (7) limits the charging
capabilities of the storage device at each time stage to the sum of solar
generation produced at that time.

∑ ∑≤ ∀ ∈
= =

P P t T,
i

n

C t
i

i

n

PV t
i ω

1
,

1
,

, t

(7)

As the back-feeding power to the grid causes over-voltage in the
distribution network, as reported in [40] and as well as in many other
places, constraint (8) is introduced to avoid this issue.

∑ ≥ ∀ ∈
=

P t T0,
i

n

g t
i

1
,

(8)

D. Upper and lower bounds for decision variables for individual
houses:

≤ ≤ ∀ ∈ ∀ ∈SOC SOC SOC t T i I, ,i
t
i i

_ (9)

≤ ≤ ∀ ∈ ∀ ∈P P P t T i I, ,
C

i
C t
i

C
i

_
, (10)

≤ ≤ ∀ ∈ ∀ ∈P P P t T i I, ,
D

i
D t
i

D
i

_
, (11)

2.4. Energy management problem as a multi-stage stochastic program

The model described by (4)–(11) presents a deterministic model
that optimizes overall time stages under specific realizations of the
uncertainty parameters. However, it is not realistic to assume that such
model is a proper representation of the problem at hand due to the
variation of the electricity demand and solar PV generation throughout
the day. Instead, we aim to represent such model considering different
possible realizations of the random parameters at each time stage with
the goal to hedge against uncertainty. In this setting, we represent our
model according to the class of multi-stage stochastic programs [41],
where we consider a scenario tree representation to properly represent
the uncertainty parameters and the dynamics between decisions that
are coupled in time. We follow the notation from [42] to design a
generalT -stage stochastic linear program with recourse for the problem
as stated by (12)–(17).

+c x h x bmin ( , )
x

b b1 1 2 1 2
1

2 1 (12)

= +A x B x bs. t. 1 1 1 0 1 (13)
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≥x 01 (14)

where for =t T2, ..., ,

= +− + ++h x b c x h x b( , ) min ( , )t t t
x

t t b b t t t1 1 1
t

t t1 (15)

= +−A x B x bs. t. t t t t t1 (16)

≥x 0t (17)

The decision vector xt for a particular stage t, is represented by the
model decision variables related to electricity purchases from the grid,
storage device charge/discharge actions, and SOC . The At term re-
presents the model's structural constraint matrix at stage t that captures
(5)-(8). The term −B xt t 1 represents the storage in the system that is
carried forward from stage −t 1 and is available at stage t. Solar PV
generation and electricity demand at stage t are considered to be the
model stochastic parameter represented by bt . The model objective
functions designed to minimize the total cost of the system are related
to the first and to the tth stage costs respectively and are provided in
(12) and (15) with the addition of their associated expected recourse
function. The model’s structural constraints for power and charge bal-
ance requirements from (5) and (6) as well as maximum charging
capabilities (7) and no back feeding power to the grid (8) are re-
presented as components of (13) and (16). Simple bounds for decision
variables are represented in (14) and (17). It is important to note that
the realization of random parameter b2 affects the conditions of the
system at stage 2 as well as the elements of the decision vector x1 that
carries information about storage levels to the future; the same idea
follows for random parameter +bt 1, the decision vector xt and the model
at stage +t( 1). A detailed multi-stage stochastic formulation for the
energy management problem can be found in the Supplementary in-
formation document.

To solve the model (12)–(17), we make use of the SDDP algorithm.
The SDDP algorithm has been successfully used in the literature for
solving multi-stage stochastic linear programs in different types of ap-
plications. The SDDP helps to avoid the curse of dimensionality of
Dynamic Programming (DP) by constructing an approximation of the
future cost function with piecewise linear functions represented
through Benders' cuts. These cuts are added iteratively until the process
stops when the stopping criterion is reached [14]. Dual variables are
derived from the structural constraints (14) and (17) and used to con-
struct a piece-wise linear approximation of the future cost function at
each stage following the Benders’ decomposition method [43]. The

SDDP algorithm was computationally implemented using MATLAB
[44], and CPLEX [45] is used as the optimization solver engine.

The SDDP represents a master program at each stage, which accu-
mulates Benders cuts and creates in that way an approximation to the
expected future cost function. Let

→
Gt and

→gt denote a cut-gradient matrix
and a cut- intercept vector. Each backward pass of SDDP along a sample
path (there are two in Fig. 3) augments

→
Gtand

→gt with one additional
row. We define a stage t model that serves as a master program with
respect to its stage +t 1 descendants and as a subproblem with respect
to its stage −t 1 ancestor:

= +z c x θmint
x θ

t t t
,t t (18)

= +−A x B x b πs. t. :t t t t t t1 (19)

−
→

+ ≥ →G x eθ gt t t t (20)

≥x 0t (21)

Note that when applying the SDDP the recursive function is replaced
by a decision variable θt . The variable θt used in the objective function
in (18) together with (20) will form an outer linearization of
 + ++ h x b( , )b b t t t1 1t t1 at stage t . In (18) zt represents the objective func-
tion value at stage t , obtained after the model is optimized, and in (20) e
is a vector with values equal to 1. Constraints (19) and (21) are the
same constraints previously presented in (16) and (17) respectively.
Model (18)–(21) holds for all stages except the last stage T, where the
constraint set (20) is absent. The πt represent dual (row) vectors asso-
ciated with constraints (19) and (20), respectively. Model (18)–(21) is
the one solved at each node in the forward and backward paths in
Fig. 3.

A simple three-stage problem along with a visualization of how the
SDDP algorithm is used to solve the problem is depicted in Fig. 3.
However, it is important to mention that for the problem defined above,
the tree sizes of interest are quite large. For example, for the system
considered as our case study, a tree with 100 scenarios per stage with
1441 stages. Based on the available forecasted scenario (Fig. 3(a)), a
sampled scenario tree shown in Fig. 3(b), is formed for the SDDP using
(1)-(3) and the SSTIISC algorithm described in the Supplementary in-
formation. Then, sampled forward paths are considered for the algo-
rithm to proceed in the forward pass (highlighted in the tree of
Fig. 3(c)). A forward path is a sequence of nodes starting at the root
node of the tree and following a unique forward sequence of nodes until
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Fig. 3. Multi-stage stochastic optimization solution process via SDDP.

F. Hafiz et al. Applied Energy 236 (2019) 42–54

47



it reaches its endpoint at one leaf node of the tree. A sequence of models
based on (18)–(21) is solved at each time stage using the simplex
method to solve the linear programs. Benders’ cuts, which are accu-
mulated from previous iterations for each time stage, are used as ad-
ditional constraints to create a better approximation of the future costs
and improve the decision-making process. In this process, a sample
mean estimator of the costs associated with all the sampled forward
paths in the scenario tree, is constructed and considered as the upper
bound of the sampled multi-stage stochastic program. A lower bound
for the sampled multi-stage program is obtained from solving the first
stage problem, model (18)–(21) when =t 1. The stopping criteria
considered for this work, assumes that if the difference between the
lower bound and the upper bound estimators reaches a − α(1 )% con-
fidence interval, with α usually defined to be 0.05, the SDDP process is
stopped. Otherwise, the iteration process will continue until the desired
convergence level is reached. Other more efficient stopping criteria
[46] were investigated in the literature such as in the work of [47] and
[16], however, in this work we consider the stopping criteria proposed
by [14]. During each iteration of the algorithm, new forward paths such
as those shown in Fig. 3(d) are sampled independently from previous
iterations in order to better explore the solution space and achieve a
proper convergence of the algorithm. In Fig. 3(d), x1 and x2 are re-
presented as decision vectors with values optimized at time stage 1 and
2, consequently.

Similar to the forward pass, independent scenarios are sampled
(highlighted nodes) for the backward pass. Fig. 3(e) portrays the cuts
corresponding to new constraints to be added at each stage. To compute
Benders’ cuts, the SDDP can select a subset of the sampled paths. The
backward pass requires more computational time than the forward
pass. Therefore, the number of selected paths in the backward pass is
often chosen to be smaller than the forward pass to reduce SDDP
iteration time. After cuts are computed in the backward pass for all the
stages, a new set of sampled forward paths from the scenario tree is
solved using the accumulated Benders’ cuts obtained thus far. For more
details about a general SDDP algorithm to be applied to model
(18)–(21) as well as the general cuts computation see [42]. For more
details about the version of the SDDP algorithm and the cuts compu-
tation for the energy management problem refer to the Supplementary
information.

We note that both the IEM and SEM control strategies are obtained

by applying the SDDP algorithm to the multi-stage stochastic programs
designed for the individual house or shared community case respec-
tively. The application of the SDDP to the multi-stage stochastic pro-
grams yield a collection of Benders’ cuts (see Section 2.4 and the
Supplementary information) at each time period t . These cuts, during
the normal SDDP procedure within a sampled scenario tree (Fig. 3), are
used to achieve the convergence of the algorithm. However, after the
convergence of the algorithm is achieved, these cuts are considered as
the policy that will indicate the decisions. These decisions should be
made based on the realization of the uncertainty parameters, for more
details see [48]. Therefore, the collection of cuts, i.e. control strategies,
obtained by the application of the SDDP are applied to tighten the
feasible region of the energy management models that operate with out-
of-sample information (i.e. with scenarios generated that are not in the
sampled scenario tree) and provide decisions regarding charge and
discharge actions, power exchanges and electricity purchases.

2.5. Determination of energy storage capacity for each household

We aim to create a strategy to define the best energy storage ca-
pacity for each household in the community. We consider NPV results
associated with energy savings in the analysis considering both, the
individual household case and the shared community case. NPV is a
metric used in capital budgeting to analyze the profitability of an in-
vestment and has been used over the years in many energy-related
applications to evaluate investments in electricity generation, trans-
mission and distribution assets [49–52]. The NPV is established by
considering the difference between the present value of cash flows and
the present value of cash outflows. A positive NPV indicates that the
projected earnings generated by a project exceed the anticipated costs.
Generally, an investment with a positive NPV will be a profitable one
and an investment with a negative NPV will result in a net loss. The
main advantage of using NPV is to quantify how much the project will
impact the position of the capital initially invested. We also choose to
use the more robust and detailed NPV metric over the classic payback
method because the latter does not provide any guidance regarding the
investor cash flows.

For a single house storage sizing, the net savings obtained from
applying the IEM control strategy is investigated. For the annual energy
savings calculation, a variation of ToU rates during summer and winter

Fig. 4. Flowchart for optimal storage size calculation for the IEM and the SEM control strategies. The flowchart is applied to each house individually in the IEM
control strategy case to obtain ∗q and then we set =∗ ∗q qi . In the SEM control strategy case ∗qi was previously defined from the results of the IEM analysis and ∗q is
obtained for the community, and so we set =∗ ∗Q qc . Note the dashed lines and blocks are only considered in the SEM control strategy case.
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seasons is considered according to the ToU rate structure from PGE
[53]. Electricity demand for each house and solar PV generation profile
also change according to the season of the year and has an impact on
the NPV results, this has been omitted in previous related work such as
[54] and [27,28]. For simplification to calculate storage sizing, annual
electricity demand profiles of a particular house can be divided into
four seasonal demand profiles: spring, summer, fall, and winter. Four
average electricity demand profiles are obtained from past data to re-
present the different houses in the community system. The SDDP al-
gorithm is then applied to each individual house (using the IEM control
strategy) considering the household-specific electricity demand profile
for each season and the corresponding ToU rates to minimize the
electricity purchases from the distribution grid. The cumulative sum of
energy savings for all the seasons provides the net annual savings for
each individual house. In order to compute the NPVs associated with
the problem, a discount rate is used to bring the future cash flows to the
current date [27,28]. Based on the discount rate, NPVs are calculated
by considering the energy savings and the costs associated with bat-
teries replacement based on their life cycle. Expenditure of battery for
the projected time period is calculated using (22).

=
+

C
q γ

r
. Ψ.

(1 )b k (22)

Here q represents the storage capacity, Ψ respresents number of
replacements for storage devices during the life time of PV panel, γ
represents storage device cost in per kWh, r represents discount rate
and k represents years. As the project span is based on the solar PV
panel life, we consider that the ToU rate will vary during this period. In
order to represent future increase in ToU rates, we use past data
available for a 10 years period provided in PGE [53]. We average the
variations in ToU rates and incorporate this average to represent future
rate grows that are then considered in the calculation of the future net
energy savings. In our setup, the NPV is the difference between the
savings and expenditures for the entire project lifetime of 20 years,
considering (23).
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Here, Fs is the net annual savings calculated from energy manage-
ment strategy, ToUΔ is the change of ToU rate for PV panel over years
and K is the life-time of PV panel. The flowchart for the NPV based
calculation and the determination of optimal energy storage capacity
based on the IEM and SEM control strategies for each house and the
community is provided in Fig. 4.

We utilize the results of the energy storage sizing discussed above
for each individual house of the shared scenario. This procedure will
help us to avoid an exhaustive search process by varying the energy
storage size of each individual house in the community one by one and
find the optimal NPV for the whole community. Thus, the optimal
storage size ∗qi for each house is calculated following the flow chart
from Fig. 4. These results help us to get the idea that if a house has
lower electricity demand and higher solar PV generation, then its in-
dividual storage capacity requirement is higher than the other houses of
the community, which will be reflected between the ratio of the ∗qi and
the total individually controlled optimal storage capacity of all houses.
Thus, for each of the variation of total community storage, Qc the sto-
rage size of each house, Qi follows Eq. (24).

=
∑

∗

=
∗

Q Q
q

q
i c

i

i
N

i1 (24)

After getting the storage size for each house, Qi the SDDP is runs
based on the SEM method to find out the net energy savings. The NPV is
computed in a similar manner to the IEM control strategy case. The
highest NPV value ensures the optimal storage size ∗Qc for the whole
community, where ∗Qc is divided among the houses of the community by

following Eq. (24). From the power balance defined in (5), it is possible
to calculate how much power is exchanged between houses. If a house
is sending power to another house, we assume that it will get an equal
amount of credit computed using the energy amount and the ToU rate
from the utility company. This energy credit for the first house is a debt.
The house that receives energy has to payoff to maintain fairness in the
community in terms of exchanges.

3. Case study and simulation results

3.1. System configurations and data

In order to investigate the importance of the SEM strategy for a
community system, we consider the analysis of the two systems de-
picted in Fig. 1. The goal is to evaluate the benefits for the community
as a whole and each individual house that is part of that community
when the energy management is performed at the system level. Al-
though the analysis is performed considering four seasons of the year
and their associated typical days representing different electricity de-
mand and solar PV profiles, we concentrate here in showing the results
only for a typical summer day. The ToU rates considered to represent
the price that the customer has to pay for electricity purchases from the
grid in a summer day is shown in Fig. 5 and obtained from PGE [53].
The household electricity demand profiles of five houses along with
their corresponding solar PV generation profiles from the same spatial
area are obtained from [55] and shown in Fig. 6. It is to mention that,
ToU rates (provided in the Supplementary information) also change for
different seasons, and this is considered when applying the SDDP al-
gorithm to solve the model. We note that the ToU rate considered here
does not include demand charges at the residential level, therefore, this
ToU structure is simply composed of energy charges. However, if a
different ToU structure was to be considered with the addition of de-
mand charges, similar to [56], the control strategies presented here
would again attempt to reduce the overall costs by reducing the peak
energy utilization from the grid. Moreover, following the proposed
control strategies would potentially help to reduce the community de-
mand contracts with utilities, due to a smaller peak demand, which
would potentially incur smaller demand charges and larger benefits to
the community.

The parameters considered for NPV analysis for the different system
configurations are listed in Table 1.

For the purpose of this specific case study, a community system
composed of five houses is considered. It is important to note that the
analysis carried out in this study can be performed for a community
with any number of houses. We represent that each individual house
has solar PV panels and electricity storage device installed. Therefore,
each house will produce solar PV generation and has its own electricity
demand, these parameters are considered as the sources of uncertainty
in the analysis.

Fig. 5. ToU rates for a typical summer day [53].
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3.2. SDDP algorithm application

The simulation results show the benefits of applying the SDDP al-
gorithm to establish the IEM and SEM control strategies, with the goal
to minimize electricity purchases from the grid on a typical summer
day. A scenario tree with 100 scenarios per stage with 1441 stages is
constructed using N [0,1] to create inter-stage independent scenarios
at each stage. The SDDP is applied to the scenario tree in order to obtain
the policy (collection of Benders cuts at each stage) for both, the IEM
and the SEM strategies. For comparison, a heuristic control policy is
also considered. For the heuristic control strategy, solar PV based sto-
rage is charged when there is an excess of solar generation (more than
the demand) and the device is discharged when the household demand
is higher than the solar generation [57].

From Figs. 7 and 8, it can be observed that when the ToU rate is
lower and solar energy is available, the household storages undergo
charging. Thus, the load profile of the IEM and SEM does not change
although there is solar generation during that time. The storage devices
discharge during partial-peak and peak-hour periods and maintain

enough capacity to store solar energy production when demand is lower
than the electricity produced in order to reduce the purchase costs from
the grid. As a result, the aggregated electricity demand during peak-
hours is comparatively lower for IEM and SEM control strategies. But as
it can be observed by following the SEM control strategy the system can
store more solar generation (surplus) than in the IEM strategy case,
therefore, the SEM strategy helps to alleviate demand during peak time
more than the IEM strategy. With closer observation during peak hours
in Figs. 7 and 8, one can notice peak demand reduction from adopting
the SEM control strategy.

The SDDP is applied to the households with their corresponding
solar and demand profiles for standalone IEM control. To compare the
impact of different control strategies, a policy evaluation analysis is
performed by generating 1000 independent and random forward paths
to represent future possible scenario realizations for the uncertainty
parameters considering the summer season (when the demand and
solar generation are at their peak). The policies obtained by running the
SDDP in the original scenario tree are then separately applied to each
individual forward path and the model (4)-(11) is simulated to mini-
mize the cost at each stage of each forward path scenario. Then the
average value of 1000 profiles (each representing the sum of the costs

House 1   House 2 House 3 

House 4 House 5     Aggregated profiles 

Fig. 6. Electricity demand and solar generation of five houses on a summer day and their aggregated demand and solar generation profiles.

Table 1
Data regarding the net present value analysis for the system.

Parameter Value

PV panel lifetime 20 years [64]
Battery lifetime 7 years
Battery capacity (houses) 0–7 kWh
Battery capacity (community) 5–10 kWh
Battery cost $350/kWh [65]
Efficiency, η 0.92
InitialSOC 20%
SOC

_
20%

SOC 80%
P

C_
, P

D_
0 kW

P P,C D 5 kW

Fig. 7. Electricity purchases from the grid with and without the IEM control
strategy.
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of all the stages associated with one forward path scenario) for each
house is considered as the point estimator for the total cost in our
analysis. During our simulations, the optimal storage capacity is used
for each house (more details are discussed in the next subsection). The
comparison results of energy purchases from the grid for each house,
overall peak shaving, and solar PV generation usage are presented in
Tables 2 and 3. Our results show that the suggested shared storage
usage along with the SEM control strategy outperforms the individual
ownership storage with heuristic or IEM control strategies in terms of
minimization of net electricity purchase costs for the homeowners. We
also have conducted a similar analysis for demand and solar PV profiles
of three other seasons considering the ToU rate for the corresponding
seasons. The electricity purchase savings from grid for different
methods are shown in Fig. 9. It ensures the total electricity consumption
reduces in the SEM control strategy for all seasons compared to other
methods.

3.3. Individual versus shared storage capacity sizing for each household

The optimal capacity of storage sizes for the IEM and SEM control
strategies for five houses are calculated based on the method discussed
in Section 2.5. The results of NPV calculation for five houses based on
the IEM strategy are shown in Fig. 10. Fig. 11 presents the NPV cal-
culation results based on the SEM strategy applied to the aggregated
profile. The optimal storage sizes are selected based on the maximum
NPV values for both control strategies. For the SEM control strategy,
following Eq. (24), the storage size for each house is calculated. The
comparison of storage sizes for five houses based on the IEM and the
SEM control strategies with the proposed sizing method is shown in
Fig. 12. To increase the surplus solar PV generation usage, a com-
paratively higher storage capacity is required for individually owned
and controlled storage devices. On the other hand, the household with
surplus solar PV generation receives equal credits valued by ToU rate to
supply the excess energy to the other houses that participate in the
community SEM control strategy. Therefore, the houses with higher
solar PV generation will prefer to save the energy produced for meeting
their peak demand first and then send the excess to the other houses in
order to meet other community needs instead of storing in their bat-
teries. This allows for the individual storage devices capacities to be
reduced for each house when we compare to the IEM control strategy
case. Though the capacity of storage reduces for SEM control strategy,
the overall solar PV energy usage increases. Thus, the storage sharing
will provide benefits for individual houses with a reduction in their
electricity purchase and investment costs.

The comparative results between the IEM and the SEM control
strategies are presented in Fig. 13. The cost and the storage capacity
size reductions improve the NPV in the SEM control strategy compared
to the IEM control strategy. Due to the comparatively higher electricity
purchase costs shown on Table 2, it is expected that the heuristic
control strategy will show lower NPV than the IEM and the SEM control
strategies for the same size of storage. Thus we have not shown the

comparison of storage size for heuristic control strategy.

4. Discussions

Our research presents the fact that shared based storage systems are
cost-effective as found in previous literature such as [58] and [59].
However, the community-based energy storage system proposed in
previous research, require separate space in the community to settle
down the role of central energy storage systems. Also, the ownership of
the previous community-based energy storage systems is still a topic in
debate. References [6,39] proposed a third-party distribution network
operator or aggregator which will be required to own storage and
control aggregated load demand and generation. In that case, each
household will have a probability to lose some economic benefits
compared to the individually owned energy storage system. Community
storage options might become invaluable for houses in this regard. The
SEM control strategy proposed in our work does not require any se-
parate installation like a central community storage in a particular
place. Therefore, there will be no arguments about the ownership of the
third party. All participated households will have their own storage
devices installed in this system architecture. The storage devices will be
centralized controlled to minimize the overall electricity purchase costs
per day.

Other goals and characteristics could be explored in future studies
within the framework developed here such as minimization of elec-
tricity losses, representation of ancillary services [60], representation of
the transmission and distribution networks, among other things. These
considerations are beyond the scope of this paper as our focus is di-
rected to create efficient control policies to hedge against uncertainties
in demand and supply and use them to investigate the economic ben-
efits for households in a community; however, they would be inter-
esting directions for future research. In our proposed methodology, it is
ensured that individual owners will benefit more using the SEM control
strategy than the IEM control strategy in two aspects - overall electricity
purchases from the grid and smaller storage devices size. It is to be
noted that the energy storage sizing method and the proposed invest-
ment plan can also be analyzed by computing other financial metrics
such as the payback period associated with the investment as done in
[61]. Moreover, consideration of exergy analysis for energy storage
devices as performed for batteries in [62] and for a drying plant in [63]
could be potential directions for future studies.

Moreover, we aim to keep a fair compensation scheme in the system
to ensure that the household with comparatively higher energy pro-
duction - demand usage ratio will receive larger benefits through the
proposed SEM control strategy, which has not been explored in pre-
vious literature such as (Barbour et al., 2015). In terms of optimal
storage sizing requirements for each house, it is also emphasized in the
proposed storage sizing method that the household with lower gen-
eration and higher demand during peak hours should have lower size
than the other houses. As the excess amount of generation from one
house is used by another house, usage of solar PV generation is also
increased when compared to the IEM and heuristic control strategy.
Another important aspect of this research is that our model will avoid
over voltage issues by not allowing back-feed power to the main grid,

Fig. 8. Electricity purchases from the grid with and without the SEM control
strategy.

Table 2
Electricity purchase costs of each house ($/day) for a summer day when no
storage is used and different control strategies are used.

Heuristic IEM SEM

House 1 4.7 3.8 3.6
House 2 12.2 11.5 11.3
House 3 8.3 7 6.7
House 4 6.5 6.2 5.8
House 5 9.7 9.5 9.4
Total 41.4 38 36.8
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this was represented as a hard constraint in our formulation. Future
studies could analyze the problem with back-feeding power capabilities
and also explore possibilities to charge the storage devices using elec-
tricity from the grid during off-peak periods. We finally note that de-
gradation costs of the storage devices have not been considered in our
model, and to be conservative we considered a modest life time for
batteries (7 years), however, more detailed degradation models could
be incorporated within the analysis framework in future studies. Also,

the development of IEM and SEM strategies rely on the assumption of
interstage independence for generating scenarios associated with the
random variables, future studies could further develop the ideas pre-
sented here to address inter stage dependency cases following the ideas
presented in [36] and [42].

5. Conclusions

A novel framework for energy management in a system composed of
renewable energy and storage devices for a community system is pre-
sented. We represent the energy management problem as a multi-stage
stochastic program, where solar PV generation and electricity demand
are represented as uncertainties. We obtain the optimal charge/dis-
charge patterns of the energy storage devices using the stochastic dual
dynamic programming algorithm applied to the mathematical model
represented in a scenario tree. We also provide a scheme to use sto-
chastic dual dynamic programming policies in the evaluation of capa-
city sizing of storage devices for households. Our methodology is ap-
plied to a case study consisting of a community of five houses and the
results are discussed. The proposed approach is an enabler for the fu-
ture shared community generation-storage designs in the smart grid
environment providing a technical decision-making framework for
storage addition, and capacity sizing of storage devices, that allows
planners to perform comparisons between the optimal capacity sizing of
shared versus individually controlled and owned devices based on net
present value calculations. The results obtained from the shared energy
management control strategy suggest that by controlling the energy
storage devices and the solar PV generation power flow, it is possible
not only to improve critical parameters such as electricity purchase
costs, electricity peak shaving and solar PV usage on a daily basis but
also to reduce the storage capacity requirement. As a result, this tool
benefits the homeowner in terms of reducing electricity purchases from
the grid and the energy storage installation costs. The tool discussed
here can be further expanded to satisfy different goals such as loss
minimization, ancillary services, and others to study the effect of co-
ordinated control strategies among shared resources and storages.

Table 3
Comparison of different control strategies for a summer day using the ag-
gregated profile of the community.

Heuristic IEM SEM

Electricity purchase ($/day) 41.4 38 36.8
Peak energy savings (%) 43.74 45.5 60.4
PV usage (%) 74.9 93.3 97.8
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Fig. 9. Comparison of electricity purchase savings per day (from electricity
purchase without solar) for different seasons and different control strategies.

Fig. 10. NPVs of houses for different storage sizes for IEM control.

Fig. 11. NPVs of different storage sizes for SEM control.

Fig. 12. Comparison of optimal storage sizes for different houses for IEM and
SEM control strategies.
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Fig. 13. Comparison of NPVs for different houses for IEM and SEM control
strategies.
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