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Abstract: The increased frequency of power outages due to natural disasters in recent years has highlighted the urgency of
enhancing distribution grid resilience. The effective distribution service restoration (DSR) is an important measure for a resilient
distribution grid. In this work, the authors demonstrate that DSR can be significantly improved by leveraging the flexibility
provided by the inclusion of demand response (DR). The authors propose a framework for this by considering integrated control
of household-level flexible appliances to vary the load demand at the distribution-grid level to improve DSR. The overall
framework of the proposed system is modelled as a three-step method considering three optimization problems to (i) calculate
feasible controllable aggregated load range for each bus, (ii) determine candidate buses to perform DR and their target load
demand, and (iii) maintain the load level in each house through home energy management during the DSR, considering
uncertainties in load and solar generation sequentially. The optimization problems are formulated as linear programming, mixed-
integer linear programming, and multistage stochastic programming (solved using the stochastic dual dynamic programming)
models. Case studies performed in the IEEE 123-node test feeder show improvements in resilience in terms of energy restored
compared to the restoration process without DR.

 Nomenclature
Indices

t index for time
l index for nodes
γ index for controllable loads
i house
a, b, c phases
ωL, t generated scenario for load
ωPV, t generated scenario for solar generation

Sets

ℒ set of all buses in the distribution system
B set of households in a bus
ϕ set of phases
ΩPV, t set of generated scenario for load
ΩL, t set of generated scenario for solar generation

Parameters

θt
out outside temperature at time t

θt
in, θt

in minimum and maximum preferable
temperatures inside the house

α, β thermal parameters of the environment and the
appliances in the household

Pac, Pac maximum and minimum AC power
Δt time interval
E, Ē maximum and minimum washer-dryer energy

demands
Qb, QPEV capacity of PV-based energy storage and PEV

storage
η efficiency of the charger
PPV, t solar generation at time period t
Pload, t load demand at time period t

SOCt
B, SOCt

PEV minimum state of charge of PV-based energy
storage and PEV

SOCt
B, SOCt

PEV maximum state of charge of PV-based energy
storage and PEV

Pb, t
ch , PPEV, t

ch minimum charging power of PV-based energy
storage and PEV

Pb, t
ch , PPEV, t

ch maximum charging power of PV-based energy
storage and PEV

Pb, t
disch, PPEV, t

disch minimum discharging power of PV-based
energy storage and PEV storage

Pb, t
disch, PPEV, t

disch maximum discharging power of PV-based
energy storage and PEV storage

Pl, t
ϕ , Pl, t

ϕ maximum and minimum demand at each bus at
time period t

T total restoration time period
wl weight factor of each load
Pb, t, Pf, t base and flexible load at time period t
t f t temperature factor
qt stochastic parameters
πt dual variable
∁ controllable bus number

Variables

θt
in inside temperature at time period t

Pac, t AC load at time period t
Pw, t, Pd, t washer–dryer load demand at time period t
Ew, Ed washer–dryer energy at time period t
SOCt

B, SOCt
PEV state of charge of energy storage and PEV at

time period t
Pb, t

ch , PPEV, t
ch charging power of energy storage and PEV at

time period t
Pb, t

disch, PPEV, t
disch discharging power of energy storage and PEV at

time period t
Pdef, t deferred solar energy at time period t
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Pg, t load demand from the grid at time period t
μt ratio of flexible and critical load
Γi

t local target load

Pl, t
ϕ load demand in bus l at time period t

xl, t determines whether bus is energised or not{0,1}
yl determines whether the bus is controllable or not

{0,1}
rt decision vector

Functions

ht + 1 ⋅ recursive function
Eqt + 1 qtht + 1(rt, qt + 1) expected cost function of stage t + 1
⋅ represents the cardinality of a set, i.e. the

number of elements in that set

1 Introduction
Grid resiliency is essential for future smart distribution systems [1].
To improve grid resiliency, flexibility must be ensured to restore
electric service following various post-outage conditions caused by
disruptions such as extreme weather and cyber-physical security
events. Electric power utilities are paying more attention to grid
resiliency and technologies that can reduce the duration of post-
disaster outages. Many works have been proposed to improve the
resilience metrics by reconfiguring the power system, and
improving preparedness for distribution service restoration (DSR).
The DSR problem can be formulated as an optimisation problem
considering various objectives [2]. In the literature, most studies
attempt to maximise load pickup, minimise outage duration, and
minimise the number of operations for switches. Some works
suggest using synchrophasors [3], reconfiguring networks [4, 5],
including distributed energy storage [6], controlling synchronous
machine modes [7], curtailing load [8], and using emergency
mobile generators [9] during restoration to accomplish these goals.
Several works also consider the formation of microgrids by
leveraging distributed generators (DGs) and resources during the
restoration process [10–18]. In [19, 20], multi-time-step models
which can schedule DGs and generate switching sequences for
switches are introduced. However, these existing works in the
literature did not consider the contribution of demand response
(DR) to the restoration procedure.

DR is becoming an integral part of the power system and
market operational practice. DR programs have been widely
implemented to schedule electricity consumption with the help of
advanced metering infrastructure and other smart grid
technologies. Several methods of DR have been reported based on
various objective functions [21, 22]. For example, an intelligent
residential load management system was proposed in [23] for
consumers to attain a reduction in electricity bills and maintain the
total load under the maximum demand limit by scheduling
controllable appliances. A price-based DR of aggregated
thermostatically controlled load for load frequency control is
suggested in [24]. Wang et al. [25, 26], respectively, consider DR
and battery storage coordination for load smoothing and reduction
of electricity purchase based on time of use rate. Similarly, Huang
et al. [27] consider social welfare maximisation through dynamic
coordination between economic dispatch and DR considering
battery energy storage systems (BESSs) and renewable energy
resources. Dynamic energy balancing cost model to handle unit
commitment and DR are presented in [28–31]. Direct load control
(DLC) and load shedding were proposed to minimise power
outages during sudden grid load changes to reduce the peak-to-
average load ratio [32]. These works did not consider the
integration of distribution grid topology with DR, which are
proposed in [33, 34]. In [35], a framework is proposed for using
DR to provide the capacity release in the distribution system for
reliability and risk implications. However, there is no existing work
on utilising DR to improve grid resiliency.

This work is concerned with utilising DR to restore loads on
unbalanced distribution feeders using a multi-time-step dynamic
optimisation model and a microgrid concept with the presence of

DGs after a major disaster. Because generation resources can be
limited after a major disaster, DR can play an important role in
increasing the number of customers served, and/or increasing the
total amount of load restored. Because the restoration process may
take hours, it is necessary to model the loads as time-varying loads,
and hence inter-temporal constraints need to be modelled.

To address these research challenges, this paper proposes to
integrate the DR with the DSR framework based on a multi-time-
step dynamic optimisation model, which can be applied for radial
distribution systems and microgrids with dispatchable DGs. The
main contributions of this paper are as follows:

(i) Propose an integrated optimisation framework to coordinate
individual operation of flexible residential appliances and the DSR
process, so that the benefits of DR in resilience improvement are
utilised and quantified.
(ii) Identify operational optimisation models for residential DR and
distribution grid restoration considering the interdependent and
intertemporal coupling between DR and DSR.
(iii) Provide extensive case studies to verify the effectiveness of the
proposed method and quantify the benefits of improving DSR
against natural disasters.

The remainder of this paper is organised as follows: Section 2
overviews and introduces the motivation behind the proposed
method. Section 3 introduces the hierarchical problem formulation.
Section 4 provides the numerical results of a case study, and
conclusions are discussed in Section 5.

2 Motivation and proposed method overview
The motivation of utilising DR on a DSR process is shown in
Fig. 1 for a three-bus sample distribution system. Two DGs of 20
and 10 kW were supplying two loads, L1 and L2, which are
assumed to be directly connected to the buses. This system can
represent a microgrid that is temporarily formed during restoration
by sequentially closing the switches and starting the DGs. Fig. 1a
shows that DG1 and L2 are already energised, and DG2 must be
started by external cranking power. If L1 and L2 are fixed-demand
loads, L2 cannot be restored by closing the switch between bus 2
and bus 3, because this will overload DG1 and the protection may
trip DG1 before starting DG2. However, if DR can temporarily
reduce the 5 kW load in L1, overloading of DG1 can be avoided
while restoring L2, as shown in Fig. 1b. After starting DG2 and
having sufficient capacity to support L1 and L2, L1 demand can
bounce back to normal demand. In this sense, DR can facilitate
releasing capacity constraints and can help ride through some
moments when generation (solar, wind etc.) is temporarily
insufficient. DR can also temporarily improve the voltage profile
until some components with voltage regulation capabilities are
energised, such as a voltage regulator, capacitor banks, and
dispatchable DGs.

To leverage the flexibility DR provides in a particular bus, the
feasible range of load variation should be known for each time
period. Feasible range can be calculated considering different types
of smart appliances in households that are located in the region
served by that particular bus. The two-level control architecture
from household appliances to a distribution bus is shown in Fig. 2.
If the homeowners are willing to participate in the DR program,
they can communicate with the utility regarding the minimum
demand considering reduction of some flexible loads like air
conditioners, heaters, washers, dryers, solar-based energy storage,
plug-in electric vehicles (PEVs), and other loads. To quantify
minimum load while still considering the comfort level of the
homeowners, we propose an optimisation method to be performed
at the household level. The forecasted load demand can be
considered the maximum load demand of the household. Because
the load forecast is not the primary concern of this work, we
assume that the forecasted load is known beforehand. The
aggregated maximum and minimum load range for all the houses
located in a particular bus can define its feasible range of load
demand. This is step 1 in our proposed framework, which is shown
in Fig. 3. 
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In the second step of the proposed framework, we determine
whether a bus is energised or not, whether it is controllable or not,
and how much load demand will be restored in a particular bus of
the distribution level to improve DSR. To obtain answers to these
questions, the entire DSR process can be performed through an
optimisation process. To make a decision, similar to [20], this
optimization process can consider the load variation limit along
with the constraints like voltage limit, transformer and line
capacity, DG connectivity, DG current unbalance, DG ramp rate,
DG output power, load connectivity, and sequencing topology. If
only a subset of nodes is selected to provide DR, the proposed
optimisation model should find out the optimal selection of the
nodes and their corresponding target load profile over the time
horizon. This step will define the target load for each bus in the
system which is shown in step 2 of Fig. 3.

After obtaining the target load value from the DSR for each bus
of the corresponding distribution system, maintaining that load in
buses is another issue. This issue can be resolved by scheduling
different types of smart appliances at the household level, which is
the third step in our proposed framework. The target load obtained
from step 2 for a particular bus can be divided among all the

existing houses considering their flexible and fixed loads. The
divided values can be considered as a local target load for each
house. Local target load can be maintained through a home energy
management (HEM) system by controlling all of the flexible
appliances. In HEM, an optimisation algorithm can be performed
to change the original demand of the flexible loads taking into
account uncertainty while maintaining their operational constraints
and customers’ comfort. Because the control is performed
considering the uncertainties at the household level to maintain the
target, we can treat the load demand as deterministic at the
distribution level. Step 3 of Fig. 3 depicts the target load division
among houses, and local target maintenance by controlling the
smart house appliances in the house.

3 Model formulation
In this section, we introduce three optimisation models
corresponding to the three steps introduced in Section 2.

Fig. 1  Load restoration process of a sample distribution system for
(a) Fixed load and (b) Reduced load

 

Fig. 2  Two-level direct load-control-based architecture from household appliances to the distribution system during restoration while microgrids are formed
at the distribution level

 

Fig. 3  Proposed system overview
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3.1 Optimisation model 1: obtain household-level minimum
and maximum load demand requirements over a time period

To evaluate the minimum loads for buses at each distribution level,
an optimisation needs to be performed at the household level
considering the duration of the restoration process. Day-ahead
forecasted load, solar generation, and atmosphere temperature
profiles for each household are considered. For DLC, we classify
appliances into critical, interruptible, and deferrable loads [36].
Household thermal loads, solar generation, PEV, and energy
storage are interruptible loads. Washer and dryers are deferrable
loads. Other loads are considered as critical loads for the
household.

For thermostatically controlled loads, like ACs and heaters,
household owners prefer to maintain indoor temperatures within a
bearable range. According to [34], the temperature equations are

θt
in = θt − 1

in + α θt
out − θt − 1

in + βPac, t (1)

θt
in ≤ θt

in ≤ θt
in (2)

Pac ≤ Pac, t ≤ Pac (3)

Equation (1) evaluates the indoor temperature change. Equations
(2) and (3) define the comfortable temperature range for a house
and the AC load power range.

Deferrable loads like the washer and dryer depend on energy
consumption. The total consumption can be represented as follows:

Ew = Pw, t ⋅ Δt (4)

Ew ≤ Ew ≤ Ew (5)

Ed = Pd, t ⋅ Δt (6)

Ed ≤ Ed ≤ Ed (7)

where (4) and (6) state the energy consumption of the washer and
dryer. Equations (5) and (7) define the maximum and minimum
range of energy consumption for the washer and dryer,
respectively.

If solar generation and energy storage are available in a house,
we use the following equations to consider energy storage control:

SOCt
B = SOCt − 1

B + Pb, t
ch ⋅ Δt ⋅ η

Qb
− Pb, t

disch ⋅ Δt
Qb ⋅ η

(8)

Pb, t
ch ≤ PPV, t (9)

SOCt
B ≤ SOCt

B ≤ SOCt
B (10)

Pb, t
ch ≤ Pb, t

ch ≤ Pb, t
ch (11)

Pb, t
disch ≤ Pb, t

disch ≤ Pb, t
disch (12)

The state of charge (SOC) of the energy storage will change based
on the amount of charging and discharging power, which is
described by (8). Energy storage will charge from available PV
generation based on (9). The maximum and minimum SOC levels
of energy storage, and the charging and discharging rate of the
charger are defined in (10)–(12).

Similarly, if PEV is available in a house, the storage charging
pattern can be controlled considering the upper and lower bounds
of the storage and charger rating, which are shown below:

SOCt
PEV = SOCt − 1

PEV + PPEV, t
ch ⋅ Δt ⋅ η

QPEV
− PPEV, t

disch *Δt
QPEV ⋅ η

(13)

SOCt
PEV ≤ SOCt

B ≤ SOCt
PEV (14)

PPEV, t
ch ≤ PPEV, t

ch ≤ PPEV, t
ch (15)

PPEV, t
disch ≤ PPEV, t

disch ≤ PPEV, t
disch (16)

To include DR, we formulate an optimisation problem to minimise
the overall load to purchase from grid. The mathematical model for
the optimisation problem for household i is described below:

Hi = min ∑
t = 0

T
Pgrid, t

i (17)

s.t.:

Pcritical, t + Pf, t − PPV, t − Pb, t
disch − PPEV, t

disch − Pdef, t = Pgrid, t
i (18)

Pgrid, t
i ≤ 0 (19)

where the flexible loads can be defined as

Pf, t = Pac, t + Pw, t + Pd, t + Pb, t
ch + PPEV, t

ch (20)

and constraints from (1)–(16).
Equation (18) is the power balance constraint. Because back-

feeding power to the grid may cause overvoltage and safety issues
for the grid, we avoid it by maintaining the constraint defined in
(19). After solving the optimisation model (1)–(20), we calculate
the minimum load requirement from the grid during the restoration
process for each household. We account for the maximum load
demand by subtracting the forecasted solar generation from the
forecasted load demand of the house. To avoid back-feeding power
to the grid, negative loads are assumed to be zero and excess solar
generation is considered to be deferred energy. Thus, the minimum
and maximum loads in bus l are as follows:

Pl, t
ϕ = ∑

i ∈ B
Pgrid, t

i
(21)

Pl, t
ϕ = ∑

i ∈ B
(Pload, t

i − PPV, t
i ) (22)

3.2 Optimisation problem 2: calculate distribution-level loads
for each bus

For distribution-level optimization problem during restoration, we
follow the procedure described in [20]. The proposed sequential
service restoration (SSR) method in [20] coordinated all
controllable components (e.g. DGs, switchable lines) in the
distribution system to restore as much load as possible across
multiple steps, and ensured all the distribution-level constraints
were satisfied. However, it did not consider coordinated control
between load and SSR. Thus, we extend the optimisation model of
[20] to pick up as much load as possible during the restoration
period by including time-varying flexible load constraints. The
objective functions and new load variation constraints are defined
below:

Z = max ∑
l ∈ ℒ

∑
t ∈ T

∑
ϕ ∈ {a, b, c}

wl ⋅ Pl, t
ϕ ⋅ Δt (23)

s.t.:

Pl, t
ϕ ≤ Pl, t

ϕ ≤ Pl, t
ϕ (24)

Pl, t
ϕ − M ⋅ yl ≤ Pl, t

ϕ ≤ Pl, t
ϕ + M ⋅ yl (25)

xl, tPl, t
ϕ + xl, t − xl, t − 1 ⋅ t f t ⋅ Pl, t

ϕ − M ⋅ 1 − yl ≤ Pl, t
ϕ

≤ xl, t ⋅ Pl, t
ϕ + xl, t − xl, t − 1 t f t ⋅ Pl, t

ϕ + M ⋅ (1 − yl)
(26)
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t f t = 1 − α
β (27)

Pl, t
ϕ = xl, tPl, t

ϕ + xl, t − xl, t − 1 ⋅ t f t ⋅ Pl, t
ϕ (28)

∑
l ∈ L

yl ≤ ∁ (29)

Other constraints (i.e. system model constraints, system operations
constraints, DG operation constraints, connectivity constraints,
topological and sequencing constraints) are considered from [20].

Equation (24) considers the time-varying flexible load range on
each bus of the distribution system, as calculated in Section 3.1.
The big-M method is used in (25) and (26) to ensure that the
inequality constraints are applied for controllable buses. Here M is
a large number that should be selected carefully. If the load is not
controllable, then yl will become zero. The minimum and
maximum loads will be equal to the defined maximum load based
on (25); xl, t ensures if a bus is energised or not in (26); and yl
becomes 1 if a bus is controllable. Because maximum load demand
is calculated based on the forecasted load demand, this parameter
does not consider the temperature impact once it is energized. To
include this temperature impact on minimum and maximum load
demand just after energising the bus, t f t is considered in (27),
which is calculated based on (1). Thus, (26) shows that if a bus is
controllable and it is energised, then the minimum load demand
will increase based on the temperature impact during energisation.
Maximum load demand of a bus will remain zero until it is not
energised. Equation (28) ensures this constraint including the
temperature impact on maximum load while bus is energised.
Because maximum load demand is calculated based on the
forecasted load demand, this parameter does not consider
temperature impact. A controllable number of buses can be
maintained through (29).

3.3 Optimization problem 3: home energy management
(HEM)

The target Pl, t
ϕ , which is calculated from Section 3.2 optimisation

model, is divided among the houses of each node following the
strategy described in [36]. Based on [36], the load is divided
among houses considering the aggregated flexible and fixed loads
of each house. The following equations are considered for dividing
the target Pl, t

ϕ  among the houses of each bus:

μt =
Pl, t

ϕ − ∑i ∈ B Pb, t
i

∑i ∈ B P f , t
i (30)

Γt
i = Pb, t

i + μt ⋅ P f , t
i (31)

Here Γt
i is the local target load for each house.

If μt ≤ 0, it can be set as μt = 0. In this case, none of the
flexible appliances will be turned on in the house to maintain the
target load. Only the available amount of supply will be provided
to the houses to meet their demand.

If μt ≥ 0, it can be set as μt = 1. In this case, all flexible
appliances will be turned on to match the target load in the house.

At the household level, the optimisation model is formulated to
maximise the load to purchase from grid, Pg, t

i  by maintaining the
target-level electricity demand Γt

i from the grid

H = max ∑
t = 0

T
Pg, t

i (32)

s.t.:

Pg, t
i − Pdef, t = Pb, t

ωL, t + Pf, t − PPV, t
ωPV, t − Pb, t

disch − PPEV, t
disch ; (33)

Pb, t
ch ≤ PPV, t

ωPV, t (34)

Pb, t
disch + PPEV, t

disch ≤ Pload, t
ωL, t + Pf, t (35)

Pg, t
i ≤ Γt

i (36)

and constraints from (1)–(16).
Because load demand and solar generation at the household

level are uncertain, the target load demand can be maintained using
the scenario generation procedure for these two parameters
described in [37]. The power balance equality constraint
considering the generated scenario is shown in (33). Equation (34)
ensures the charging of storage only from solar generation to
reduce electricity purchases from the grid. Equation (35) ensures
that back-feeding power to the grid is avoided and thereby to avoid
the overvoltage issue. Equation (36) maintains the power demand
to the grid up to the target level.

To solve the above maximisation model while considering
uncertainties, we decompose and transform it into a T-stage
stochastic optimisation model and we apply the Stochastic Dual
Dynamic Programming (SDDP) algorithm following the method
described in [38]. In the SDDP, the maximum demand is calculated
considering future expected demand for each time. To determine
the future expected demand, we consider the generated scenario to
construct a piecewise linear function through Benders’ cuts that are
added iteratively at each time stage [38]. The iteration process
stops when a stopping criterion is achieved. For simplification, a
general T-stage stochastic linear program can be formulated as
follows:

ht rt − 1, qt = max
rt

ctrt + Eqt + 1 qtht + 1 rt, qt + 1 (37)

s.t.:

Atrt = Btrt − 1 + qt:πt (38)

rt ≥ 0 (39)

The decision variables of in optimisation model 3.3 in a particular
stage t can be considered as the vector defined by rt. Parameter qt
represents the stochastic PV generation and load at stage t.
Equation (37) represents the model objective function designed to
maximise the total demand, which includes present and expected
future demands. Equation (38) represents the power balance,
temperature balance, and charge balance constraints in (1), (8), (11)
and (33). Dual variables (denoted by πt) derived from the transition
constraints are used later to construct a piecewise linear
approximation of the future cost function following Benders'
decomposition scheme [38]. Equation (39) represents the simple
bounds on the decision variables such as (2)–(7), (9)–(12), (14)–
(16), and (34)–(36). For the convergence test, we calculate upper
and lower bound demands as described in [38] and consider 95%
confidence level criteria. More details about the SDDP algorithm
can be obtained in [39–41]. Because the target load is maintained at
the residential level considering uncertainties, the distribution load
level can be considered deterministic.

4 Simulation results and analysis
4.1 Simulation setup

For simulation, IEEE 123-node test feeder is considered [41]. We
introduced four faults and seven DGs in this test feeder to validate
the proposed restoration process. Fig. 4 shows the one-line diagram
of IEEE 123-node distribution feeder with faults. The three
optimisation models are defined as LP, MILP, and T-stage
stochastic optimisation model, and are solved using Gurobi
optimisation solvers in Python on an Intel Core i7-4600U with a 2-
GH CPU, 8 GB of RAM, and 64-bit operating system PC. The
restoration time is 8 h using 1-h time interval. Table 1 shows the

2946 IET Gener. Transm. Distrib., 2019, Vol. 13 Iss. 14, pp. 2942-2950
© The Institution of Engineering and Technology 2019



parameters of seven DGs. Status ‘1’ indicates a black start DG and
‘1/0’ indicates a non-black start DG.

We downloaded household load profiles and historical
temperature dates from Pecan Street [42] and historical climate
data of the United States [43], respectively. From [42], we
imported the detail load profiles for each electrical appliance and
solar generation profiles. For a household, we control the AC load,
washer, dryer, PV-based storage, and PEVs optimally to restore the
overall load of the grid for an 8-h restoration period. Residential
appliance parameters considered for simulation are provided in
Table 2. To maintain the spot load level of each bus defined in [44],
we assigned the number of houses in each bus in such a way that
the highest value in the maximum aggregated load profile did not
go beyond that level. Suppose 40 kW spot load at bus number 16
was assigned in [44]. We assigned ten houses in this bus so that the
highest value of the maximum aggregated load profile did not go
beyond 40 kW. The simulation results with the proposed method
were compared with the results for the system where DR was not

applied (this analysis is defined as without DR method later in the
paper). 

4.2 Effect of DR to improve system resilience

(i) Without DR: For comparison, we consider the method described
in [20], where DSR is implemented considering loads remain
unchangeable. In another word, we can call it a system without DR
for our convenience. If the load demands are not controlled with
DR in [20], Fig. 5 shows that some buses are not energised. This
occurs due to the voltage violation with limited DG capacity
compared to the load demands. Voltage violation is a constraint
during the restoration of the optimisation model defined in (20) in
[20].
(ii) With DR in the system: In our proposed approach, we consider
the loads are changeable within certain ranges and this change will
be implemented through DR. Based on our proposed method,
number of preferable controllable buses can be defined. From
simulation result, it is found that for 20 controllable buses, all the
buses in the distribution are energised. It is as visible in Fig. 6.
Locations of the 20 preferred controllable buses are selected using
our proposed optimisation method. Other buses are picked up as
unchangeable loads. Fig. 7 shows that, overall, 20% more energy
restoration is possible with 20 controllable buses, compared to the
without DR restoration method. Optimal load profiles for all the
buses were obtained from the solution of optimization model (23)–
(28) that is maintained through the application of HEM. HEM is
described later in Section 4.5.

4.3 Effect of optimal selection of buses with DR participation

Fig. 8 shows the effects of random and optimal location selection
of controllable buses. It illustrates that location selected using our
proposed method ensures more energy restoration than random
selection. It also reveals that with the increase in controllable
buses, energy restoration increases. After a certain number of
controllable buses, energy restoration becomes saturated. This
saturation point can be considered as the ‘optimal controllable busFig. 4  IEEE 123-node distribution feeder with faults

 

Table 1 Parameters of DGs added to IEEE 123-test feeder
Parameters DG1 DG2 DG3 DG4 DG5 DG6 DG7
bus position 13 18 25 47 60 77 105
maximum power, MW 0.9 1.05 1.2 1.5 1.2 0.8 0.7
minimum power, MW 0 0 0 0 0 0 0
maximum reactive power, MVar 0.7 0.8 0.5 0.5 0.4 0.3 1.2
minimum reactive power, MVar −0.5 −0.5 −0.5 −0.5 −0.6 −0.3 −0.9
status 1 1 1/0 1/0 1 1/0 1

 

Table 2 Residential appliance parameters
Parameters Values
θt

in, θt
in 72, 78°F

α, β 0.9, −5
Pac, Pac 0, 5 kW

Ew, Ew 0, 2 kW

Ed, Ed 0, 2 kW

Pb, t
ch , Pb, t

ch 0, 2 kW

Pb, t
disch, Pb, t

disch 0, 2 kW

PPEV, t
ch , PPEV, t

ch 0, 2 kW

PPEV, t
disch , PPEV, t

disch 0, 20 kW

Qb, QPEV 4, 85 kWh

SOCt
B, SOCt

B 20, 80%

SOCt
PEV, SOCt

PEV 20, 80%

η 92%
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number’. According to Fig. 8, ‘optimal controllable bus number’ is
20 for the studied outage condition. 

4.4 Effect of reduction of DG capacity

If DG capacity decreases or some non-black start DGs are turned
off, then the proposed method may need to enable DR on more
buses through the optimal selection of controllable buses. In our
case study, 2 non-black start DGs (DG3 and DG7) are turned off.
According to the performed simulation for different numbers of
controllable buses, as illustrated in Fig. 9, the overall restored

energy decreases due to the decrease in the amount of available
generation, compared to Fig. 8. To deal with this scenario where
less generation is available, more flexible loads are needed to be
controlled to reduce the load demand. Therefore, the optimal
controllable bus number increases from 20 to 30 in comparison
with Table 3. 

4.5 Effect in household-level demand

The optimal load profile defined from optimisation model 3.2 in a
bus, are divided among the assigned houses considering their fixed
and flexible load demands according to (30) and (31). Suppose
after solving the optimization model 3.2, the target load at bus 16 is
divided as local targets among 10 houses considering their flexible
and fixed loads for each time. Fig. 10 shows one household load in
bus 16. It illustrates that target load increases with time, as shown
in Fig. 7. It also shows that the household load is reduced
compared to the maximum load demand, which is a fixed load for
the without DR method. To maintain this reduced load, flexible

Fig. 5  IEEE 123-system representation where some buses are not
energised if loads are not controllable

 

Fig. 6  IEEE 123-system where all buses are energised by controlling loads
of 20 buses within the restoration time

 

Fig. 7  Comparison between load restoration at each hour interval without
DR and DR based proposed methods with 20 controllable buses

 

Fig. 8  Energy restoration for non-black start generators turned off with
different number of controllable buses

 

Fig. 9  Restored energy comparison for optimal selection and random
selection for a different number of controllable buses

 
Table 3 Restored energy comparison for different
controllable buses with the change of loads
Number of controllable buses Restored energy, kWh
0 13,077
10 13,077
20 13,718
30 13,718
40 13,718
50 13,718
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appliances are controlled using HEM. Due to space limitations, we
decide to omit the scheduled load profiles of all appliances in this
paper. Fig. 11 shows the only indoor temperature control through
HEM. It shows that indoor temperature increases from 72°F
compared to the without DR method for the proposed method to
maintain the local target level of load. HEM maintains the
comfortable temperature range up to 78°F. 

Similarly, we can consider another household load for bus 87.
Based on Figs. 5 and 6, bus 87 is not energised for the without DR
method and is energised for the proposed method. Therefore, the
household load is restored after 3 h based on our proposed method,
but it does not have any restored load for the without DR method,
as shown in Fig. 12. Figs. 10–12 show that our approach helps to
restore energy in one house by reducing flexible load demand from
another house, while ensuring comfort. 

4.6 Effect of HEM in system resiliency

With the help of HEM, target loads in the household to bus levels
are maintained. Impact of changing preferable load demand in

HEM will impact the DSR. For instance, if AC loads are preferred
to be controlled between 72 and 76°F instead of 72 and 78°F, then
load requirement will increase for each house. The minimum load
requirement of the buses will also be changed. This impact can be
observed in Table 3. If the number of controllable buses is 10, then
restored energy is only 13,077 kWh for 72–76°F preferable
temperature range. It is 14,683 kWh for 72–78°F preferable
temperature range according to Fig. 9. Restored energy also
reduces from 15,558 kWh for 72–78°F to 13,718 kWh 72–76°F for
optimal 20 controllable buses.

5 Conclusion
In this paper, we propose an innovative DR-based method for load
restoration. The proposed method contains three-level hierarchical
models formulated as three optimisation problems. Numerical
results show that the load restoration performance can be
significantly improved with the utilisation of DR in a distribution
system with limited generation resources and microgrids facing
multiple outages caused by natural disasters. Optimal allocation of
controllable bus can further improve the restoration performance of
the proposed method. Consideration of uncertainties in HEM
system ensures maintaining the load level of the controlled buses.
Overall, with the proposed method it is demonstrated that
controlling the flexible loads in one house can help the DSR to
pick up other fixed loads. Furthermore, the methods used here,
such as assign time-varying load instead of spot load, define the
feasible controllable range of load demand on a distribution bus,
and maintain target load considering uncertainties in load demand
and solar generation through HEM, can provide guidance on
market design for DR when resilience is considered.
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