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Abstract—Energy storage deployment in residential and com-
mercial applications is an attractive proposition for ensuring
proper utilization of solar photovoltaic (PV) power generation.
Energy storage can be controlled and coordinated with PV
generation to satisfy electricity demand and minimize electricity
purchases from the grid. For optimal energy management, PV
generation and load demand uncertainties need to be considered
when designing a control method for the PV-based storage
system. Another resource available at the residential level is the
plug-in electric vehicle (PEV) which also has bi-directional power
flow capability. The charging and discharging routines of the
PEV can be controlled to help reduce the energy drawn from
the power grid during peak hours. In this paper, a method of
coordinated optimal control between PV-based storage and PEV
storage is proposed considering the stochastic nature of solar
PV generation and load demand. The stochastic dual dynamic
programming (SDDP) algorithm is employed to optimize the
charge/discharge profiles of PV-based storage and PEV storage to
minimize the daily household electricity purchase cost from the
grid. Simulation analysis shows the advantage of the coordinated
control compared to other control strategies.

Index Terms—Control Strategy, Energy Storage, Plug-in Elec-
tric Vehicle, Solar Generation, Stochastic Programming.

NOMENCLATURE

Indices
ωL,t Generated scenario for load
ωt Generated scenario for solar generation
t Index for time
Sets
ΩL,t Set of generated scenario for load
ΩPV,t Set of generated scenario for solar genera-

tion
Parameters
∆t Time interval (min)
ηPEV PEV storage charger efficiency in (%)
ηPV PV-based storage charger efficiency in (%)
Ct Time of use rate at time period t in ($/kWh)
Coff peak

t Time of use rate during off peak in ($/kWh)
Cpartial peak

t Time of use rate during partial peak in
($/kWh)

k,Cd Penalty factors
PPEV max
c Maximum PEV storage charging power in

(kW)
PPEV min
c Minimum PEV storage charging power in

(kW)
PPV max
c Maximum PV-based storage charging

power in (kW)

PPV min
c Minimum PV-based energy storage charg-

ing power in (kW)
PPEV max
d Maximum PEV storage discharging power

in (kW)
PPEV min
d Minimum PEV storage discharging power

in (kW)
PPV max
d Maximum PEV storage discharging power

in (kW)
PPV min
d Minimum PV-based energy storage dis-

charging power in (kW)
PL,t Load demand at time period t (kW)
PPV,t Solar generation at time period t (kW)
QPEV PEV storage capacity in (kWh)
QPV PV-based energy storage capacity in (kWh)
SOCPEV

max Maximum PEV storage state of charge in
(%)

SOCPV
max Maximum PV-based energy storage state of

charge in (%)
SOCPEV

min Minimum PEV storage state of charge in
(%)

SOCPV
min Minimum PV-based energy storage state of

charge in (%)
SOCPEV

t,leave Leaving PEV storage state of charge in (%)
SOCPEV

t,tar Target PEV storage state of charge in (%)
T Total Time period in (min)
Decision Variables
PPEV
c,t PEV storage charging power at time period

t in (kW)
PPV
c,t PV-based energy storage charging power of

at time period t in (kW)
PPEV
d,t PEV storage discharging power at time

period t in (kW)
PPV
d,t PV-based energy storage discharging power

of at time period t in (kW)
Pdef,t Deferred solar energy at time period t (kW)
Pg,t Load demand from grid at time period t

(kW)
SOCPEV

t PEV storage state of charge at time period
t in (%)

SOCPV
t PV-based energy storage state of charge at

time period t in (%)
xt Decision vector at time period t
Functions
Ebt+1|btht+1(xt, bt+1) Expected cost function of time period

t+ 1
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| . | Represents the cardinality of a set, i.e.
number of elements in a set

ht+1(.) Recursive function

I. INTRODUCTION

THE popularity of clean and renewable energy sources
is increasing around the world due to the reductions

in technology investment costs and the escalating goals of
countries to implement sustainable standards in power and
energy systems. As comparatively lower cost and environ-
ment friendly resources are being available, the deployment
of renewable technologies are increasing in power systems.
Among all the renewable resources, solar photovoltaic (PV)
generation can be considered as a technology breakthrough
for power generation at the residential level as it is easily
accessible and is of moderate to low costs. According to
an NREL study, rooftop solar could produce almost 40% of
our electricity using the average efficiency of solar panels
installed in 2015; in such situation, it would be possible to
generate approximately 1,400 TWh of electricity each year and
two-thirds of this amount would come from small residential
buildings [1]. Figure 1 shows the change of rooftop solar
potential in U.S.A from 2006 to 2016.

Along with solar PV generation, energy storage technolo-
gies are sufficiently developed to be used in conjunction with
solar panels to store excess PV generation and use it during
periods when solar generation is not available to improve the
utilization and robustness of the system. According to the
Energy Storage Association, 36 MWh of behind the meter
residential storage were installed in the first quarter of 2018
in the US [2]. This is a dramatic increase from 50% from
the year 2017. California and Hawaii together constitute 74%
of residential storage deployments in 2018 which can be
attributed to the change in states’ net metering rules [2]. The
dispatch between the PV panel and storage can be controlled
considering the household electricity demand profile and time
of use rate (ToU) of electricity to ensure economic benefit to
the users [3]. Other dispatch objectives such as power balance,
peak shaving/load shifting, and back-feeding power reduction
[4]–[6] were considered for behind the meter applications for
the PV-storage hybrid system.

Similar to solar PV generation and battery storage systems,
plug-in electric vehicles (PEVs) are receiving more attention
these days for reducing vehicle CO2 emissions [7]. Moreover,
PEVs are likely to become cost-competitive compared with
vehicles that rely on combustion engines in the near future
[8]. California Energy Commission reported that the number
of users of PEVs will reach approximately 1.3 million by 2025
only in California, and the annual sale of PEVs in 2025 will
increase by more than 7% compared to 2017 [9]. Navigant
Research reported that California, New York, Washington,
and Florida will lead the way in PEV sales in the years
ahead [10]. However, uncoordinated PEV charging at the
residential level will significantly increase the peak load, what
will likely affect electricity distribution infrastructures [11].
The aggregated PEV charging load at the residential level
is expected to reach peaks levels of about 800MW in the
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Figure 1: Rooftop solar potential change from the year
2008 – 2016 [1].

evening by the year 2025 [12]. Therefore, recent research has
focused on the approaches for PEV integration into the grid
[13]. As PEVs have bi-directional power flow capabilities, the
charging and discharging patterns of PEVs can be controlled
[14]. However, controlling PEV from grid level requires an
effective communication system, and there are also privacy
and PEV owner preference concerns. Considering these issues,
PEV charge/discharge scheduling from the residential level
was proposed to reduce electricity purchase costs in [15].

The above discussion and trends serve as the motivation to
develop energy management control methods for simultaneous
deployment of PV-based storage and PEV at the residential
level in near future. The two types of storage devices can be
utilized using a coordinated control algorithm to maximize
the economic benefits of a residential customer. From the
customers’ perspective, when these two storages are used in a
household, they can be coordinated optimally to enhance the
proper utilization of the system resources. Coordinated control
of PEV and PV-panel energy storage has been considered
in prior literature for various objectives such as to achieve
power balance, load shifting, electricity cost reduction, and
peak shaving [16]–[18]. These works did not consider the
uncertainties of PV generation and load profiles, and fur-
thermore, in some cases considered power curtailment which
is undesirable considering the investment made on solar PV
units. There is considerable uncertainty in solar and wind
power generation due to changes in weather, and also, in
homeowners electricity usage patterns [19]. In [20], non-
Gaussian uncertainties of wind power and the PEV were
considered within a hierarchical stochastic control scheme for
the coordination of PEV charging and wind power generation
in a microgrid to achieve the power balance between supply
and demand; however, economic benefits were not considered
in this work. Uncertainties in PV generation and electricity
demand were considered in earlier research by the authors,
but those were evaluated separately and not for a coordinated
control scheme [21], [22]. Wu et al. considered uncertainty
of PEV mobility for a stochastic control method to utilize
generated solar energy but did not incorporate any PV-based
storage [23]. Kavousi et al. showed that the uncertain vari-
ations of residential load demand and solar PV generation
due to weather changes are correlated [24]. Therefore, it is
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necessary to consider the stochasticity of both PV generation
and load demand as well as the correlation structure between
them for any optimal energy management control framework.
Furthermore, the coordination between the PV-based storage
and PEV storage control is also necessary if both are available
in a household to improve the solar generation utilization and
reduce the net electricity purchase costs. The two storages
are preferred to be controlled at the residential level to avoid
privacy and ownership preference issues while simultaneously
minimizing the communications requirements.

In this paper, a novel coordinated control strategy between
solar PV generation with an energy storage device and PEV
is presented. For a more realistic representation of the pro-
posed decision-making framework, the approach is modelled
considering the uncertainties in solar generation and house-
hold electricity demand [25]. The reminder of this paper is
segregated as follows: The system representation is discussed
in Section II. Section III describes the proposed methodology
that includes the scenario generation procedure considering
the correlation between load demand and solar production
using Cholesky factorization [26]. The optimization model
formulation for the coordinated system, and the stochastic dual
dynamic programming (SDDP) algorithm applied to solve the
model and define the control strategies for the system in the
context of stochastic PV generation and household electricity
demand are also presented in Section III. The comparisons
between coordinated and other control methods are given in
Section IV based on simulation results. Section V presents the
summary and conclusions of this paper.

II. SYSTEM REPRESENTATION

A household system consisting of a PV panel-storage and
PEV is shown in Figure 2. The PV panel delivers energy to the
household and also to the energy storage device through a DC
bus and AC-DC converter. Energy storage is connected to the
same DC bus through a bidirectional DC-DC converter. PEV
is connected to the household with another DC bus through
a bidirectional converter. DC-AC inverters feed power to the
household from the DC bus. In this configuration, it is assumed
that PV-based energy storage and the PEV can only deliver
power to the household. We assume that the PV panel and
the energy storage devices do not deliver power to the grid,
although this reverse power flow feature can be added in the
controller for systems where it is desirable. The household
load and PEV can receive power from the grid, the PV panel
and the energy storage device. PV panel, storage and PEV
can communicates to the controller through a communication
network. The controller sends the charge/discharge command
to control the energy storage.

III. PROPOSED METHODOLOGY

A. Scenario generation

To enhance the decision-making capabilities of an optimiza-
tion model to be developed for the problem at hand, it is
key to properly model uncertainties in solar generation and
load demand and consider them when attempting to solve
the storage scheduling problem. In this work, we choose
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Figure 2: PV-storage hybrid unit and a connected PEV in a
household system.

to model the future uncertainties by developing a scenario
tree to represent possible events for the random parameters.
PV generation and household electricity demand are sampled
from a probability distribution in order to construct a finite
scenario tree. In this process, no previous time dependency
is considered to represent future uncertainty associated with
scenario realizations.

Generally, outdoor temperature change leads to variations
in the intensity of solar generation as well as changes in
electricity demand patterns. For example, during a typical
day in the summer, it is likely that the household electricity
needs will be higher due to the cooling demand; on the
other hand, solar PV production will be higher due to more
intensity of the sunlight and more hours of sunshine. This
requires a correlation structure to be considered between solar
PV generation and load demand to represent possible future
scenarios. Neglecting correlation between solar PV generation
and load demand in the scenario generation procedure may
lead to a scenario of lower load demand with higher solar
generation.

We considered historical and forecasted data for PV genera-
tion and household electricity demand for 24-hour periods. To
deal with the correlation, scenarios are generated for solar pro-
duction and electricity demand independently sampling from
normal distributions N [µ, σ2] and then passing the correlation
structure through Cholesky decomposition. Following a similar
notation from [26], suppose the number of stages is T and n is
the number of uncertain parameters (in our case, n = 2). Let
X be a matrix (T×n) with independent distributed draws from
a normal distribution N [0, 1] and let R be the load and PV
generation correlation matrix. The Cholesky decomposition of
R is a lower triangular matrix L such that:

R = LL′ (1)

Now we can define Y such that:

Y = LX (2)

where Y will then be a matrix with correlated draws. There-
fore, Y will correspond to draws from N [0,Σ]. The original
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draws are from a N [0, 1], σ = 1 and the covariance matrix
Σ = R. If we want to use correlated draws for solar PV
generation and electricity demand, given by Nt,i[µi, σ

2
i ] where

i = 1, 2 at a particular time stage t, we can multiply the draws
from column i of Y by σi and sum the mean µi as similarly
denoted in (3). For example, if yt,i is an element of the matrix
Y corresponding to the i-th draw, then

ˆyt,i = µi + yt,iσi (3)

will be a draw from Nt,i [µi, σ
2
i ]. By following this proce-

dure it is possible to generate scenarios to jointly represent our
random parameters taking into account the correlation effects
among them. It is to be noted that forecasted PV generation
will not be available during the night. Thus during the night
period, the generated PV profiles are zero and random for the
load demand which will be generated from N [0, 1].

B. Mathematical Model Formulation

Cost minimization of a household with optimal operation
of energy storage devices integrated with PV and PEV in a
system can significantly benefit a customer. In this study, a
one-day cycle from 0hr to 24hr with a 15-minute resolution
is considered. The total 24hr is divided into T time periods
based on a resolution ∆t. Let Ct be the ToU electricity tariffs,
P

ωL,t

L,t and P
ωPV,t

PV,t are the generated load and solar profiles
from the sets of all generated load and solar profiles ΩL,t and
ΩPV,t, respectively. Pg,t is the power demanded from grid at
time t; a penalty factor k is applied to the objective function
to ensure that the PEV storage can reach the target state-of-
charge (SOC) level SOCtar before leaving the residential
system. SOCt,leave is considered as the charge level when
PEV will leave the household. It is important to notice that it
is not possible for the PEV battery to charge above its target
level at the end of the charging process due to the effect of
the penalty factor k as it will significantly increase the total
cost. Cd is another penalty factor which is assigned to avoid
discharging of the PEV, PPEV

d,t during off-peak hours. If this
penalty term is not introduced in the objective function, then
the PEV will discharge up to the threshold level to minimize
the cost function. If the PEV discharges during off-peak hours
to its threshold level, it will have to charge again to reach
its target level for the next day. As charging during off-peak
hours is economical, it will prefer to regain charge during the
off-peak hours. So, charging and discharging during off-peak
hours will not be economical, and will cause energy losses. To
avoid discharging during off-peak hours, this penalty cost is
introduced, which is chosen between the value of partial peak
and off peak ToU rates. The objective function J and model
constraints are written as:
Subject to:

J = min
[ T∑
t=1

(CtPg,t + |SOCPEV
t,tar − SOCPEV

t,leave|k

+ CdP
PEV
d,t )

]
(4)

A. Power balance constraint [27]:

Pg,t−PPV
c,t +PPV

d,t −PPEV
c,t +PPEV

d,t −Pdef,t = P
ωL,t

L,t −P
ωt

PV,t

(5)
B. Charge balance constraint [24]:

SOCPEV
t = SOCPEV

t−1 +
PPEV
c,t ∆tη

QPEV
−
PPEV
d,t ∆t

QPEV η
(6)

SOCPV
t = SOCPV

t−1 +
PPV
c,t ∆tη

QPV
−
PPV
d,t ∆t

QPV η
(7)

C. Charge and discharge operational limits based on PV and
load respectively [25]:

PPV
c,t ≤ P

ωPV,t

PV,t (8)

PPV
d,t − PPEV

c,t ≤ PωL,t

L,t (9)

PPV
d,t + PPEV

d,t ≤ PωL,t

L,t (10)

Coff−peak
t ≤ Cd ≤ Cpartial−peak

t (11)

k ≥ 0 (12)

D. Non-negativity requirement for purchases from the
grid [25]:

Pg,t ≥ 0 (13)

E. Upper and lower bounds for the model decision vari-
ables [24]:

SOCPEV
min ≤ SOCPEV

t ≤ SOCPEV
max (14)

SOCPV
min ≤ SOCPV

t ≤ SOCPV
max (15)

PPEV min
c ≤ PPEV

c,t ≤ PPEV max
c (16)

PPEV min
d ≤ PPEV

d,t ≤ PPEV max
d (17)

PPV min
c ≤ PPV

c,t ≤ PPV max
c (18)

PPV min
d ≤ PPV

d,t ≤ PPV max
d (19)

where ωL,t ∈ ΩL,t,∀t ∈ T , and ωt ∈ ΩPV,t.
In the system under consideration, Pdef,t is defined to be

the deferred energy amount (i.e. solar generation curtailment),
PPV
c,t and PPV

d,t are the PV based energy storage instantaneous
charging and discharging power, PPEV

c,t and PPEV
d,t are the

PEV battery instantaneous charging and discharging power.
SOCPV

t and SOCPEV
t are the energy storage and PEV state-

of-charge at time t. The lower and upper bounds of decision
variables are provided in Table I. The parameters QPV and
QPEV are the total capacity, ηPV and ηPEV are the storage
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charger efficiency and the PEV charger efficiency, respectively.
If the load demand exceeds PV generation, then the additional
power needed to satisfy the household demand that can come
from either the energy storage discharged power or purchased
power from the grid. In this scenario, it is less efficient to
charge the storage according to (5) - (7). On the other hand,
if PV generation is higher than the demand, the surplus will
be stored in the battery (if there is storage capacity available)
and there will be no discharge. Thus, charging and discharging
of the storage device simultaneously is not possible. Due to
similar reasons, simultaneous charge and discharge of PEV-
storage device is also not possible.

This problem is based on two basic assumptions: First, the
grid can only deliver power to the household; there is no
net metering compensation provided. Second, the PV-storage
device can only be charged by using solar PV generation and
both storages discharge only to deliver power to the house-
hold. We choose to represent such problem as a multi-stage
stochastic programming model and then the SDDP algorithm
is employed to solve it. The SDDP solution procedure is briefly
discussed in the following subsection using a general model.

C. Multi-stage Stochastic Optimization

The SDDP algorithm avoids the well-known curse of di-
mensionality of Dynamic Programming (DP) by constructing
an approximation of the future cost function with piecewise
linear functions represented through Benders’ cuts that are
added iteratively as the algorithm proceeds [28]. The process
stops when a stopping criterion is reached. For simplification,
a general T -stage stochastic linear program for the problem at
hand can be formulated as follows:

ht(xt−1, bt) = min
xt

[
ctxt + Ebt+1|btht+1(xt, bt+1)

]
(20)

Subject to:
Atxt = Btxt−1 + bt : πt (21)

xt ≥ 0 (22)

The decision variables of a particular stage t are considered
as a vector xt, which includes electricity purchases from the
grid, power charge and discharge, and SOC levels for the
storage devices. Parameter bt represents the stochastic PV
generation and load at stage t. Equation (20) represents the
model objective function designed to minimize the total cost
that includes present and expected future costs. Equation (21)
is the representation structural constraints (5) - (7) and (9) –
(10). Dual variables (denoted by πt) derived from the transition
constraints are used later to construct a piece-wise linear
approximation of the future cost function following Benders’
decomposition scheme [28], [29]. Equation (22) represents
simple bounds on the decision variables such as (8), (11) -
(19). The realization of the random parameter bt+1 affects the
condition of the system at stage t. Thus, Ebt+1|btht+1(xt, bt+1)
carries out the expected cost function of stage t+ 1 given the
decisions xt in stage t.

Generate
cut

Generate
cut

(a) Forward pass on selected samples  (b) Backward pass on selected samples

Figure 3: SDDP solution process applied to a three stage and
two scenarios per stage problem.

A visualization of how the SDDP works to solve this
problem is depicted in Figure 3, which shows the process
for a simple three-stage problem. Once a sampled scenario
tree like Figure 3 (a) is available for the SDDP, the process
is started by sampling highlighted forward paths to proceed
for the forward pass. During the forward pass, a sequence of
models like (20) - (22) is solved at each time stage using
the simplex method. During the solution process, Benders’
cuts which are accumulated from previous iterations for the
certain stage, are used as additional constraints to create a
better approximation of the future costs and improve the
decision-making process [28], [29]. At the final stage of the
forward pass, the total expected cost is estimated and it is
considered as the upper bound of the problem. The lower
bound for the sampled problem is calculated from solving the
first stage problem during forward pass considering the present
and future expected cost. If the lower bound cost reaches a
stopping criteria (defined here to be within a 95% confidence
interval of the upper bound cost as in [29]), the SDDP process
is stopped. Otherwise, iteration process will continue till the
desired convergence level is reached. At each iteration, new
forward paths are sampled independently in the scenario tree.
For reaching the desired convergence level, the algorithm
proceeds to the backward pass shown in Figure 3 (b). In the
backward pass, the algorithm computes new Benders’ cuts for
previous stages to improve the approximations of the future
cost functions at each stage, for more details see [28], [29].
This process does not require the algorithm to discretize the
state and decision spaces, which results in less computation
time and memory requirement.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, the computational results are illustrated
to show the impact of coordinated control. The system pa-
rameters used for simulation analysis are listed in Table I.
Forecasted solar generation profile for a summer day and
a typical household summer load profile are obtained from
[30] and [31]. They are shown in Figure 4. The correlation
coefficient between them for this case study is -0.15. The ToU
rates for residential customer varies during the day based on
off-peak, partial peak and peak hours; a representative ToU
rates available from the utility are used for the analysis and
is given in Table II [32]. PEV is considered to be plugged
into the system at 18:00 hr with 40% of SOC and it is
assumed that it will leave at 07:00 hr on next day with
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Table I: System Parameters

Parameters Values
Solar PV panel installed power capacity 3 kW

PV based battery capacity (QPV ) 4 kWh
PEV battery capacity (QPEV ) 85 kWh

ηPEV , ηPV 92%
Initial SOCPV

t 20%
Initial SOCPEV

t 40%
SOCPEV

min ,SOCPV
min 20%

SOCPEV
target 80%

SOCPEV
min ,SOCPV

min 20%
PPV max
c ,PPV max

d 3 kW
PPV min
c ,PPV min

d 0 kW
PPEV max
c ,PPEV max

d 20 kW
PPEV min
c ,PPEV min

d 0 kW

Table II: ToU Rate

Season Load Type Period ToU Rate
($/kWh)

Summer & Fall
(June-September)

Off-peak 21:00-9:00 0.15
Partial-Peak 10:00h-13:00h & 0.226

19:00h-21:00h
Peak 13:00h-19:00h 0.342

Spring & Winter
(October-May)

Off-peak 20:00-15:00 0.15
Peak 17:00h-20:00h 0.17

the desired SOC of 80%. We have assumed that the PEV
charging pattern is deterministic based on user input data
in this algorithm. In a future research, additional source of
uncertainty from PEV usage in addition to electricity demand
and solar PV generation uncertainties can be explored. The
model’s objective is to control the charging/discharging actions
of the storage devices to minimize the overall cost to the
customer in a particular day. The effects on the battery
lifetime are assumed to be negligible for the purpose of
this analysis, since vehicle traction batteries are designed to
undergo frequent charge/discharge cycles and are expected to
be able handle the additional cycles. Nevertheless, the lifetime
effect could potentially be assessed by incorporating a battery
degradation model such as those reported in [33], but this
extended research is beyond the scope of this paper.

SDDP solves the multi-stage stochastic program designed
for the problem and provides control policies to the PV-based
storage and PEV storage to increase cost savings per day.
The optimization problem is solved in MATLAB on an Intel
Core i5-4600U with a 1-GH CPU, 4 GB of RAM, and 64-
bit operating system PC. For comparison, a strategy based on
heuristic control is considered [34]. In the heuristic control
strategy, PV based storage is charged when there is an excess
of solar generation (above the demand) and discharged when
the load is higher than the solar generation. The PEV starts
charging up to its target level whenever it is present at the
grid in heuristic control. Impact of standalone control of PV-
based energy storage control and PEV storage control are also
shown in result analysis.

A. Effects on electricity purchase savings

The SOC profiles of PV based storage and PEV storage
for these two control strategies are shown in Figure 5 and
Figure 6. From Figure 5, it can be seen that PV based storage

Table III: Comparison of peak hours energy savings for
different methods on different seasons

Control strategies Summer Fall Winter Spring
Heuristic control 30% 21% 0.01% 0.30%

SDDP based control on 31% 22% 5.7% 5.7%
PV storage and heuristic
control on PEV storage

Heuristic control on 96% 99% 97.5% 97.4%
PV storage and SDDP
based control on PEV

SDDP based 93% 99.7% 99.9% 98%
coordinated control

prefers to charge during off-peak and partial-peak hours and
discharge during peak hours for coordinated control. It also
started charging when PEV leaves from house in the morning.
Before that, PV generation is utilized to charge the PEV which
is shown in Figure 6. Since PV generation is utilized to charge
the PEV, there remains more capacity for PV based storage
to store solar energy for coordinated control. As a result, PV
based energy storage has reached its threshold level later than
the heuristic control during higher solar generation period on
Figure 5. Since there is more storage capacity available during
high solar generation period for coordinated control, less solar
generation loss is ensured than the heuristic control.

From Figure 6, it is shown that PEV based storage starts to
discharge during peak hours to meet the household demand if
coordinated control is applied. Due to this reason, load profile
in Figure 7 is lower for coordinated control during peak hours.
But PEV storage SOC increases for the heuristic control, as
it starts charging whenever it is present in the house. So, the
load profile in Figure 7 increases for heuristic control during
peak hours. As for our case study, we have assumed that PEV
will leave in the next day at 07:00 hr and the PEV battery
started the charging process during the off-peak period for the
coordinated case to avoid the defined penalty in the objective
function. Thus, the load profile in Figure 7 increases during
the off-peak hours to charge the PEV to reach at the target
SOC level for the coordinated control. If a customer wants to
get rid of PEV excess charging costs, it is possible to define
a different target SOC level.

Simulations are performed for different seasons due to the
variation of load demand, solar generation and ToU rates.
The impact of standalone SDDP based control for PV storage
with heuristic control of PEV, and standalone SDDP based
control for PEV storage with heuristic control of PV based
storage to minimize costs are also considered. The comparison
of the electricity purchase costs from the grid for different
control strategies is shown in Figure 8. It is found that the
proposed coordinated control strategy outperforms all other
control strategies. The results show that coordinated control
saves approximately 37% of the costs during summer days and
12.7% during winter days compared to the heuristic control
case. If the average of these savings is considered, it can be
said that the proposed coordinated control strategy can save
approximately 26% of the electricity purchase cost compared
to the heuristic control method annually.
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Figure 4: Household and solar generation profile.

Figure 5: SOC profiles of PV-based storage.

Figure 6: SOC profiles of PEV storage.

Figure 7: Household load profile after control.

Table IV: Solar generation usage when PEV is present from
18:00 hr for different seasons

Control strategies Summer Fall Winter Spring
Heuristic control 67.7% 59% 100% 100%

SDDP based control on 100% 100% 100% 100%
PV storage and heuristic
control on PEV storage

Heuristic control on 68% 59% 100% 100%
PV storage and SDDP
based control on PEV

SDDP based 100% 100% 100% 100%
coordinated control
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Figure 8: Comparison of electricity purchase cost per day for
different methods on different seasons.

B. Effect on peak hour energy savings

Peak hour energy savings help utility companies to avoid
various grid problems such as load variation and congestion or
higher local marginal prices. For different methods, peak hour
energy savings for different seasons are also calculated and
the values are depicted in Table III. As the heuristic method
prefers to discharge PV based storage while load is higher
than PV generation and does not consider cost savings, peak
hour savings are comparatively lower during summer and fall
for this method. There is no peak hour saving for winter
and spring as energy storage discharges before peak hour
period in this method. For coordinated control, the objective
function is to reduce overall electricity purchase cost per day.
It tries to reduce peak-hour electricity purchase from the grid
by utilizing solar generation and stored energy from energy
storage and PEV as much as possible. Thus, peak hour savings
are always higher for the coordinated control method.

C. Effect on PV generation usage

The more solar PV generation will be utilized to mitigate
demand, the less energy will be required to be purchased
from grid, which is the objective function of our proposed
method. As a result, it can be seen that PV generation usage
is 100% on our proposed method in Table IV. The level of
100% utilization of solar generation gives the maximum return
on the investment and the largest cost savings to the user.
When PV based storage is controlled through the SDDP based
method, it also ensures 100% utilization of solar generation
for all seasons. However, with heuristic control of energy
storage, solar generation is deferred during summer and fall
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Table V: Computation time for different methods for a summer
day when PEV is present from 18:00 hr.

Control strategies Computation time
Heuristic control 4s

Heuristic control on 63s
PV storage and SDDP
based control on PEV

SDDP based control on 142s
PV storage and heuristic
control on PEV storage

SDDP based 207s
coordinated control

due to less available capacity of energy storage during higher
solar generation period shown in Figure 5. PV generation
usage becomes comparatively lower for this control strategy
on energy storage presented on Table IV. During winter and
spring seasons, solar generation is lower than the demand.
Thus, all methods can utilize the solar generation.

D. Computation time

Due to scenario generation, correlation consideration, and
iteration process to reach the stopping criteria, the SDDP
algorithm requires comparatively higher time than the heuristic
control strategy. With the increase of the number of scenarios
considered during forward and backward pass, simulation
time increases. Compared to the heuristic control strategy, the
SDDP method requires more computation time. For 50 for-
ward and 20 backward pass consideration, computation time
requirement for different methods are shown in Table V. The
data in Table V illustrates that due to the increase of the model
size and the uncertainty representation in the SDDP control
approach, the computation time increases. Although longer
computational time is required for the SDDP application, the
increase in time is not unreasonable. The energy management
control periods are designed in the scale of minutes and the
SDDP-based approaches can meet the requirements with some
additional computational resources. There is also room for
improvement in the SDDP convergence algorithm to minimize
the computational time [35].

V. CONCLUSION

The importance of coordinated control between PV-based
storage and PEV storage is reported in this paper for a resi-
dential system to minimize the overall electricity purchase cost
from the grid. Uncertainties in PV generation and load demand
are considered in the system to test different control methods.
The correlation between these two uncertain parameters is
computed and used together with a Cholesky decomposition
approach to generate future scenarios. To ensure PEV charging
level for the next day according to the owner’s preference and
to avoid discharging of PEV during off-peak hours, penalty
costs are introduced in the objective function of the model.
The SDDP algorithm is then applied to solve the optimization
problem under uncertainty. SDDP helps the decision maker
to control the charge and discharge profiles of both the
storage components and minimize the overall cost for the
customer. The results from the SDDP based strategy with

the coordinated control scheme show that by controlling the
PV-based storage and the PEV storage power flow in the
system, it is possible to optimally purchase electricity from
the grid and simultaneously satisfy the household demand. The
simulation results validate that the coordinated control scheme
achieves lower electricity purchase cost compared to heuris-
tic control or standalone application of SDDP to PV-based
storage or standalone application of SDDP to PEV storage.
It also increases peak hour energy savings, and PV usage for
all seasons comparative to other methods. The methodology
discussed here can be further expanded to coordinated control
among many different storage units and renewable sources
under uncertainty.
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