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Real-Time Stochastic Optimization of Energy
Storage Management Using Deep Learning-Based
Forecasts for Residential PV Applications

Faeza Hafiz"¥, Member, IEEE, M. A. Awal

Abstract—A computationally proficient real-time energy man-
agement method with stochastic optimization is presented for a
residential photovoltaic (PV)-storage hybrid system comprised of
asolar PV generation and a battery energy storage (BES). Existing
offline energy management approaches for day-ahead scheduling of
BES suffer from energy loss in real time due to the stochastic nature
of load and solar generation. On the other hand, typical online
algorithms do not offer optimal solutions for minimizing electricity
purchase costs to the owners. To overcome these limitations, we
propose an integrated energy management framework consist-
ing of an offline optimization model concurrent with a real-time
rule-based controller. The optimization is performed in receding
horizon with load and solar generation forecast profiles using deep
learning-based long short term memory method in rolling horizon
to reduce the daily electricity purchase costs. The optimization
model is formulated as a multistage stochastic program where we
use the stochastic dual dynamic programming algorithm in the
receding horizon to update the optimal set point for BES dispatch
at a fixed interval. To prevent loss of energy during optimal solution
update intervals, we introduce a rule-based controller underneath
the optimization layer in finer time resolution at the power electron-
ics converter control level. The proposed framework is evaluated
using a real-time controller-hardware-in-the-loop test platform in
an OPAL-RT simulator. The proposed real-time method is effective
in reducing the net electricity purchase cost compared to other
existing energy management methods.

Index Terms—Deep learning, energy management, energy
storage, load forecast, real-time control, stochastic programming.
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NOMENCLATURE

Indices

t Index for time.

Wt Generated scenario for load.

wy Generated scenario for solar generation.

Sets

Qry Set of generated scenario for load.

Qpy ¢ Set of generated scenario for solar generation.

Parameters

At Time interval (min).

Qy Photovoltaic-based energy storage capacity (kWh).

n Charger efficiency (%).

Dpy Solar generation at time period ¢ (kW).

Pr Load demand at time period ¢ (kW).

SOC, Minimum battery energy storage state of charge (%).

SOC, Maximum battery energy storage state of charge (%).

PbCh Battery energy storage maximum charging power
(kW).

Pgissh Battery energy storage minimum discharging power
(kW).

Pt Battery energy storage minimum charging power

__ (W)

Pfissh Battery energy storage maximum discharging power
(kW).

T Total time period (min).

Variables

SOCy,, State of charge of energy storage at time period ¢.

Pbcftl Battery energy storage charging power at time period
t (kKW).

Pyt Battery energy storage discharging power at time pe-
riod £ (KW).

Pyt Deferred solar energy at time period ¢ (kW).

Pgiar  Load demand from grid at time period ¢ (KW).

Peom,: Difference between stochastic dual dynamic
programming-based charge and discharge command
at time period ¢ (kW).

Py Rule-based controller command at time period ¢ (kW).

I. INTRODUCTION

LEAN energy footprint, decrease in production costs, and
the availability of solar energy resources have ushered an
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unprecedented tremendous growth of rooftop solar photo-voltaic
(PV) installations over the last decade. However, the mismatch
between the peak of solar PV generation and a typical household
load obstructs the best utilization of solar resources. Moreover,
the existing grid infrastructure poses a major challenge to ac-
commodate large-scale back-feeding of power from distributed
PV to the grid. A possible solution to maximize the utilization
and efficiency of residential PV installations is to deploy battery
energy storage (BES). A hybrid PV-storage installation at the
residential level is further justified by the declining trend in
energy storage price. In such hybrid systems, optimal energy
management of the BES becomes imperative to maximize both
the economic benefits for the residential customers and the
utilization of available renewable generation.

Improved energy management of a BES depends on the
accuracy of load and PV generation forecasts [1]. Overesti-
mation or underestimation of forecasts of these profiles drives
the optimization of energy management in the wrong direc-
tions [2]. For load and solar generation forecasting, different
machine-learning algorithms have been employed utilizing his-
torical data, such as support vector machine (SVM), decision
trees, artificial neural network (ANN), recurrent neural network
(RNN) [3]-[6], and others. These neural network-based tools
suffer from slow learning rate, overfitting, and identification of
optimal hyperparameter values. To overcome these challenges,
deep learning-based forecasting models were proposed in [7]
and [8] for forecasting the electricity demand. In [7], a deep
learning algorithm was applied after clustering the load pro-
files based on seasons. However, the impact of holidays and
weekdays was neglected in this research work. Long short term
memory (LSTM)-based load prediction was proposed in [8]
where different appliance patterns were considered as features.
This method is computationally extensive, requiring huge data
storage, which makes this approach infeasible for real-time ap-
plications. To leverage the available forecast electricity demand
for optimization of energy management, a faster prediction is
mandatory in rolling horizon.

Most offline energy management solutions for BES dispatch
focus primarily on load balancing to account for the fluctuation
of renewable generation and increase grid reliability [9]-[11],
improve energy storage efficiency [12], and to minimize electric-
ity bills [ 13]. These reported methods were validated considering
load and PV profiles identical to forecasted day-ahead profiles.
However, in reality, these profiles are stochastic in nature and
depend on the variability of weather and user’s preference [14].
Real-time BES energy management considering the uncertainty
in solar generation was reported in [15]-[17]. In [15], the op-
timization of energy management was formulated as a Markov
decision process (MDP) and solved through dynamic program-
ming (DP). A chance-constrained stochastic optimization model
was proposed to improve economic gain for a PV-based power
plant in [16]. Stochastic dual DP (SDDP)-based optimization
process was considered for residential users in [17]. Uncertainty
in both load and solar generation were considered in [18]. How-
ever, the correlation between the uncertain load and generation
profiles was ignored, but was leveraged to augment the offline
forecast and optimization process in [19] and [20].
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For real-time BES control, Lyapunov optimization approach
was employed in [21]-[23]. In [24], a dynamic energy man-
agement system for smart grid was proposed using adaptive
DP (ADP) and reinforcement learning to serve critical loads.
These works were based on asymptotic analysis (i.e., infinite
time horizon). In [25], an online algorithm was suggested con-
sidering finite horizon. However, expected future costs were not
considered in this research. In [26], expected future cost was con-
sidered through receding horizon optimization to reduce power
curtailment by minimizing forecast errors in renewable energy
resources. Model predictive control (MPC) was developed to
achieve the maximum net profit from the deregulated energy
market in [27]. In [28], uncertainty was considered in forecasted
profiles and a two-stage stochastic model was demonstrated. The
stochastic model was solved through Benders’ decomposition
method. However, online optimization methods require update
intervals of the order of tens of minutes which may lead to
deferred solar energy or unnecessary discharge of storage in
real systems.

The lack of energy management systems that can account for a
realistic representation of uncertainties while simultaneously ad-
dressing forecast deviations in real time serves as the motivation
to search for an integrated controller that optimizes energy and
resource utilization. In this regard, we proposed and developed
an integrated controller that employs an SDDP-based energy
management strategy that updates the BES charge/discharge
dispatch set point at a slower time scale utilizing the forecast
profiles and a real-time rule-based controller operating at a much
finer time resolution. The load and solar generation profiles are
forecasted using an LSTM-based deep learning neural network
algorithm. The integrated framework for real-time energy man-
agement considers the deviation from the forecast profiles in a
real system due to uncertainties in load and solar generation, as
well as the correlation among them, to calculate expected future
costs in the receding horizon. The real-time feedback available
from the power electronic converters used for interfacing the
BES with household loads and the grid are utilized in the SDDP
algorithm. Furthermore, the rule-based controller minimizes
undesired energy loss due to variability in load or solar PV
generation in between the update intervals from SDDP, which
can range from minutes to tens of minutes in a system. The ad-
dition of the real-time control along with optimization improves
utilization of both solar generation and energy storage. The
method is validated in real time in a control hardware-in-the-loop
(CHIL) platform. The developed prototype of real-time embed-
ded system in OPAL-RT simulator ensures the effectiveness of
the proposed method for real-system applications.

The reminder of this article is organized as follows. Section II
demonstrates the proposed methodology for real-time energy
management. Section III presents the simulation setup for the
real-time environment. Section VI analyzes the performance of
the algorithm. Section V concludes the article.

II. INTEGRATED ENERGY MANAGEMENT

A residential solar PV-storage hybrid system managed by an
energy management controller is shown in Fig. 1. Solar PV
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Fig. 1. Residential PV-storage hybrid system with power converters and
energy management controller.

panels deliver energy to a BES unit and to satisfy the household
electricity demand through a dc—dc converter and a dc bus.
The BES is also connected to the dc bus through a dc—dc
converter which can store energy only from the solar PV panels
or discharge energy to meet the household demand. Therefore,
household load is mitigated through the grid, solar panels, and/or
BES unit. From dc bus, the household load is connected through
a dc—ac converter.

In the proposed integrated energy management framework,
three hierarchical steps are followed. In the first step, solar PV
generation and load demand profiles for the next 24 h with
15-min resolution are forecasted. These updated forecasts are
utilized to calculate the expected future costs in receding horizon
in the second stage. Because of the stochastic nature of cloud
patterns, weather, and user preference, solar generation and
load demand do not maintain the forecast profiles. Optimiza-
tion is performed considering these uncertainties of load and
solar generation in the future. Utilizing the optimal set point to
charge/discharge BES for next 15 min from the second stage,
a rule-based control is performed in the third step. Since the
proposed rule-based control takes less computation time, it can
be implemented for real-time control purposes. The overview of
the proposed three-step integrated energy management method
is shown in Fig. 2. The description of each step is presented in
the next subsections.

A. Step 1: Load and PV Generation Forecast

Incorporation of updated load and PV generation forecast
profiles improves the optimal decision calculation of SDDP in
receding horizon. In this integrated method, forecasts are per-
formed at 15-min intervals considering previous stage historical
data. To predict day-ahead profiles, the next 96 values for 24 h are
forecasted. The considered features and forecasting algorithm
are described as follows.

1) Feature Selection: Features are introduced in the algo-
rithm to avoid overfitting/underfitting and increase the accu-
racy of the predicted values. For household electricity demand
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forecasts, the important features such as holiday or working
day, month, day of the week, and previous 15 historical data
are considered as features. These features help to predict the
residents’ electricity load patterns. Learning such patterns from
the whole-house data with 1-min intervals introduces large
prediction errors. Therefore, we consider forecasting load at a
15-min time interval [6].

2) Forecasting Algorithm: For forecasting, LSTM method
is used, which is one of the RNN structures. In contrast to the
standard, RNN is based on a series of repeating modules with rel-
atively simple structure. Although a conventional feed-forward
neural network can learn sequences, LSTM is more powerful
because it constrains a memory cell in its structure to remember
the important states in the past and has a forget gate to learn to
reset the memory cell for the unimportant features during the
learning process [29].

The simplest method to build up an LSTM model is to provide
an input vector to the model for predicting the output. In this
article, the LSTM network models are trained with an input
vector of 17 features (weekday stamp, month stamp, and last
15 values of the time series) and the output window size is 96
which represents 24 h with 15-min interval. A way of training
the LSTM models is to implement window-based learning. This
method allows the LSTM model to directly deal with previous
timestamp values (lagged values). After each prediction times-
tamp, LSTM window-based network model shifts both input
and output windows by one step. In this way, the forecasted data
provide support for dynamic learning.

B. Step 2: Optimization Problem Formulation

1) Scenario Generation: Since the forecast values cannot
exactly predict the next day-ahead load and PV generation
profiles due to the variability of the cloud and users’ preference,
uncertainties are required to be considered for enhancing the
decision-making capabilities. In this work, the future uncer-
tainties are modeled by developing a scenario tree to represent
possible events for the random parameters. PV generation and
household electricity demand are sampled from a probability
distribution to construct this finite scenario tree independently.

We consider forecasts of PV generation and household elec-
tricity demand for the rolling horizon. For possible future scenar-
ios, the correlation structure between solar generation and load
profile is considered. After scenario generation for solar produc-
tion and load demand independently from normal distributions
N, 0], the correlation between them is incorporated through
Cholesky decomposition. Following similar notation from [17]
and [30], let K be the number of stages and n be the number
of uncertain parameters. In this work, n = 2 since uncertainties
in both solar PV generation and load demand are considered.
Let X be a matrix (K X n) with independent distributed draws
from a normal distribution N[0, 1] and R be the load and PV
generation correlation matrix; the Cholesky decomposition of
R will be a lower triangular matrix L as follows:

R=LL. ()
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Fig. 2. Three-step protocol of the integrated energy management.

Correlated draws of Y matrix can be defined as
Y =LX (2)

where Y corresponds to draws from N[0, 3]. The original draws
are from N[0, 1], u = 1 and the covariance matrix is ¥ = R.
If correlated draws are used for solar PV generation and load
demand scenario, given by Ny, ;[11;, 07] where i = 1,2 at some
stage t, draws from column ¢ of Y can be multlphed by o;
and mean 4i; is added. For instance, if ¥y, ; is an element of the
matrix Y corresponding to the ith draw, then scenario (yy, ;) will
be generated as

Yk, = Hi + Yk,i0i- 3)

In this method, it is possible to generate scenarios counting
on the correlation effects among uncertain parameters. Since
forecast PV generation will be zero during the night, generated
PV scenarios will also be zero. Thus, load demand scenario will
be generated directly from A/[0, 1]] during the night.

Correlation consideration helps to avoid wrong scenario gen-
eration. For example, solar generation and atmospheric tempera-
ture become higher due to the intensity of the sun during summer
days. Rising temperature increases the electricity load with the
usage of air conditioners. If correlation is neglected, we might
end up with a scenario such as higher solar generation and lower
electricity demand for summer days.

2) Optimization Model Formulation: The overall objective
is the household electricity purchase cost minimization with
optimal operation of the energy storage integrated solar PV
system. In this work, optimization cycle occurs from O to 24 h
period of a day, with each 15-min interval in receding horizon.
The total time left for a day after each cycle is divided into 7" time
periods with resolution A¢, which is 15 min in this work. Let C;
be the ToU cost of electricity, PL’; and Pli{} . be the generated
load and solar profiles from the sets of all generated load and
solar profiles Q7 ;, and py , respectively, and Pyig ¢ be the
power demand from the grid at time ¢; the objective function and

constraints can then be written as (4)—(12) in the following [31]:

T
J =min [ Y CiPuias “)
t=1
subject to
power balance constraint
Py — Pyl + P03 = Pacpe = Py = B, (5)
charge balance constraint
Peh Aty PlishAt
SOCy,t = SOCyp -1 + — - — (6)
’ ' Qb Qo1
inequality constraints
Pl < PRiteT (7
Pdlsch < PUJL it t cT (8)
Pyigy >0t €T 9)
upper and lower bounds of the decision variables
SOC, < SOC,; <SOCy;t €T (10)
Ph < P < PehiteT (11)
Pdlsch < PdlSCh < Péjisch;t c T. (12)

The PV-storage hybrid system considered in this research does
not allow PV to backfeed into the grid. Pyt will take care of the
excess generation as deferred energy during periods of higher
PV generation compared to the load demand with the storage
fully charged. Equation (5) ensures the power balance of the
whole system. Equation (6) calculates the state of charge (SOC)
of storage SOCy, ; based on the instantaneous charging P” and
the discharging power Pg‘;Ch of the storage device. Inequahty
constraints (7) maintain the condition that the storage will be
charged only from the available PV generation, (8) ensures
that storage discharging will occur only to mitigate the load
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demand. Electricity purchases from grid will not be negative in
(9) since backfeeding power to the grid is discouraged. The lower
and upper bounds of the BES decision variables are defined in
(10)-(12).

3) Multistage Stochastic Optimization: Model (4)—(12) de-
scribed above considering uncertainty in solar PV generation
and electricity demand can be represented as a T'-stage stochastic
linear program as follows:

hi(xi—1,b) = rr;ltn [ct:rt + Ebt+]‘btht+1(:rt, bt+1)] (13)
subject to

Ay = Bywy_ + by o my (14)

x> 0. (15)

The decision variables of a particular stage ¢ are considered in
a vector x¢, which includes electricity purchases from the grid,
power charge and discharge, and SOC levels for the storage
devices. Parameter b, represents the stochastic solar PV genera-
tion and load at stage t. In (13), h¢q (¢, beq ) is a recursive
function that depends on decisions x; made at stage ¢, and
random parameters (load and PV generation) b, | are generated
by the scenario tree at the beginning of stage ¢ 4 1. Therefore,
overall Ey, 1, hit1(, byy1) denotes the expected cost for the
stage ¢ 4 1, given that the stage ¢ decisions and the random
parameter realizations at that stage settled the initial conditions
of the system at stage ¢t 4+ 1. Equation (14) is the representation of
power balance and charge balance constraints (5) and (6). Dual
variables (denoted by 7;) derived from the transition constraints
are used later to construct a piecewise linear approximation
of the future cost function following Benders’ decomposition
scheme [32]. Equation (15) represents simple bounds on the
decision variables such as (10)-(12). The realization of the
random parameter by affects the condition of the system at
stage ¢ [33].

To solve the multistage stochastic program we employ the
SDDP algorithm that constructs a piecewise linear approxi-
mation of the future costs function. A visualization of how
the SDDP works to solve the multistage stochastic program
is depicted in Fig. 3. It demonstrates the process for a simple
three-stage problem. After obtaining the forecast profile as in
Fig. 3(a), a scenario tree is generated similar to Fig. 3(b). The
SDDP process is started by sampling forward paths (which are
the highlighted paths) shown in Fig. 3(c) to proceed for the
forward pass. During the forward pass, a sequence of models
such as (13)—(15) [constructed considering (4)—(12)] is solved
at each time stage using the simplex method. Benders’ cuts are
calculated during the backward pass and accumulated at each
iteration for each stage. The set of updated cuts are later used
as additional model constraints to better approximate the future
costs and improve the decision-making process. To reach the
desired convergence, the algorithm proceeds through a sequence
of forward and backward passes, which is shown in Fig. 3(c) and
(d), considering the updated representation of the Benders’ cuts
at each iteration [32], [33]. This algorithm does not discrete the
state and decision spaces like DP, which results in less compu-
tation time and memory requirements. In the case of this work,
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Fig.3. SDDP solution process applied to a three-stage and two-scenarios-per-
stage problem: (a) forecasted profile; (b) scenario tree generation; (c) forward
pass through the highlighted paths; and (d) Benders’ cut generation through
backward pass.

the convergence of upper and lower bounds associated with the
expected cost can be reached within a 15-min interval, given the
complexity of the algorithm, which provides the lower bound for
the update period. Additional discussions of the computation
method and time requirement for SDDP can be found in [17]
and [20], respectively.

C. Step 3: Rule-Based Control

The offline optimization strategy described in Section II-B
alone for charging/discharging of the energy storage is not
beneficial enough since there is the possibility of energy loss due
to variability in load and/or solar PV generation in a real system
with lower time resolution. A rule-based controller is integrated
with the SDDP optimization method to further improve on the
obtained optimal decisions from SDDP in real time. In the rule-
based method, the optimization decisions Feom ¢ is calculated as
(16) in the 15-min interval

Peom,t = Pyl — Py (16)

If Peom,: is negative, then the BES should be discharged till
the next update instant. If in real time, the load demand Py,
is less than the discharge power Pliit“h, then the battery should
discharge to mitigate the load. This rule is shown in Table I, steps
2—4. Here, P, is the energy storage charge/discharge command
for real time in significantly smaller intervals compatible with
the power electronic converter sampling time (20 ps used in
this work). On the other hand, if solar PV generation is higher
than load in real time, then the optimization set point will be
overruled to store excess PV generation in the BES based on its
available capacity. This rule is illustrated in steps 5 and 6.

If Peom,; 1s positive, then the BES is supposed to be charged.
If there is not enough solar PV generation Fpy ; to charge the
BES in the real scenario, then Pf}t’ should be equal to the
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TABLE I

RULE-BASED ALGORITHM
Inputs SOC,cq,¢ at time, ¢
1 Pcmn,t - Pbc,}tl - éiés‘:h
2 Zf P(:om,t S 0 and (]Dload,t - PPV,t) Z 0:
3 Zf (PcomA,t 2 PPV,t - Pload,t) : Pget = Pcom,t
4 else Pget = PPV,t - Pload.t
5 elseif: Peom,t <0 and (Pioqa,r — Ppv,t) < 0:
6 Pget = PPV,t - Pload,t
7 elseif Peom,t > 0 and (Poad,t — Ppv,) >0
8 Zf Pcom,t S PPV,L : cht = Pcom,t
9 else Pyet = Ppvy:
10 6lS€if PconL,t 2 0 and (Boad,t - PPV,t) S 0
11 Pget = PPV,t - ]Dload,t
12 elseif Peom,: == 0 and (Pioad,t — Prv,t) <0
13 P_qet = PPV,t - [)load.t
14 if Peoms < P Pyer = BT
15 else Pget - Pcu'm,t
16 if SOCrear, < SOCY
17 Zf cht 2 0 ZPrb’t = Pget
18 else :Pry =0
19 elseif :SOCrear,r > SOCH:
20 Zf Pget S 0 :Prb,t = Pget
21 else :Pry =0
22 else: Pryt = Pyet

[ Oidle M Discrete process]

R L

Load and solar

PV generation
forecast }

Forecast update

SDDP
optimization

Set-point (S) update

i
i

l*Sk,1 I Sk r| Sk+1 ::
, } ST,
Raontorer LNTLLIRENNRANRANRANRRARRRRI]
controller
Local power
electronics
controllers | i ]

15 min. 15 min.

Fig. 4. Three-step protocol of the integrated energy management.

available Fpy ;. If there is higher Ppy; than P, and Pé'g,
then the excess generation is used to charge the BES considering
available capacity. These rules are shown in Table I, steps 7—11.

If Peom,+ becomes zero, but still there is solar PV generation
exceeding the load, then the BES should store the excess energy
as long as it is within the charger capacity and the BES capacity
bounds (steps 12—14). The rules and thresholds in steps 16-22 in
Table I are set such that charge/discharge commands are disabled
in real time if the upper/lower threshold limits of BES SOC are
reached. P, will be sent to the dc—dc converters of the BES
from the controller.

The timing sequence of the proposed integrated energy man-
agement method is illustrated in Fig. 4. At each 15- min interval,
the solar PV generation and load demand are forecasted for
the next 24 h that takes 7 time to calculate. The forecasts are
then used in the SDDP optimization process in the receding
horizon requiring 7, time to update the optimal set points Pbcftl

and Pt They will vary in each interval since the strategy

2221
TABLE II
SYSTEM PARAMETERS
Parameters Values
Qb 4 kWh
Peh peh 0 kW, 3 kW
Pgiisch’Pl;iisch 0 kW, 3 kW
Initial SOCY, 20%
SOC,,SOC, 20%, 80%
n 92%
Forecast and optimization time interval, ¢ 15 min
Real-time simulation interval, 7 20usec
TABLE III
ToU RATE
Season Load Type Period ToU Rate
($/kWh)
Off-peak 21:00-9:00 0.15
Summer & Fall Partial-Peak | 10:00h-13:00h & 0.226
(June-September) 19:00h-21:00h
Peak 13:00h-19:00h 0.342
Spring & Winter Off-peak 20:00-15:00 0.15
(October-May) Peak 17:00h-20:00h 0.17

defined by the SDDP algorithm will differ at each interval.
These optimal set points are updated at every 15-min interval.
For the BES real-time dynamic control, these updated optimal
set points are provided to the rule-based controller considering
(16). At each 73 time interval, the rule-based controller sends
the charge/discharge command P, ; to the BES considering
real-time load demand and solar generation to avoid energy
losses.

III. REAL-TIME SIMULATION SETUP

The proposed integrated energy management method is vali-
dated using a real-time simulation platform based on OPAL-RT.
The solar PV, the BES, the household load, and the power
converters are modeled in real time with a simulation time step of
20 ps. Household load and corresponding PV generation profiles
are obtained from PECAN Street data [34]. In Table II, the test
system parameters are given. The ToU rates have been collected
from [35] and given in Table III. Forecasts and optimization are
performed using MATLAB on a PC with an Intel Core i5-4600 U
1-GHz CPU, 4 GB of RAM, and 64-bit Windows 10 operating
system. The OPAL-RT simulator is connected to the PC through
a Modbus communication interface as shown in Fig. 5.

Using the SOC feedback from OPAL-RT, forecast and opti-
mization are performed and new power set point for the BES
is dispatched from PC to the OPAL-RT simulator at 15-min
intervals. The rule-based controller is incorporated within the
local power electronic converter controllers in the OPAL-RT
simulator. The power converter models and controllers used for
voltage and current tracking and the need of real-time CHIL
simulation are described in the next subsections.
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Fig. 6. (a) DC-DC converter model used for interfacing PV and battery.
(b) Current controller for dc—dc converters.

A. Power Electronic Converter Model

To reduce the simulation overhead, average models of the
power converters are used. Fig. 6(a) shows the average model
used for the dc—dc converters. Identical models have been used
for the converters that interface the solar PV and the BES. The
converter current reference was tracked using a PI compensator
as shown in Fig. 6(b). It is worth noting that the current reference
3. = ipg fOr the dc—dc converter that interfaces the battery is
updated by the rule-based controller. The current reference ¢, =
ipy for the solar PV converter is also updated by the rule-based
controller; however, the reference is tracked when allowable
by the solar PV generation profile and the extracted current is
clamped at the maximum power point when 75y, > impp, Where
impp refers to the current at maximum power point.

The average model of the power electronic rectifier that con-
nects the household system with the grid is shown in Fig. 7(a). A
cascaded control structure is used to maintain the desired voltage
v}, at the dc bus as shown in Fig. 7(b). An inner proportional-
resonant (PR) compensator is used for current control and the
peak current reference iy, is dynamically generated by a PI
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Fig. 7. (a) Grid interface rectifier model. (b) DC bus voltage and grid current
controller used for the rectifier.
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Fig.8. Real-time CHIL simulation result showing the SDDP set point (updated

at 15-min interval) and actual BES set point dispatched by rule-based controller.
Simulation data were recorded at 1 s resolution.

compensator that tracks the dc bus voltage and a phase-locked-
loop (PLL) is run on the grid voltage v, to generate the reference
phase 0,,.

B. Necessity of Real-Time CHIL Simulation

A real-time CHIL simulation facilitates a high-fidelity em-
ulation of a real system. It provides an effective performance
evaluation of any energy management algorithm compared to
offline numerical simulations. This can be illustrated by a simple
test case shown in Fig. 8, where a snapshot of the real-time
CHIL experiment result is considered. The blue dashed curve
represents the load. Stochastic nature of load demand is evident
from the irregular variation of the curve. Battery power dispatch
set point calculated from SDDP optimization is denoted by the
red-dotted curve. This command is constant between two update
instants, i.e., 15 min. It is worth noting that the load demand
changes intermittently within the 15-min interval. The proposed
rule-based controller limits the BES discharge when load de-
mand falls below the set point. Thus, inclusion of rule-based
controller on power electronics level with update interval of
20 us ensures energy saving. This is evident in Fig. 8§ where
the energy saving over a 2400-s period is 307.5 kWh. In offline
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numerical simulators, energy consumption and net energy output
are typically computed considering the average power flow over
one optimization-update period. As a result, the effect of inter-
mittent mismatches between the commanded power reference
and the varying load conditions leads to inaccuracies in the
estimation of net cost.

Offline simulation executes forecasting and SDDP with rule-
based controls in a synchronous way although the real-time
process is asynchronous. Therefore, offline simulation leads to
erroneous estimation of energy costs. A disadvantage of offline
simulation is the inability to take into account the latency caused
by computation and communication among controllers. The
impact of such latency is evident in Fig. 8. The SOC feedback
taken at ¢; is used to run the optimization algorithm and a new
set point is available at £,. The system keeps running using the
previous set point till #,. The delay time At = ¢, — ¢; accounts
for the computation and the Modbus communication delays
between the BES and the energy management controller. In an
offline simulation using MATLAB, the entire system would be
stopped at t; update instant while a new set point would be
computed. The simulation would restart from ¢;, completely
ignoring the effect of the latency present in real systems.

IV. SIMULATION RESULTS AND ANALYSIS

The simulation results for different steps and comparison
analysis are presented next.

A. Load and Solar PV Generation Forecasts

For residential load and solar generation forecasts, we use
load and PV generation data of the previous one-year period to
train the model. The sampling rate of available Pecan Street data
is 1 min. There are few missing values (approximately 1%) in
electricity consumption data associated with the Pecan Street
dataset used. The missing values are filled by inserting the mean
values of the previous five time steps. The resolution of the
datasets is reduced to 15 minute by aggregating values within
each 15-min interval. Holiday ‘s and weekday’s information are
extracted from [36]. For training the model, previous one-year
data with 15-min resolution are considered. We used scikitlearn
and Keras deep learning packages in Python to apply machine
learning-based algorithms.

Lusisa et al. demonstrated that the smaller the interval, the
larger is the forecast error [37]. Hence, a reasonable compro-
mise is required in selecting the interval span to limit errors
while meeting the algorithm computation time requirements.
The time interval for forecast and optimization updates is chosen
to be 15 min in our implementation based on the data availability
in smart meters and allowing sufficient computation time for
completing the SDDP process with the given resources. Ac-
cordingly, the prediction is updated at 15-min intervals in rolling
horizon. Using the feedback of load and PV profiles in the current
interval, prediction for the next 24 h, i.e., 96 sets of values, are
updated. We evaluate different machine learning algorithms in
terms of forecast accuracy. In Fig. 9, the forecast solar profiles
with different algorithms along with the real profiles are shown.
Load profile typically has higher variability compared to PV
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TABLE IV
RMSE FOR LOAD AND SOLAR GENERATION FORECASTS

Forecasting methods Solar forecast Load forecast
g Summer | Winter | Summer | Winter
k nearest neighbour 3% 5.8% 21% 14%
Random forrest algorithm 3.3% 6.4% 20% 13%
LSTM 2% 5.6% 17% 10%
12 T | T |
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—
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O
o

Fig. 10.

Load demand profile forecast.

generation profile due to user preference which is reflected in the
root-mean-square error (RMSE) shown in Table IV. A greater
variability in household load demand is also evident in Fig. 10.
Regardless, the RMSE is lower for LSTM compared to the other
machine learning algorithms for both load demand and solar PV
generation forecasts. A 15-min interval is chosen as areasonable
compromise for forecasts and optimization updates since RMSE
increases as time resolution decreases.

B. Electricity Purchase Cost Reduction

The load and solar PV models in OPAL-RT real-time sim-
ulator are programmed to follow the profiles of a summer day
(obtained from PECAN street data) as shown in Fig. 11. It is
worth noting that the dataset used to train the forecast model does
not include these profiles. The simulation results are recorded
at 1-min interval for 24 h. The BES SOC for different control
strategies are shown in Fig. 12 where it can be seen that the
integrated energy management and the SDDP method prefer to
charge during the off-peak and partial-peak hours and discharge
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summer day.

TABLE V
ELECTRICITY PURCHASE COST COMPARISON

Methods Summer | Winter
($/day) ($/day)
Electricity purchase costs without storage 8.9 32
Heuristic method 8.4 3
SDDP method 8.5 3
Integrated energy management 7.9 2.9

mostly at peak hours to reduce the electricity purchase costs. As
a result, SOC increases during off-peak and partial-peak hours
and it goes down during peak hours. On the other hand, for
heuristic method, the BES is always charged during periods of
excess generation and discharged during periods of higher load
than generation, which leads to under utilization of the BES.
The proposed integrated algorithm is designed to manage the
larger deviations between forecast and real data which happens
in the 50th hour of the forecast data presented in Fig. 10.
During periods of such large error in forecast, the SOC for the
integrated energy management deviates from the SDDP-based
optimization method as seen in Fig. 12.

Next, we evaluate the impact of the proposed integrated
energy management with the SDDP method. The BES charging
and discharging commands are updated at 15-min intervals
from the SDDP method. Without the rule-based control, the
mismatch of load and the SDDP optimization set point causes
energy loss at finer time resolution based on Section IV.B. The
results presented in Table V show that the integrated energy
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Fig. 14.  Solar generation usage (in %) for different control strategies.

management controller ensures greater reduction in electricity
purchase costs in both summer and winter days compared to the
other methods. Electricity purchase cost savings are lower in
winter days compared to summer days due to the lower solar PV
generation and lower difference between the peak and off-peak
hour ToU rates in winter. Considering these electricity purchase
costs ($/day), it can be expected that the proposed integrated
energy management can achieve 8.4% savings annually.

C. Peak Hour Savings and Solar Energy Usage

In our proposed method, peak hour savings is higher com-
pared to the other methods for both summer and winter days
which is shown in the bar chart in Fig. 13. Since the SDDP
method has proper estimation of expected future cost, it ensures
higher peak savings compared to the heuristic control method.
But the SDDP-based control suffers from inefficient usage of
solar PV energy due to the variability in real systems which
is depicted in Fig. 14 for both summer and winter days. Peak
hour savings not only help the homeowners but also the utility
companies. The integrated energy management outperforms
both the heuristic and the SDDP approaches in terms of peak
hour savings and solar PV energy usage due to the integration
of the SDDP for proper estimation of the expected future cost
along with the rule-based control for efficient energy utilization.
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V. CONCLUSION

In this article, a real-time residential BES energy manage-
ment method is proposed for daily electricity purchase cost
minimization of a homeowner with a PV-storage hybrid system.
Updated load and solar generation profiles through forecasts in
rolling horizon help to improve the optimal decision-making
process in the energy management algorithm. Consideration of
uncertain parameters and correlation between them increases
the efficiency of the optimization. The integration of rule-based
control reduces the solar energy loss and ensures proper uti-
lization of the energy storage in a real system. Real-time CHIL
experiments validate the superior performance of the integrated
energy management in comparison with existing energy man-
agement algorithms in terms of electricity purchase cost, peak
hour savings, and solar energy usage. The integrated energy
management method developed in this work provides the base-
line for extensions in community-based systems and gird-level
analysis.
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