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a b s t r a c t

Seasonal climate variations affect electricity demand, which in turn affects month-to-month electricity
planning and operations. Electricity system planning at the monthly timescale can be improved by
adapting climate forecasts to estimate electricity demand and utilizing energy models to estimate
monthly electricity generation and associated operational costs. The objective of this paper is to develop
and test a computationally efficient model that can support seasonal planning while preserving key
aspects of system operation over hourly and daily timeframes. To do so, an energy system optimization
model is repurposed for seasonal planning using features drawn from a unit commitment model.
Different scenarios utilizing a well-known test system are used to evaluate the errors associated with
both the repurposed energy system model and an imperfect load forecast. The results show that the
energy system optimization model using an imperfect load forecast produces differences in monthly cost
and generation levels that are less than 2% compared with a unit commitment model using a perfect load
forecast. The enhanced energy system optimization model can be solved approximately 100 times faster
than the unit commitment model, making it a suitable tool for future work aimed at evaluating seasonal
electricity generation and demand under uncertainty.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Power systems planning has generally focused on two different
functions e operations and capacity expansion ewhich require
models that operate at fundamentally different timescales. Unit
commitment models (UCMs) are employed for power system op-
erations by considering the hour-by-hour commitment and
dispatch of generating units [1]. UCMs assume a time horizon that
typically ranges from one day to one week. By contrast, energy
system optimization models (ESOMs) are used for capacity
expansion planning by considering changes in installed capacity
and utilization over future decades. In between these time scales e

daily and decadal e an emerging timescale of interest is seasonal
[2]. Seasonal modeling can potentially lower the cost of electricity
supply through improved planning related to seasonal generation
and transmission system forced and unforced outages, emissions
allowances in coming months, forward purchases of fuel reserves
(e.g., coal stock piles), demand response, and hydroelectric releases.
Renewable resource availability (e.g., wind, solar insolation, water
inflow) is an increasingly important determinant of system
dispatch costs [3], and its temporal variability affects seasonal
planning. Electricity demand also exhibits temporal variability at
the seasonal scale due to varying temperatures (e.g., Apadula et al.
[4]).

At seasonal to interannual time scales, energy demand primarily
depends on temperature and is lowest if the mean daily tempera-
ture ranges from 60!F to 70 !F [5]. Residential and commercial
demands are quite temperature sensitive and significant deviations
in mean daily temperatures in a given season can translate into
5e10% fluctuations in total electricity demand, which can severely
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stress the power grid [5]. Thus, both supply and demand of power
systems are significantly affected by seasonal variations in climate,
which could be predicted in advance based on known climatic and
land-surface conditions influencing the region [6].

Recent advances in monthly-to-seasonal climate predictions
show that the skill in predicting both precipitation [7] and tem-
perature could be utilized to develop hydro inflow and electricity
demand forecasts. For example, Changnon and Kunkel [8] describe
the use of climate data and predictions to inform agriculture and
water resources management in several applications. This
improved monthly-to-seasonal information is also crucial to advise
planning and operations in power systems problems such as the
hydro-thermal coordination [9]. However, there are unavoidable
forecast errors in any model, and as a result, real-life power system
operations do not precisely match the plan [10]. There are different
methods for creating electricity demand forecasts based on quan-
titative techniques (e.g., semi-parametric additive models, autore-
gressive and moving average models, and exponential smoothing
models) and artificial intelligence techniques (e.g., artificial neural
networks, fuzzy regression models and support vector machines).
While beyond the scope of this paper, Hong and Fan [11] review the
benefits and drawbacks of these methods.

Power system planning at a monthly to seasonal timescale re-
quires electricity demand forecasts, which depend on climate
forecasts. But planning at this time scale requires a power system
model that incorporates features of both UCMs and ESOMs. For
instance, monthly generation levels can be forecast with UCMs by
aggregating hourly dispatch decisions. However, the mixed integer
linear programing (MILP) formulation associated with UCMs can
make them computationally intractable over the monthly to sea-
sonal time scale, especially when embedding uncertainty within
the model formulation [12].

By contrast, ESOMs usually have a linear formulation and are
computationally tractable but have a coarse grain temporal reso-
lution that limits the accuracy of dispatch decisions, often ignoring
the detailed congestion and operational constraints that are
explicitly incorporated in UCMs. Detailed consideration of short-
term supply and demand is not the core focus of ESOMs [13].
However, in the recent past ESOMs have been adapted and com-
bined with other models to address short-term operational issues
with different levels of time discretization and problem features
[14]. For example, Collins et al. [15] review various methods to
capture operational details in ESOMs. Welsch et al. [16] demon-
strate the need for increased flexibility considerations in long-term
ESOMs to more adequately assess future capacity expansion.
Welsch et al. [13] integrate selected operational constraints (e.g.,
upward and downward capacity reserve requirements, minimum
up and down times, and start-up costs) into OSeMOSYS while
maintaining a multidecadal time horizon for capacity expansion in
Ireland. Deane et al. [17] soft-link a UCM (PLEXOS) and an ESOM
(TIMES) through combined simulations. By contrast, Kannan and
Turton [18] develop a Swiss TIMES model with 288 time slices but
no additional operational constraints, and find the increased tem-
poral resolutionmore accurately represents the dispatch of variable
renewables and flexible gas generation.

Given the gap in timescales covered by UCMs and ESOMs, there
is a lack of modeling frameworks that can address power system
planning at the seasonal level. This paper fills the gap by repur-
posing an ESOM to operate at a seasonal timescale. This is the first
attempt to reformulate an ESOM in order to create a computa-
tionally efficient model that will be able to support seasonal
planning while maintaining important finer grain aspects associ-
ated with supply and demand over hourly and daily timeframes.
Results from the modified ESOM are compared with an existing
UCM for validation purposes. In this analysis, Tools for Energy

Model Optimization and Analysis (Temoa) [19] is used as the ESOM.
A GAMS model [20] is used for the UCM. Considering the UCM
power dispatch at the monthly time scale as the truth, the errors
resulting from both model structure and demand uncertainty are
quantified. The proposed approach is tested using the classical
IEEE-24 bus system, which has been successfully used in several
other analyses, such as hydro-thermal scheduling [21]. In addition,
the same test systemwas used to investigate optimal placement of
energy storage in a power system with a high penetration of wind
power [22]. Kia et al. [23] use the IEEE-24 bus system to perform
day-ahead scheduling of combined heat and power considering
thermal storage.

The eventual goal is to use climate forecasts to develop an
ensemble of scenarios that include variation in electricity demand
and renewable resource supply. These scenarios can be embedded
within a single event tree and solved with stochastic optimization
to develop a near-term strategy that hedges against different sea-
sonal forecasts. In such a case, the computational performance of
the stochastic model becomes a critical issue. Previous work with
UCMs includes consideration of day-ahead uncertainty associated
with wind power generation using a two-stage stochastic pro-
gramming approach [24]. Likewise, using an interval optimization
approach, Pandzic et al. [25] address wind uncertainty in a day-
ahead UCM. In addition, stochastic optimization has been applied
to uncertainty associated with renewable supply and demand, such
as hydro-thermal coordination [26]. For example, Silva et al. [27]
perform stochastic optimization to analyze complementarity be-
tween wind and hydro power. Jiang et al. [28] use stochastic opti-
mization for day-ahead dispatch scheduling. Deane et al. [29] use
stochastic optimization to define operational strategies for
pumped-hydro storage systems. However, none of these models
operate at the seasonal timescale with a precise representation of
system operational characteristics and decisions at the hourly level.
Given its computational tractability, a modified ESOM that can
accurately estimate the hourly dispatch aggregated to the monthly
level can be used to perform this stochastic optimization.

This manuscript is organized as follows: Section 2 presents a
brief overview of ESOMs and UCMs and points out their key fea-
tures and differences. Section 3 presents the modeling approach,
including enhancements to the ESOM formulation and the demand
forecasts used to carry out the comparative analysis. Section 4
presents the simulation results along with a discussion of the
case study under different conditions, and Section 5 provides
conclusions.

2. Overview of energy system optimization and unit
commitment models

Numerous mathematical programming models focused on the
electric sector have been applied to optimize resources and mini-
mize total operational costs over varying time horizons. Hobbs [30]
provides a comprehensive survey of modeling techniques devel-
oped for utility resource planning at different time scales and
points out the importance of representing uncertainty in such
analysis. Oree et al. [31] review the use of several ESOMs and UCMs
in the context of renewable integration challenges and discuss
future research directions for modeling power system capacity
expansion. ESOMs and UCMs have been developed using various
mathematical modeling techniques, including linear programming,
MILP, nonlinear programming, and dynamic programming. UCMs
generally employ an MILP formulation and consider operational
issues with an hourly to weekly timescale, while ESOMs employ a
linear programming formulation and consider capacity expansion
overmultiple decades, with only a coarse-grained representation of
supply and demand across different seasons and times-of-day.
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2.1. Unit commitment model characteristics

UCMs are used to determine the hourly commitment of gener-
ators in order to satisfy electricity demand while minimizing
startup costs, variable costs associated with fuel usage and opera-
tions and maintenance, and fixed costs incurred when the gener-
ator is running [32]. Baldick [33] describes classical approaches for
solving generalized UCMs. Bard [34] describes the use of
Lagrangian relaxation to solve UCMs. More generally, Sheble and
Fahd [35] provide an overview of the UCM literature. Models
designed for this purpose are focused on the electric sector and
constructed to investigate problems related to day-ahead market
clearing, reliability assessment, intra-day operations, and genera-
tion optimal bidding strategies [36]. UCMs determine the
commitment of each generating unit at each time stage (hours or
minutes) in order to minimize the total cost to supply electricity
demand while satisfying operational constraints such as load bal-
ance, capacity and ramping limits for generators, reliability re-
quirements, and spinning reserves. Several commercially available
UCMs can be found, such as GTMax, PLEXOS, and Grid View, as well
as academic models, such as Pandzic et al. [20], which is employed
in this paper. Compared to ESOMs, UCMs represent electricity
supply and demand with higher temporal resolution and handle
additional operational constraints.

UCMs are typically designed to solve problems for the day- or
week-ahead with hourly or intra-hourly discretization of demand
[37]. UCMs are less commonly used to solve problems for horizons
spanning one week to one month. Frequently, multi-week prob-
lems are modeled as sequential day ahead UCMs, which reduce
solution time but do not address operational planning consider-
ations with impacts beyond a few days. Due to the need to model
generator commitment, generally represented by binary decision
variables (1-on, 0-off), and the structure of the constraint matrix,
UCMs designed as MILP programs belong to the class of NP-hard
and NP-complete problems [38]. Because of computational tracta-
bility issues, the use of detailed UCMs have mostly been restricted
to the development of commitment plans for day-to week-ahead
problems.

At a particular time stage t, binary decisions have to be made
regarding the commitment of the generation units (on/off), startup
and shutdown, ramp-up and ramp-down, minimum up and down
times as well as continuous operational decisions regarding the
physical utilization of generators and transmission lines [39]. The
transmission network is represented to consider power flow
among the different generation and demand buses. Power balance
constraints are represented at each bus of the network, such that
the sum of electricity produced by generators connected to a spe-
cific bus plus the power flowing into that bus minus the power
flowing out from that bus has to be sufficient to meet demand.
Ramp up and ramp down limits, startup and shutdown, minimum
up and down times for each generation unit are considered struc-
tural constraints within UCMs. Operational bounds on decision
variables are used to represent system characteristics, such as
transmission line capacities, maximum and minimum generation
levels, and voltage angles. An outline of a general UCM represented
as an MILP is presented in Appendix A.

2.2. Energy system optimization model characteristics

ESOMs represent the energy system as a network flow model
with multiple technologies linked together by commodity flows.
The main goal is to satisfy end-use demands (e.g., vehicle miles
traveled, space heating and cooling demand) by making optimal,
technology-specific investment and utilization decisions over the
model time horizon that minimize the system-wide cost of energy

supply. ESOMs address long-term capacity expansion problems
over multiple decades, and several different models exist. The
MARKAL model [40] is one of the earliest ESOM representations.
The TIMES model is a descendent of MARKAL [41]. OSeMOSYS [42]
is an open source model that has been widely applied in recent
years. In these ESOMs, the modeled costs include capital costs for
new technologies, fuel costs, as well as fixed and variable mainte-
nance costs. ESOMs include constraints to represent the supply-
demand balance, commodity flow through the network, and
physical limitations associated with different energy technologies.
A general mathematical formulation for an ESOM is provided in
Appendix A, and amore detailedmodel-specific formulation can be
found in Hunter et al. [19].

Generally, these models represent power generation dispatch
with a coarse temporal resolution. ESOMs typically group multiple
years into a single time period (e.g., 5 years), and the complete set
of time periods constitute the model time horizon. The model op-
timizes a representative year within each time period and assumes
that all years within a given time period are identical. To capture
diurnal and seasonal variations in energy demand and renewable
resource availability, ESOMs split each optimized year into a set of
seasons and times-of-day [16]. The flow of energy commodities is
balanced for each combination of season and time-of-day, which is
referred to as a ‘time slice.’ It is common practice to represent a
limited number of time slices; for example, the default configura-
tion in the MARKAL model generator is two times-of-day (day,
night) and three seasons (summer, winter, intermediate) [43]. This
simplistic representation of supply and demand variation suggests
that dispatch results obtained with such models may be sub-
optimal.

In this paper, an open source ESOM called ‘Temoa’ [19] is used,
and its formulation is modified to focus on operational decisions
rather than capacity expansion. The revised Temoa source code and
model data are publicly archived through GitHub and Zenodo [44].
In the tests described below, existing capacity is fixed and the
model makes optimal decisions pertaining to system operation that
satisfy demand at minimum cost.

3. Methods

In this analysis, Temoa is repurposed from a capacity expansion
model to an electricity dispatch model, and the results of the
dispatch model are compared with the results of a traditional UCM.
Fig. 1 provides an overview of the modeling process used in this
analysis. The left panel represents the model input data pertaining
to generators, network topology, costs, electricity demand, and
other operational requirements. Information about historical elec-
tricity demand is used as input to generate future demand forecasts
for each bus in the network. Both the power system characteristics
and demand information are used as input to the ESOM and UCM
(centre panel), which optimize the dispatch of generators over a
specific time horizon. As indicated in the right panel, the ESOM and
the UCM are both used to quantify differences in monthly elec-
tricity generation by plant type and costs across scenarios repre-
senting different combinations of demand scenarios and model
types.

3.1. Rolling horizon optimization scheme for unit commitment
model

For comparison with the modified version of Temoa, the UCM
model formulation developed by Pandzic et al. [20] is implemented
with a rolling time horizon. The size of the UCM defined by
Equations (A.6)-(A.23) in Appendix A depends on the number of
time stages jTj, number of generators jIj, number of generation
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block costs jKj, number of buses jSj and number of transmission
lines jLj. However, jTj and jIj define the dimension of the binary
decision vectors, and constraints associated with them. For
example, in a case with 10 generators and 720 time stages, the
model will represent 7200 binary decision variables each for uit, vit,
andwit, which represent the generation unit status (on/off), startup
status, and shutdown status for each generation unit, respectively.
The number of binary decision variables and structural constraints
influence the solution time for a large MILP model. Initial attempts
to perform UCM runs considering hourly time stages over 1 month
were made; however, the majority of the runs were computation-
ally intractable using the CPLEX 12.5 solver and a PC with a 3.4-GHz
Intel Core i7 processor and 8-GB 1600-MHz DDR3 memory.

To be able to perform the UCM runs for one month with
reasonable computational time (i.e., average solution time of
99.1min), the model is separated into distinct sequential sub-
problems (i.e., four weekly sub-problems). Fig. 2 shows the flow
of initialization data between sub-problems and the subsets of each
weekly UCM solution used for the monthly solution. The final
monthly solution is based on the combination of the weekly
problems depicted by the red vertical lines. The initial conditions
for each weekly sub-problem are based on the UCM solution of the
previous week. Information passed from one week to the next in-
cludes the last dispatch of unit i (gi0Þ, the on/off status of each
generator i ðui0Þ, consecutive hours that operating generators have
been online ðUTi0Þ, and consecutive hours that off-line generators
have remained off (DTi0Þ. Each week is optimized over nine days
(216 h time periods), and the results of Day 7 are used as the initial

conditions for the subsequent week. Simulating Days 8 and 9
ensure a consistent set of decisions in Day 7, but are not used in the
final monthly solution.

While this UCM solution is not optimal for the full 30-day ho-
rizon, the rolling horizon approach allows for the representation of
longer-term problems than the normal day ahead operational
planning with a significantly reduced computational time. The
approach here is similar to Barrows et al. [45]; where the authors
divide simulations into shorter, overlapping periods in order to
improve computational tractability without creating large dis-
crepancies in the results. The main advantage of this approach over
sequential day ahead solutions is the ability to add constraints that
affect intertemporal choices beyond standard day ahead operation
planning. Examples of these decisions include when to run hydro
generation based on forecasts of reservoir levels or considerations
of short-term vs long-term fuel contracts.

While the rolling horizon scheme with the UCM reduces solu-
tion time, the computational challenge of using UCMs to solve large
horizon problems persist, particularly when considering the po-
tential application of stochastic optimization to account for future
uncertainty. For this reason, the goal is to use a modified version of
Temoa to capture key operational features of the UCM.

3.2. Enhancing the energy system optimization model with unit
commitment model features

Temoa is repurposed by shifting the focus from capacity
expansion to power system dispatch. In this case, decision variables

Fig. 1. Analysis framework for seasonal power generation planning comparison.

Fig. 2. The rolling horizon simulation scheme for the unit commitment model.
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related to new capacity installation are disabled, and only opera-
tional decisions associated with existing capacity can be optimized
in order to minimize cost. In addition, the various time elements in
Temoa are remapped such that time periods become months,
seasons become days within the month, and times-of-day become
individual hours within the day. With this setup, the hourly elec-
tricity demand is represented at each bus of the network and has to
be met at all times.

In addition, several operational constraints present in the UCM
but absent in Temoa are considered:

$ Ramp-up and ramp-down constraints (RU/RD), represented by
Equation (A.9) and (A.10). These constraints limit the ability of
power generation units to increase or decrease their generation
output per unit time based on their physical characteristics;

$ Minimum up and down times coupled with start-up costs (U/D),
represented by Equation (A.17) and (A.18) and the second term
in the UCM objective function (A.6). Start-up costs represent the
cost to turn on generation units, and theminimum up and down
constraints ensure that when a generator changes state (i.e., off
to on, or vice versa), it remains in that state for a specified
amount of time;

$ Fixed costs when the generator is operating (FC), represented by
the first term of objective function (A.6). Fixed costs are incurred
in each hour that the power generator is operating, regardless of
the generation output during that hour.

Inmodifying Temoa to include these operational constraints, the
objective was twofold: avoid the use of integer variables, and keep
the model formulation as simple as possible. To help guide the
Temoa modifications, several comparative tests are first performed
exclusively with the UCM using the IEEE-24 bus test case for unit
commitment problems adapted from Diniz [46]. Network topology
information for the model is drawn from the IEEE RTS-96 system
from Grigg et al. [47]. A description of the IEEE 24-bus case study is
presented in Appendix B. Five different UCM instances are created
to determine which constraints produce the largest differences in
monthly generation with respect to a UCM base case that does not
include the RU/RD, U/D and FC constraints. Then, the RU/RD, U/D
and FC features are added to the UCM one at a time. The last UCM
instance was simulated considering the full model (A.6)-(A.23). The
RU/RD and the FC had the most impact on monthly power gener-
ation by plant type. The RU/RD constraints have the largest effect on
coal generation, which has limited ramping ability. The installed
capacity of coal generation corresponds to approximately 35% of
the total generation capacity for the system represented in
Appendix B. It is important to note that ramping constraints may
have less impact in a system with minimal coal generation. To
approximate the same results with the ESOM, the revised ESOM
formulation with the RU/RD and FC constraints is tested. To incor-
porate the ramp-up and ramp-down constraints, (A9) and (A10) are
added to the set of ESOM constraints. Also, the variable costs (r) of
the power generators are modified in the ESOM to approximate the
fixed costs included in the UCM. This variable cost adjustment is an
approximation because the true fixed cost is incurred when a
generator is up, nomatter howmuch it produces following start up.
In the ESOM representation, the fixed costs will be proportional to
the electricity produced at a specific hour. After the monthly
dispatch was determined, an ex post analysis of generators is car-
ried out to compute the true fixed costs incurred by each generator.
This approach is chosen to avoid the introduction of binary vari-
ables in the ESOM, thereby maintaining computational tractability.

With the enhanced ESOM, results obtained for total cost
compared to the UCM were less than 1% over a 1-month horizon;
monthly power generation by plant type results are also close to

the results obtained by the UCM, as demonstrated in Section 4
where a comprehensive comparison of the enhanced ESOM with
the UCM is presented. Other constraints, such as the power flow
constraints (A.8) and (A.12), were also tested, but the dispatch re-
sults did not vary significantly. However, the observed effects of
power flow constraints are related to the current characteristics of
the IEEE test system presented in Appendix B. This assumptionmay
need to be revisited in future analyses where transmission bottle-
necks are significant. The average computational time for monthly
runs of the ESOM is around 60 s using similar computer hardware
to that used for the UCM runs. In terms of computational software,
Python 2.7, Pyomo version 4.3.11388 and CPLEX 12.5 are used to
perform the ESOM runs.

3.3. Demand modeling: forecasting framework and related
assumptions

In addition to the challenge of modeling how generators within
a given system can meet electricity demand over a given month,
future demand itself must be estimated. At the monthly-to-
seasonal time scale, forecasting models do not have the ability to
precisely forecast hourly or daily electricity demand, hence disag-
gregation schemes are commonly used to predict hourly and daily
demand based on seasonal demand predictions [48]. Sinha and
Sankarasubramanian [49] provide additional examples of disag-
gregation schemes used in streamflow forecasting. Mazrooei et al.
[50] analyze how various disaggregation schemes impact stream-
flow forecasting over multiple basins across the US Sunbelt. To
quantify the utility of the power demand forecast, one could
consider actual daily demand, referred to as a perfect forecast (PF),
and the daily climatological demand, typically computed over a
reference period (e.g., 5e10 years), as two candidate demand
forecasts. The skill of any real demand forecast would likely fall
between these two extremes. Similar analyses using perfect and
climatological forecasts have been used to illustrate how inflow
forecasts can improve water supply planning [51]. Since the pur-
pose is to quantify the effect of demand forecasting errors, two sets
of demand scenarios are considered: The first demand represen-
tation considers a perfect forecast (PF), with the ESOM and UCM
forced to meet observed demand at each hour in each bus of the
network for each day of the month during the analysis period. This
case is represented as follows:

dPFst ¼ bdst; cs2S; ct2T (1)

where s2S is the set of buses of the power system, t2T is the set of
time stages (hours), dPFst is the demand information used in the
perfect forecast case; bdst is the observed demand at bus s and time
stage t.

The second demand representation considers a perfect forecast
at the monthly level (PFML), i.e., the total electricity demand over
each month is considered to be the same as the PF representation,
however, the monthly shares allocated to each day and hour are
based on the hourly and daily climatological fractions. Relative to
using daily climatological demand based purely on historical av-
erages, the selection of this demand forecast method has the pur-
pose to isolate the forecast error associated with sub-monthly
demand allocation. For this representation, m2M is defined as the
set of months in the analysis, n2N as the set of days in a month,
and h2H as the set of hours within a day. Equations (2)e(5)
compute the demand in the PFML case at bus s and time stage t
ðdPFML

st Þ for a three-month period (90 days) using one year of his-
torical climate data:
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dPFML
st ¼ It fh fday bd
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daym
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P
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m
s

; cm2M; cday ¼ f1;…;30g (4)

fh ¼
X

s2S

XjNj

n¼ 1

bdshn
"!!!N

!!!; ch ¼ f1;…24g (5)

where, It is an indicator function (1 or 0) that maps the information
from a specific day during hour h in month m, to a specific time
stage t; fh is the climatological average fraction for hour h; fday is
the climatological average fraction to represent a specific day; bd

m
s is

the total observed demand during month m at bus s; fdaym is the
demand daily fraction at a specific day during month m; bd

daym
s is

the observed demand in a specific day in month m at bus s; bdshn is
the observed demand at hour h during day n at bus s. Equation (2)
calculates the dPFML

st by using the daily climatological average
fraction, which is computed using Equations (3) and (4). Equation
(5) calculates the climatological average fraction of demand in each
hour, which is computed using the observed demand in each hour.

3.4. Experimental design for simulation comparisons

A series of comparisons are created to quantify the differences in
monthly operational costs and generation by plant type due to (1)
model error associated with the revised version of the ESOM
compared with the UCM and (2) the demand forecast error. There
are a total of four scenarios composed of two models (UCM and
ESOM) and two demand scenarios (PF and PFML) considered over
12 months: UCM with Perfect Forecast (UCM-PF), UCM with PF at
the monthly level, but imprecise climatological averages at the
hourly and daily levels (UCM-PFML), ESOM with Perfect Forecast
(ESOM-PF) and ESOM with PF at the monthly level, but imprecise
climatological averages at the hourly and daily levels (ESOM-PFML).
The UCM-PF is assumed to provide the true power generation
levels, since it uses the more detailed UCM with a perfect forecast.
Therefore, all the results are shown using the UCM-PF values as the
base denominator in the comparison ratios. Three sets of compar-
isons are carried out (C1, C2 and C3) among the four scenarios:

$ Comparison 1: Difference due to model representation under
the same demand scenario: Comparison C1a represents UCM-PF
& ESOM-PF; and Comparison C1b represents UCM-PFML &
ESOM-PFML. The purpose of Comparison 1 is to analyze the
difference across models under the same demand representa-
tion, where both models use either the PF or PFML demand
values. This comparison will inform how much accuracy is lost
(in terms of costs and monthly generation levels) when repre-
senting the test system using an ESOM instead of the UCM.

$ Comparison 2: Difference in model performance due to the
different demand scenarios: Comparison C2a represents UCM-
PF & UCM-PFML; and Comparison C2b represents ESOM-PF &
ESOM-PFML. The purpose of Comparison 2 is to analyze the
difference within each model under different demand repre-
sentations. This comparison quantifies how the monthly gen-
eration by plant type and the total costs change in each model

(UCM and ESOM) using different daily and hourly demands at
each bus of the test system (dPFst and dPFML

st Þ.
$ Comparison 3: Difference due to both model error and impre-
cise demand: C3 represents UCM-PF & ESOM-PFML. Compari-
son 3 (C3) quantifies the difference in monthly generation by
plant type and the total cost due to differences in both themodel
(UCM versus ESOM) and the demand forecast (PF versus PFML).
In the context of monthly-to-seasonal power generation plan-
ning, it is more realistic to assume that imprecise forecasts
(instead of perfect hourly values) at a monthly-to-seasonal time
scale are available, which could be used as input to the ESOM
(instead of the UCM). Therefore, C3 is important in order to
understand the compounded effect of using a modified power
system model (i.e., ESOM) and imprecise forecasts when plan-
ning ahead.

4. Results and discussion

The organization of results follows the order of the three com-
parisons described in Section 3.

4.1. Comparison 1: UCM & ESOM using the same electricity demand
representations

Fig. 3 presents percentage differences for the UCM & ESOM
analysis considering the same demand forecast (PF or PFML) in
each comparison. The relative differences are represented in terms
of (a) total costs and allocations of (b) hydro, (c) coal, and (d) natural
gas plants. Results for nuclear were omitted because they present
the exact same values in both models. The total electricity demand
(TWh) in each month is also presented in Fig. 3a.

In Fig. 3, positive percentages represent larger values in the UCM
runs, and negative percentages represent larger values in the ESOM
runs. The total dispatch cost differences between the UCM and the
ESOM for the PF (PFML) over the analysis period varies from ' 1.8%
to 0.28% (' 0.65% to 0.11%). For hydro generation dispatch, the dif-
ferences between the UCM and ESOM with PF (PFML) vary
from ' 1.4% to 0.33% (' 0.83% to ' 0.28%). These differences in hydro
are compensated by natural gas plants, which vary from 0.07% to
1.05% (0.08% to 1.1%), as shown in Fig. 3d, and occasionally by coal
power plant dispatch, which varies from ' 1.07% to þ 0.88% (' 0.64%
to 0.57%) over the year, as shown in Fig. 3c. A key insight from Fig. 3
is that the structural differences between the UCM and ESOM with
this generation mix do not contribute to a significant difference in
monthly operational cost or generation by plant type. Further, the
difference under PF is higher than the difference under PFML, with
the PFML case exhibiting less variance over the analysis period,
which indicates that the structural difference between the models
plays less of a role under imprecise demand. Such information is
critical in the context of monthly-to-seasonal planning, since it
emphasizes the need to address demand uncertainty.

From this analysis, it is important to note that the enhanced
ESOM and the rolling-horizon UCM provide similar estimates of
monthly electricity generation by plant type. In months with high
electricity demand, the UCM total cost tends to be slightly higher
than the ESOM due to a larger use of coal resources to meet the
peak demand. The UCM includes a binary representation of startup
and shutdown for power plants (not represented in the ESOM),
thus, the UCM may choose to keep coal running longer to avoid
incurring the fixed startup and shutdown cost. By contrast, the
ESOM tends to use more natural gas over the year.
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4.2. Comparison 2: standalone analysis of the UCM and ESOM using
different demand representations

Fig. 4 presents percentage differences for both models in terms
of (a) total costs and the monthly generation from (b) hydro, (c)
coal, and (d) natural gas plants. Positive percentages represent a
larger value in the PF case, and negative percentages represent
larger values in the PFML case. These differences in total monthly
generation obtained for the UCM and the ESOM indicate similar
generation portfolios under PF and PFML. It is worth noting that the
PF run considers the correct representation of peak demand, and
that is why the results show a consistently higher cost than the
results of the runs using the PFML demand. For the UCM (ESOM),
the differences over the year are range from 0.15% to 1.32% (0.31% to
1.52%). The difference in cost is positive and small (less than 2%)
between PF and PFML for both models, indicating that the impre-
cise demand underestimates the true cost, since the coal dispatch is
underestimated under PFML (Fig. 4c). The difference in cost be-
tween the two demand scenarios is also small for both models
when the demand is lower than the monthly average.

In terms of hydro generation, the UCM (ESOM) results range
from ' 0.71% to 0.09% (' 0.99% to 0.21%) when using PFML infor-
mation in comparison with the PF values. Coal and natural gas
generation using the UCM (ESOM) range from 0.87% to 2.57% (0.33%

to 2.11%) and ' 2.25% to ' 0.71 (' 1.52% to ' 0.05%), respectively. In
this comparison, both models under the PFML scenario have lower
total costs and less electricity generation from natural gas in each
month over the twelve-month period compared to the PF runs.
These smaller differences in the PFML case can be attributed to less
daily variation, since the daily peaks represent the climatological
average over the month in the PFML case. However, the percentage
differences in costs observed in this comparison, involving different
demand representations within the same model, are mostly larger
and present a higher variance than the differences observed in
Comparison 1. With respect to generation, approximately 2% more
coal usage can be observed in the ESOM-PF in MareApr and
AugeOct when the system demand is at its lowest values,
compared to the ESOM-PFML. Coal is the marginal resource in the
ESOM-PF scenario, and the lower demand in the PFML scenario
therefore reduces coal generation. Smaller differences in coal are
observed in the UCM-PFML scenario in comparison with the UCM-
PF scenario for the same period. However, the largest differences
observed for the UCM are reported in months when the system
demand is high. Both models tend to use more natural gas re-
sources in the PFML scenario to account for the difference in coal.
Among the resources presented, hydro shows the smallest varia-
tion across months.

Fig. 3. Comparison 1 results: UCM and ESOM results with the same electricity demand representations. Panel (a) represents the monthly cost differences and the total system
electricity demand consumption in TWh (secondary y-axis); (b), (c), and (d) represent the difference in monthly electricity generation from hydro, coal and natural gas plants,
respectively. Note that þ % represent larger values in the UCM runs, and -% represent larger values in the ESOM runs.
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4.3. Comparison 3: analyzing UCM-PF & ESOM-PFML

Fig. 5 presents percentage differences for the UCM-PF & ESOM-

PFML analysis in terms of (a) total costs and (b) monthly generation
by plant type. This analysis quantifies the error in applying the
ESOM under imprecise demand with the UCM under PF, which

Fig. 4. Comparison 2 results: stand-alone analysis of the ESOM and UCM for different demand representations over one year. Panel (a) represents the cost differences and the total
system electricity demand in TWh (secondary y-axis); (b), (c), and (d) represent monthly electricity generation from hydro, coal and natural gas plants respectively. Note that þ %
represent larger values in the PF runs, and -% represent larger values in the PFML runs.

Fig. 5. Comparison 3 results: monthly comparison of UCM-PF and ESOM-PFML over one year. Panel (a) represents the monthly cost differences (primary y-axis) and the total system
electricity demand in TWh (secondary y-axis). Panel (b) represents the monthly generation differences per generation source. Note that þ % represent larger values in the UCM-PF
runs, and -% represent larger values in the ESOM-PFML runs.
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represents the perfect scenario. In months with higher demand, the
ESOM-PFML costs tend to be slightly lower than the UCM-PF (the
largest difference is 0.83%), and in months with lower demand e
March, August, September and October e the ESOM-PFML costs
tend to be slightly higher than the UCM-PF costs (the largest dif-
ference is ' 0.29%). Overall, the operational cost results in this
comparison vary in a small band (from ' 0.29% to 0.83%) across the
12 months. During the year, the ESOM tends to use more hydro-
power as well as natural gas, where the UCM tends to use more
coal-fired plants. These monthly differences with respect to hydro,
natural gas, and coal dispatches range from ' 1.42% to ' 0.61%, ' 1.17
to 0.10%, and 1.0% to 2.0% respectively.

The percentage differences in costs are small throughout the
year when the ESOM-PFML is compared with the UCM-PF. The
relative differences are larger when the system demand is higher,
around 0.8%, due to the representation of demand peaks when the
system will need to use more expensive resources to satisfy de-
mand (i.e., peak demand is represented correctly in the UCM-PF,
but not in the ESOM-PFML, which uses climatology averages). In
terms of electricity generation, the ESOM-PFML uses less coal
during the year (around 1.5% less), and this difference is met by a
higher usage of natural gas and hydro, which aligns with the lower
costs observed with respect to the UCM-PF.

4.4. Synthesis e the energy system optimization model versus the
unit commitment model

From the results presented in this section, the error associated
with the demand representation plays a larger role in the estimated
monthly electricity generation than the differences obtained be-
tween the two models under the same forecast. For example, when
the models are compared to each other (Comparison 1) annual
average cost differences around ' 0.4% are observed, representing
more expensive operation in the ESOM. When the UCM is
compared with itself using different demand representations
(Comparison 2), higher cost differences are observed, with annual
average cost differences around 1.0%. Similar differences are
observed for monthly electricity generation. Therefore, in the
context of seasonal planning of conventional power systems, the
results suggest that the ESOM is a suitable tool to estimate elec-
tricity generation months or seasons ahead. Moreover, a more ac-
curate disaggregation procedure of electricity demand at the daily
and hourly level will be critical to accurately estimate monthly
generation by plant type.

In terms of computational time, the ESOM runs are significantly
less expensive than the UCM runs. Each UCM run for one month
averaged 99min of computational time, accounting for a total of
approximately 40 h of computational time to perform 24 monthly
runs. By contrast, the ESOM runs averaged 1min each, accounting
for a total of approximately 25min of computational time to
perform all 24 monthly runs across both demand scenarios. This
performance difference is due to the MILP UCM representation
versus the linear ESOM formulation.

Based on the findings of this work, future research should be
aimed at expanding the proposed framework to consider seasonal
power generation planning in a multi-stage stochastic optimization
setting where decisions taken in early time stages may affect future
system conditions (e.g., de Queiroz et al. [52]. In such a framework,
climate information could be used to inform uncertainty about
renewable resource supply. The combination of mathematical
optimization models and synthetic demand forecasts can improve
operational planning decisions such as forward purchases of fuel,
the efficient use water resources, and scheduling plant mainte-
nance. Larger, more realistic power systems with different levels of
renewable power penetration and cascading hydropower

generation schemes should also be modeled [53]. Also, monthly to
seasonal energy storage [54] should be analyzed in this context.

5. Conclusions

This paper presents a framework to repurpose an ESOM to
perform studies focused on monthly to seasonal power generation
planning. An enhanced mathematical formulation of the ESOM is
developed to accommodate operational characteristics of the po-
wer system, and is applied to an IEEE 24-bus test case. A compar-
ative analysis between the ESOM and a UCM is carried out
considering monthly demand disaggregated at the hourly level and
represented across a power system network. The study shows that
the differences in monthly estimated generation costs and elec-
tricity generation by plant type are strongly influenced by the
different demand scenarios. Differences in model structure e
detailed UCM versus enhanced ESOM e play a minor role in
determining monthly electricity generation. Comparative analysis
shows that the UCM-PF and ESOM-PFML scenarios produce dif-
ferences of less than ' 1.5% to 2% in total monthly cost and gener-
ation by plant type (Fig. 5). These differences suggest that the ESOM
with PFML can provide useful information for monthly-to-seasonal
power system planning. In terms of computational efficiency, as
noted in Section 4.4, the ESOM is significantly more efficient
(approximately 96 times faster), which indicates potential for
employing an ESOM for seasonal power generation planning uti-
lizing uncertain demand forecasts. It is important to temper these
conclusions by noting that this analysis was carried out using an
IEEE test case, and further testing may be warranted. Nonetheless,
the results presented here suggest that the modified ESOM can
perform large-scale seasonal electricity generation planning anal-
ysis with relatively low computational effort and sufficient
accuracy.
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