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ABSTRACT: Rigorous model-based analysis can help inform
state-level energy and climate policy. In this study, we utilize
an open-source energy system optimization model and
publicly available data sets to examine future electricity
generation, CO2 emissions, and CO2 abatement costs for the
North Carolina electric power sector through 2050. Model
scenarios include uncertainty in future fuel prices, a hypo-
thetical CO2 cap, and an extended renewable portfolio
standard. Across the modeled scenarios, solar photovoltaics
represent the most cost-effective low-carbon technology, while
trade-offs among carbon constrained scenarios largely involve
natural gas and renewables. We also develop a new method to
calculate break-even costs, which indicate the capital costs at
which specific technologies become cost-effective within the model. Significant variation in break-even costs are observed across
different technologies and scenarios. We illustrate how break-even costs can be used to inform the development of an extended
renewable portfolio standard in North Carolina. Utilizing the break-even costs to calibrate a tax credit for onshore wind, we find
that the resultant wind deployment displaces other renewables, and thus has a negligible effect on CO2 emissions. Such insights
can provide crucial guidance to policymakers weighing different policy options. This study provides an analytical framework to
conduct similar analyses in other states using an open source model and freely available data sets.

■ INTRODUCTION

Many U.S. states have proposed plans to address the climate
change threat.1 North Carolina is the ninth most populous
state, the 14th largest CO2 emitter (2014)2 in the United
States, and the first state in the Southeast to adopt a
Renewable Energy and Energy Efficiency Portfolio Standard
(REPS).3 The NC REPS requires investor-owned utilities to
meet at least 12.5% of their electricity demand through
renewable energy resources or energy efficiency measures by
2021.3 Three carve outs, representing minimum shares of
specific fuel types, were also defined: 0.2% solar by 2018, 0.2%
swine waste by 2020, and 900 000 MWh of poultry waste by
2016.3 The deployment of solar PV has far exceeded the solar
carve out, with 4.3% of North Carolina’s total generation
supplied by solar.4 This high level of solar PV deployment is
largely due to the rapid decline in investment costs and
favorable contract terms for third party, utility-scale solar under
the Public Utilities Regulatory Policies Act (PURPA).
However, electric power producers in the state have had
difficulty meeting the swine and poultry waste targets, and have
repeatedly filed joint petitions to the North Carolina Utilities
Commission (NCUC) seeking relief and delay.5

These outcomes illustrate the challenge that state policy-
makers face in developing policy that balances environmental
performance, affordability, and stakeholder interests. Debates

over energy-related policies and incentives within the state
persist, often in the absence of sound, rigorous analysis
available to the public. The same is true in many other states.
Filling this analytical need to prospectively evaluate policy is
now critical since comprehensive federal action to mitigate
climate change is not imminent, and responsibility has fallen to
states.
Energy system optimization models (ESOMs) represent a

self-consistent framework for evaluation that can be used to
probe the effects of potential policy while considering future
uncertainty. ESOMs are already a crucial tool in long-term
energy planning and policy making at regional to national
scales, and in recent years, numerous models have been
developed and applied.6−15 ESOMs can also help planners at
the state level.16 A key advantage of such models over simple
calculations is their ability to capture dynamic technology
interactions across the modeled system, which can have a
significant effect on the generation mix over time. Capturing
such interactions is also critical when assessing the relative
cost-effectiveness of different technologies.
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The break-even point, sometimes referred as grid parity
point,17,18 indicates the point at which the delivered cost of
electricity from a given technology reaches a target, often
assumed to be the prevailing cost of grid electricity in a
particular region. Break-even cost is a useful financial metric
because it indicates how close specific technologies are to
achieving cost parity and therefore deployment, relative to
conventional technologies. The break-even cost is typically
determined based on comparisons of specific financial metrics,
such as net present value,19 internal rate of return,20 and
levelized cost of electricity,21 which have been adopted by a
wide range of studies.22−26 However, an increasing number of
studies call these metrics into question due to their
oversimplified assumptions, lack of uniform standards, and
failure to account for grid dynamics that can affect break-even
cost.17,21,27−30 These studies suggest break-even costs should
be evaluated in a market-based framework that considers the
dynamic interactions between technologies with different
dispatch characteristics meeting time-varying demand.
ESOMs are well-suited to identifying break-even points in a
market context, but such analysis has not been a focus in
previous work. While ESOMs often incorporate various forms
of sensitivity analysis to determine how changes in input
parameters affect outputs of interest,31−37 this is the first
application of an ESOM to formally identify break-even capital
costs.
In this study, we employ an ESOM called Tools for Energy

Model Optimization and Analysis (Temoa)38 to conduct state-
level analysis of North Carolina’s electric sector through 2050.
A key innovation in this work is the technique used in
calculating break-even costs, which are directly derived from
ESOM solutions, and thus reflect the system-level values of
each technology. Such information is particularly useful since
state energy policy often aims to incentivize the deployment of
technologies that are not currently cost-effective. Information
on break-even investment costs that vary over time and under
different scenarios can provide critical insight by helping policy
makers to develop targets and financial incentives.
We begin by examining future electricity development

pathways for North Carolina while considering fuel price
uncertainty, a hypothetical CO2 cap, and an extended REPS.
Next, we examine the break-even costs under these different
scenarios and use them to inform the consideration of a
hypothetical tax credit under the extended REPS. Finally, we
examine total electric sector CO2 emissions and CO2
abatement costs under all modeled scenarios. The objective
of this analysis is twofold: develop policy-relevant insights that
are both specific to North Carolina and generalizable to other
states, and demonstrate an open source analytical framework
that can be used to explore policy options in different states,
regions, or countries. A key feature of Temoa is publicly
archived source code and data, which enables third party
replication and can serve as the basis for further analysis and
exploration. The model source code and data are available
through GitHub,39 and an exact copy of the files used to
produce this analysis is archived through Zenodo.40

■ MODEL AND DATA
Model Overview. We use Temoa,38 an open-source,

Python-based ESOM, to examine electric sector capacity
expansion and associated emissions from 2015 to 2050. Temoa
represents an energy system as a process-based network in
which technologies are linked together by flows of energy

commodities. Each process is defined by an exogenously
specified set of techno-economic attributes such as investment
costs, operations and maintenance costs, conversion efficien-
cies, emission rates, and availability factors. Temoa is similar in
structure to other ESOMs such as MARKAL,41 TIMES,9

MESSAGE,42 and OSeMOSYS.43

Temoa is formulated as a linear program that minimizes the
total system cost of energy supply over the user-specified time
horizon, subject to both physical and operational constraints
and user-defined constraints. Physical and operational
constraints include conservation of energy at the individual
process level, the global balance of commodity production and
consumption, and the satisfaction of end-use demands. User-
defined constraints include emission limits, maximum tech-
nology growth rates, and bounds on technology capacity and
activity. Temoa minimizes the total system-wide cost of energy
supply by optimizing the installation of new capacity and
utilizing both new and existing capacity to meet demand. The
complete algebraic formulation of Temoa is presented in
Hunter et al.38

Temporal Considerations. In this study, the model time
horizon spans 2015 to 2050, with each period consisting of five
years. The results for each year within a given period are
assumed identical. Note that although 2015 is a historical year,
the first optimized period spans 2015 to 2019 and therefore
the optimization results differ slightly from historical values.
NC electricity demand is projected to grow at 1.2% annually

between 2015 and 2030,44 based on forecasts from the
Integrated Resource Plans (IRPs) of Duke Energy Progress
and Duke Energy Carolinas,45 which constitute the largest
utility serving North Carolina, as well as Dominion Energy,
another electricity utility whose service territory includes the
northeastern corner of North Carolina.46 We extend this
annual growth rate to 2050, and use the historical NC
electricity consumption in 2015 as the base year value, as
displayed in Supporting Information (SI) Table S2 and Figure
S1.
ESOMs typically represent intra-annual variations in energy

supply and end-use demands by dividing one year into a
limited number of time slices that represent combinations of
different seasons and times-of-day. Modeling supply and
demand with fine-grained temporal resolution is necessary to
capture the energy and capacity value of variable renewable
energy sources.47,48 Several papers attempt to model long time
horizons with sufficient temporal detail to capture power sector
operation in ESOMs.8,11,12,49 In this study, one year is divided
into 96 time slices: four seasons, with each season including 24
times-of-day to create a representative hourly profile for each
season. This configuration allows us to capture average hourly
variations in renewable resource availability and electricity
demand. The load in each time slice comes from seasonal
average load of that time-of-day, which is drawn from historical
hourly electricity load in 2014.50 All scenarios utilize the same
fixed, exogenously specified demand profile.
In addition, two constraints capture temporal aspects of

power system operation: a system-wide reserve margin
constraint and a ramp rate constraint. The reserve margin
constraint requires that the total system capacity value must
exceed the peak hourly demand by at least 15%45 during each
period to ensure adequate capacity reserve to meet demand
during plant outages. Technology-specific capacities are
multiplied by a capacity credit in the reserve margin constraint,
where the capacity credit represents the fraction of capacity
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that can be relied on during peak demand periods. The
assigned capacity credits are 5% for solar PV,51 20% for
onshore wind,51 35% for offshore wind;52 the remaining
capacity credits for dispatchable generators are drawn from
NERC.53 Solar PV receives a low capacity credit due to limited
solar availability during cold winter mornings when the system
reaches its peak.51 For simplicity, we assume that the capacity
credit remains constant through time, though previous work
indicates that the capacity credit of wind and solar declines
with increasing penetration.54,55 The ramp rate constraint
requires that the change in electricity generation from a
specific technology between two adjacent time slices must be
bounded by its ramping capabilities. The mathematical
formulation of these constraints is provided in the SI.
Technology Cost and Performance Data. The North

Carolina electric sector is modeled as a single region and does
not include a representation of the transmission network. Net
interstate trade has constituted less than 10% of NC’s total
electricity supply56 and is not included in this analysis. We
performed an offline analysis of hourly imports and exports to
the Duke Energy Progress system, which constitutes most of
North Carolina, and did not observe large seasonal or diurnal
variations in electricity trade that would have a significant
effect on capacity expansion. We consider 28 electricity
generating technologies, which can be categorized into nine
groups based on their primary fuel types: natural gas, coal,
diesel, uranium, biomass, geothermal, solar, wind, and hydro.
Combustion technologies are defined based on their primary
sources of power, including steam turbines, combustion
turbines, or combined-cycle turbines. Advanced natural gas
combined cycle and coal-fired steam with carbon capture and
sequestration (CCS) plants are included, and state-of-art SO2,
NOX, and CO2 emissions control retrofits are also available for
both existing and future units. Nuclear technologies include
both conventional light water reactors (LWRs) and LWR-
based small modular reactors (SMRs) as an advanced
alternative. We consider three groups of renewable technolo-
gies: solar PV, wind, and biomass. Solar PV is further split into
residential and utility-scale PV, differentiated by their invest-
ment costs and capacity factors. Wind power is categorized
into onshore and offshore. Due to limited resource potential in
North Carolina, onshore wind is capped at 5 GW in total.57

Biomass-based integrated gasification combined-cycle (IGCC)
is also included. Consistent with previous work,6,58 we model
the input feedstock as a composite of corn stover, energy crops
(grassy and woody), urban wood waste, agricultural, forest, and
primary mill residues. Since end-use energy efficiency (EE) is a
part of the current REPS, we model it as a generic technology.
A literature review indicates EE costs ranging from 29 to 258
$/MWh,59−66 and the median variable cost of 43 $/MWh is
used in this data set. In addition, we consider four utility-scale
electricity storage systems: lithium-ion battery, zinc−carbon
battery, flow battery, and compressed air energy storage. The
model treats the time slices as an ordered set and optimizes
both the charge−discharge capacity and amount of energy
stored or dispatched each time slice. In each model time
period, the storage charge level is initialized to zero and must
be fully discharged by the end of the period. The storage
duration is fixed at 4 h for simplicity.
Existing capacities are drawn from EIA Form 860 and

calibrated with EIA’s state electricity profile.56,67 Technical
parameters for most technologies, including costs, perform-
ance, and emission factors, are taken from EPA’s MARKAL

2016 database supplemented by EIA’s Annual Energy Outlook
2017.6,68 Capital costs of new electricity generating tech-
nologies are drawn from NREL’s 2018 Annual Technology
Baseline.69 Solar PV costs in 2015 are taken from a market
report from NREL.70 A complete list of technologies and their
techno-economic parameters are provided in SI Section 2.

Modeled Scenarios. All modeled scenarios include EPA’s
Cross-State Air Pollution Rule (CSAPR), which limits SO2 and
NOX emissions71 as well as the current REPS law. We model
the current NC REPS with annual percentage targets for
minimum renewable electricity generation and energy
efficiency (EE). It requires at least 12.5% of electricity
generation from renewable sources or EE in 2021 and beyond.
We include the solar carveout, but not the ones for swine or
poultry waste given their low targets. Consistent with the
REPS law, the maximum allowable EE fraction starts at 25% in
2015, reaches 40% in 2025,3 and remains fixed at 40%
thereafter. The percentage requirements by model time period
is detailed in SI Figure S10.
Future electricity system pathways can be affected by several

factors, but we choose to focus on three high-level issues:
natural gas prices, an extended REPS, and a limit on CO2
emissions. In North Carolina, as elsewhere, low natural gas
prices enabled by hydraulic fracturing have led to a rapid
transition away from coal and toward combined-cycle gas
turbines (SI Figure S1). Thus, the future generation mix will be
sensitive to realized natural gas prices. In addition, there are
active and ongoing discussions about future energy and climate
policy, including Executive Order 80, which aims to reduce
statewide CO2 emissions by 40% below 2005 levels by 2025.72

In this study, we utilize future fossil fuel price projections
from EIA’s Annual Energy Outlook 2017 (AEO 2017).68 Fuel
prices from three AEO2017 scenarios are selected to
encompass the full range of natural gas prices included in
AEO 2017: Low Oil and Gas Resource, Reference, and High
Oil and Gas Resource, which have the highest, intermediate,
and lowest natural gas prices, respectively. The price
trajectories are shown in SI Figure S8. As noted in the results,
the large variation in projected natural gas prices has a
significant effect on capacity deployment.
We also consider a hypothetical cap on CO2 emissions. In

addition to Executive Order 80, Duke Energy, the largest
investor-owned utility in North Carolina, has committed to
reducing its emissions 40% below 2005 levels by 2030.73 This
goal is meant to be consistent with a scenario in which the
world collectively limits climate change to no more than 2 °C
above preindustrial levels.73 In our analysis, we provide a linear
extrapolation of this goal to achieve a 70% reduction below
2005 levels by 2050. We assume for simplicity that
proportional reductions are undertaken by all states, and
thus leakage effects across state lines are minimal. While Duke
models their CO2-constrained scenario as a carbon price, the
assumed value is not publicly available in their integrated
resource plan.45 Historical CO2 emissions from the electric
sector and the modeled future emission limits from 2025 to
2050 are given in SI Figure S9.
Finally, we consider a revised and extended REPS that

represents a linear extrapolation of the current REPS target,
reaching a 30% share of renewable electricity in 2050 (SI
Figure S10). The existing REPS has already been achieved, and
active discussions about an extended REPS or clean energy
standard are currently taking place. In the extended REPS
scenario, the EE fraction of all renewable electricity is assumed
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to remain the same as in the current REPS, that is, it starts at
25% in 2015 and reaches 40% in 2025. In this revised REPS,
the target includes utility and residential solar PV, onshore and
offshore wind, hydro, and biomass IGCC with no carve outs or
additional financial incentives.
The scenario analysis therefore includes the following

scenarios: no new policy with high (H), reference (R), and
low (L) natural gas prices; the carbon cap with high (Cap-H),

reference (Cap-R), and low (Cap-L) natural gas prices; and the
extended REPS under reference level natural gas prices (REPS-
R). We only include the extended REPS under reference
natural gas prices, as results in the REPS under different fuel
price projections are very similar. An additional REPS run is
conducted with an investment tax credit (REPS-R-ITC) for
wind, which is informed by the break-even analysis described

Figure 1. NC electricity generation mix through 2050 under eight scenarios: (a) low natural gas prices [L], (b) carbon cap with low natural gas
prices [Cap-L], (c) reference natural gas prices [R], (d) carbon cap with reference natural gas prices [Cap-R], (e) high natural gas prices [H], (f)
carbon cap with high natural gas prices [Cap-H], (g) extended REPS with reference natural gas prices [REPS-R], and (h) extended REPS with
reference natural gas prices and an investment tax credit for onshore wind [REPS-R-ITC]. Given the low cost of energy efficiency (EE) measures, it
is used to the maximum extent under both the existing and extended REPS.
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below. Thus, a total of eight scenarios are modeled. SI Table
S12 summarizes the modeled scenarios.
Break-Even Analysis. In most ESOMs, optimal solutions

only consist of a subset of all available technologies, and they
fail to reveal how close some technologies are to being
deployed. We quantify the technology-specific break-even
capital costs required to achieve deployment under the eight
modeled scenarios. In this analysis, the break-even cost

represents the capital cost at which a given technology will
be deployed, all else equal. Examining break-even costs for
technologies that are not deployed in a given scenario and
period indicate the necessary capital cost reduction to make
them cost-competitive. We focus on break-even capital costs
because new low carbon technologiesincluding wind, solar,
carbon capture and sequestration, and nuclearare capital-
intensive. In addition, capital costs also serve as a convenient

Figure 2. Average power production in 2050 from different sources in each time slice. Results from six scenarios are shown here: (a) L, (b) Cap-L,
(c) R, (d) Cap-R, (e) H, (f) Cap-H. The seasons are ordered left-to-right beginning with spring. White gaps represent the boundaries between
seasons, and each season is divided into 24 h time slices. Note that net load, the total electric load minus wind and solar generation, is represented
by the upper edge of the dark blue band.
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metric, and can be readily compared with future cost
projections from other sources.69,74 Such information can
help inform policy.
In this analysis, we use the reduced costs returned by

Temoa’s solver to estimate break-even costs. In linear
programming, the “reduced cost” associated with a specific
decision variable in the objective function is the amount by
which its coefficient must improve before it can enter the
optimal solution.75 In Temoa, the reduced cost vector returned
by the solver contains updated objective function coefficients
associated with the technology-specific capacity variables that
are not part of the initial optimal solution. These reduced cost
coefficients indicate the level to which the fixed cost of each
technology must dropall else equalto enter the solution.
In simpler terms, the Temoa objective function represents a
present cost calculation over the model time horizon. Our
break-even cost calculation effectively estimates the required
capital cost for each technology to make its present cost
competitive with other technologies. This is not a static
calculation, but rather determined endogenously by the model,
as it depends on the dynamic interaction among all
technologies meeting demand over time and subject to a set
of performance constraints. A more detailed discussion on
reduced cost and its relationship to break-even capital cost is
provided in SI Section 4. In addition, SI Section 4.3 compares
results produced with our proposed method to a simple
levelized cost of electricity comparison, and illustrates how the
latter can lead to misleading insights by ignoring system-level
constraints. Previous work points out the utility of reduced
cost as a metric in energy system optimization models,76−79

but it has not been formally applied to quantify break-even
costs.
One limitation of this approach is that break-even costs for a

given technology and scenario will be contingent on all other
cost and performance assumptions in the model. To address
this limitation, we perform sensitivity analysis on the
technology-specific investment costs. We perform this
sensitivity in the L and Cap-H scenarios, which span the full
range of break-even costs for each technology. Thus, for a
specific technology and scenario, the break-even costs are
calculated three times, assuming the following for all
generating technologies other than the one under consid-
eration: (1) baseline capital costs, (2) a 20% increase in capital
costs, and (3) a 20% decrease in capital costs. This uniform
variation in capital cost across all generating technologies
provides a simple way to roughly assess the relative sensitivity
of technology-specific break-even costs to scenario assump-
tions and the capital costs of all other generating technologies.

■ RESULTS AND DISCUSSION
Capacity and Generation Mixes. The electricity

generation mix is shown in Figure 1. Low (L), reference
(R), and high (H) fuel price scenarios affect the trade-off
between natural gas, solar PV, and coal. In 2050, coal alone
contributes over 50% of the total electricity generation in the
H scenario, compared to less than 5% in the R and L scenarios.
The H scenario results are consistent with previous
studies,80,81 which report that in the absence of climate policy,
the U.S. energy system continues fossil fuel use between 2010
and 2050. This observation aligns well with McCollum et al.,82

which found that the global energy system might see a future
expansion of coal and low-carbon energy under high oil and
natural gas prices. While the model results suggest that a

limited resurgence of coal is possible under high natural gas
prices, utilities are unlikely to make a 50 year investment in
coal given the possibility of future climate policy.
A direct trade-off between natural gas and renewables can be

observed in the Cap scenarios. Natural gas contributes 31% of
the 2050 electricity generation in the Cap-H scenario, whereas
natural gas alone accounts for over 62% of electricity
generation in the Cap-L scenario. In addition, the high natural
gas prices in the Cap-H scenario produce a significant shift
toward renewable energy. Solar PV, wind, and biomass
collectively account for over 62% of the 2050 electricity
generation in the Cap-H scenario, which represents the highest
renewable penetration across all scenarios. The high natural
gas prices in the Cap-H scenario lead to continued coal
utilization, but coal is reduced to less than 1% of the
generation mix by 2050. Although all scenarios have the same
annual demands, the Cap scenarios typically have higher total
capacities (SI Figure S11). The Cap scenarios include higher
penetrations of wind and solar, which have relatively low
capacity factors, and therefore require higher capacities to
produce the equivalent amount of electricity as a conventional
plant. Consistent with the Duke IRP,45 we consider CCS
associated with pulverized coal and integrated gasification
combined cycle (IGCC), but do not see its deployment in the
carbon constrained scenario.
Figure 2 indicates that the future contribution of solar PV

under all scenarios is significant, and the model results replicate
the “duck curve” effect observed in California.83 As shown in
Figure 2f, the Cap-H scenario includes significant amounts of
biomass, which are deployed to address the steeper ramps of
net load resulting from a high solar PV penetration. The
highest solar PV penetration in the Cap-H scenario creates
steep ramps of net load during late-afternoon, especially in
summer. As shown in Figure 2, net load in the Cap-H scenario
in summer 2050 rises from 3 GW at 1 pm to 25 GW at 8 pm,
creating a much steeper ramp than in the H scenario. However,
natural gas only provides around 15 GW of ramping capacity
due to high natural gas prices and therefore limited utilization
of gas turbines. The model instead utilizes biomass IGCC,
which is assumed to be a carbon-neutral process that enables
fast-ramping through syngas combustion. While biomass
IGCC alone provides over 7 GW of ramping capacity in
2050, NC biomass energy potential is estimated to be around 2
GW,57,84 which implies that an additional 5 GW of biomass
resource must be imported from other states. Interestingly,
storage is not deployed. We speculate that this may have to do
with the fixed storage duration and the use of average 24 h
diurnal profiles per season that do not capture the full benefit
of shifting supply from low to high demand periods. To better
characterize the potential role of storage, additional work with
higher temporal resolution of supply and demand and different
parametrizations of storage technology is required.85 For
example, recent work using a model with hourly resolution
indicated cost-effective deployment of lithium-ion battery
storage in North Carolina by 2030.86

Break-Even Costs. The trade-offs among low carbon
options in the modeled scenarios largely revolve around utility-
scale solar photovoltaics, biomass IGCC, and onshore wind.
Decision makers may wonder how close to cost-effective other
low carbon technologies may be under these different
scenarios, and break-even costs can provide insight that helps
inform policy. The break-even capital costs for six selected
technologies are presented in Figure 3. In Figure 3, the upper

Environmental Science & Technology Policy Analysis

DOI: 10.1021/acs.est.9b04184
Environ. Sci. Technol. 2020, 54, 665−676

670

http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b04184/suppl_file/es9b04184_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b04184/suppl_file/es9b04184_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b04184/suppl_file/es9b04184_si_001.pdf
http://dx.doi.org/10.1021/acs.est.9b04184


edge of the light gray area represents the exogenously specified
capital cost for each technology within the model. In the case
of wind and solar technologies, the increase in investment cost
from 2015 to 2020 is due the expiration of federal tax credits
(see SI Section 3 for details). Declines in the specified capital
costs over time represent the effect of technological learning,
which are exogenous to the model. The markers occurring
within the lighter gray area indicate that the investment costs
must be reduced to that amountall else equalbefore the

technology will be deployed during that period and scenario.
When the markers overlap the upper edge of the lighter gray
area, it implies that the technology has been deployed during
that period. Dark gray and green bands around the L and Cap-
H scenarios represent the variability in break-even capital cost
for a given technology when all other technology capital costs
are increased and decreased by 20%. Caution must be
exercised when interpreting these results. The scenarios are
selected to form a cost envelope, enabling a wide range of

Figure 3. Break-even investment costs associated with (a) onshore wind, (b) offshore wind, (c) light water reactors, (d) small modular reactors, (e)
residential solar PV, and (f) biomass integrated gasification combined-cycle. The dark gray and green bands represent the variation in break-even
cost for a given technology when capital costs of all other generation technologies are simultaneously increased and then decreased by 20%. Note
that in (c) and (d), the solid blue curve (REPS-R) is overlapping the solid black curve (R). In (f), the break-even costs of the L, R, H, and REPS-R
scenarios are negative and are not displayed.
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break-even costs across scenarios. However, the break-even
costs plotted in Figure 3 are illustrative, and should be
interpreted as discrete results drawn from a continuous space.
We chose to focus the break-even cost analysis on low

carbon options, including renewables (onshore and offshore
wind, residential solar PV, biomass IGCC) and nuclear
(conventional light water reactors, small modular reactors).
Utility-scale PV is excluded since it is already cost-effective in
all modeled scenarios. Figure 3 indicates how the break-even
costs vary under different scenario assumptions. In most cases,
the break-even costs reach a maximum under the Cap-H
scenario, which offers the best economic conditions under
which to deploy low carbon technologies. Likewise, break-even
costs are at a minimum under the L scenario, where low
natural gas prices and no emissions limit make renewables and
nuclear less cost-effective. The dark gray and green bands
representing capital cost variation produce changes in the
break-even cost that are comparable to the shift from one
scenario to another. Variations in band thickness are also
discernible. For example, the green band in Figure 3a is
narrower than the gray band, indicating higher sensitivity of
onshore wind breakeven costs to other technologies under the
L scenario than under the Cap-H scenario. By contrast, the
width of the green bands are wider than the gray bands in
Figure 3c,d, indicating that breakeven costs of nuclear
technologies are more sensitive to variations in the capital
costs of other technologies if the CO2 cap is in effect.
Figure 3c indicates that new light water reactors are cost-

effective under the Cap-H scenario with a capital cost of 4500
$/kW, but the break-even capital cost drops below 2000 $/kW
in the L scenario. Thus, the cost-effectiveness of conventional
nuclear is highly sensitive to both fuel prices and the presence
of the CO2 cap. Small modular reactors share a very similar
break-even cost pattern to conventional light water reactors
given their similar cost and performance characteristics.
Because offshore wind is much more expensive than onshore

wind, onshore wind is deployed in the Cap-H scenario and the
capital cost reductions required in the other scenarios are
smaller compared with offshore wind. However, given offshore
wind’s higher capacity factors, it can be cost-effectively
deployed at a higher capital cost than onshore wind.
Surprisingly, biomass IGCC exhibits negative break-even
costs in the fuel price scenarios without a carbon cap,
indicating that there is no break-even capital cost that makes it
cost-effective in those scenarios. Even with zero capital cost for
biomass IGCC, it still has high fixed operations and
maintenance (O&M) costs: the present cost of the fixed
O&M represents over 50% of its capital cost, but is less than
30% for most other technologies.

The Extended REPS Scenario. Suppose that state
legislators decide to pursue the extended REPS (REPS-R).
Compared with the R scenario (Figure 1c), the REPS-R
(Figure 1g) includes additional solar PV generation, which
displaces natural gas generation. Legislators might wish to
consider an additional provision under REPS-R to promote
diversity in renewables supply. Using the break-even cost
information in Figure 3, further suppose that lawmakers decide
to target the deployment of onshore wind. The break-even cost
for onshore wind under the REPS-R scenario ranges from 930
to 1060 $/kW between 2020 and 2050 (Figure 3a),
corresponding to a capital cost reduction between 32 and 39%.
This break-even cost information can be used in at least four

different ways to inform the extended REPS. First, the required
capital cost reduction can be used to calibrate an investment
tax credit for wind to stimulate its deployment. Second, policy
makers could decide to create a carve out for onshore wind,
and the breakeven price could be used to set a cap on the
incremental cost of wind Renewable Energy Certificates
(RECs) that are allowed to be passed on to rate payers.
Third, a carve out for wind can be created, and the break-even
price used to calibrate an alternative compliance payment
(ACP), which provides a price ceiling in the RECs market.87

Figure 4. CO2 emissions across all tested scenarios. The CO2 cap is binding regardless of the prevailing fuel price projections in the cap scenarios.
The table near the bottom left provides the average abatement costs calculated from the model results; the EPA social cost of carbon range from
2015 to 2050 at a 5% discount rate is included for comparison. All abatement costs are in 2018 dollars.
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ACPs are penalty payments that a utility pays to the utilities
commission or other governmental body if renewable energy
goals are not met. As they are typically not recoverable from
ratepayers, it is important to set the ACP at an appropriate
level to encourage compliance with REPS laws. Wiser et al.88

provide additional details about ACPs and values previously
used in different U.S. states. Fourth, the break-even prices
could be used to guide electricity system regulators in long-
term energy auctions for renewables. While not applicable in
the vertically integrated NC electric sector, these prices could
potentially serve as the basis for designing appropriate
subsidies to promote competition and achieve the lowest
bids by generation source in competitive power markets.89

For simplicity, we consider an investment tax credit for
onshore windOption 1 aboveby performing an additional
run with an assumed 40% reduction in the wind capital cost,
which is slightly higher than the 32−39% required reduction
derived from Figure 3a. As indicated in Figure 1h, the
proposed ITC allows onshore wind to achieve 6% of the 2040
generation mix under the extended REPS.
CO2 Emissions and Abatement Costs. The CO2

emissions across all scenarios are shown in Figure 4. The
CO2 cap is binding across the three carbon constrained
scenarios, and is represented by the green line in Figure 4.
Only the H scenario shows a substantial rise in CO2
emissions80% above the 2015 level in 2050driven by
the resurgence of coal. In the L, R, and REPS-R scenarios, the
emissions reduction between 2020 and 2035 reverses in later
time periods due to demand growth coupled with higher
natural gas utilization. Cumulative CO2 emissions in the REPS-
R scenario are 5% lower than the R scenario, indicating that
the extended REPS only has marginal effects on CO2
emissions. In addition, Figure 4 shows the CO2 emission
profile of the REPS-R scenario with and without the
investment tax credit for wind are nearly the same, implying
that the wind ITC leads to the deployment of wind at the
expense of solar rather than increasing their overall combined
deployment. Thus, the wind ITC has negligible effects on
fossil-based generation.
In addition, we calculate the average CO2 abatement costs

($ per tonne CO2) by computing the ratio of the difference in
total costs to the difference in total emissions between each
pair of scenarios consisting of a cap scenario and a scenario of
the same fuel price without the cap. Similarly, the REPS-R
scenario is compared with the R scenario. Therefore, the CO2
abatement costs are proportional to increases in total costs,
and inversely proportional to CO2 emission reductions. The
CO2 abatement costs are included in Figure 4. The Cap-H
scenario has the lowest average CO2 abatement cost due to the
proportionally larger CO2 emission reduction than in the other
two cap scenarios. Although the CO2 emission reductions in
the Cap-L and Cap-R scenarios are similar, the cost increase
from the L to the Cap-L scenario is higher than from the R to
the Cap-R scenario due to the higher cost of replacing natural
gas technologies with renewables in the L scenario. In the
REPS-R-ITC scenario, we include the cost of the ITC in the
calculation of abatement cost. Note that the ITC pushes the
abatement cost above 80 $/tonne CO2 because it does not
increase the level of emissions reductions. In such a scenario,
policy makers must weigh whether such additional cost is
worthwhile in light of other objectives, such as supply
diversification and rural economic development. For compar-
ison, Figure 4 also includes EPA’s social cost of CO2 (SC−

CO2) values from 2015 to 2050 at a discount rate of 5%,90

which is the same global discount rate used in our model.
Though the modeling approach is different, the CO2
abatement costs in the three cap and REPS-R scenarios are
generally higher but overlap the EPA estimates.

Policy Implications. In North Carolina, solar PV is the
most cost-effective low carbon technology, and would likely be
used to meet future REPS or CO2 cap requirements, consistent
with past development. However, uncertainty in future capital
costs could lead to different outcomes. The break-even cost
represents the capital cost required to achieve the deployment
of a technology that is not cost-effective under baseline
assumptions. Our analysis indicates that the technology-
specific break-even costs can vary significantly across scenarios.
For example, the break-even nuclear costs vary by more than
20% of their baseline capital cost across some modeled
scenarios. In addition, as indicated in Figure 3, variations in the
capital cost of other generating technologies can shift the
break-even cost of a given technology by roughly the same
magnitude as switching between scenarios.
The break-even cost analysis presented here could be

particularly helpful for states trying to formulate new energy or
climate policy by allowing decision makers to compare the
relative cost-effectiveness of different technologies under a
wide variety of scenarios. Such information can be used in
several ways. First, comparing break-even costs can help policy
makers incentivize the deployment of technologies that deliver
the highest public benefit at the lowest cost. Second, break-
even costs can be used to determine alternative compliance
costs, or the cap on a utility’s allowable recovery of incremental
REC costs from ratepayers. Third, break-even costs could be
used to inform technology research and development aimed at
achieving a particular cost target. Fourth, while the break-even
costs in this analysis are based on future capacity expansion, it
could be adapted to estimate the zero emissions credit levels
necessary to maintain the existing fleet of nuclear over the next
few decades. Several states, including Illinois, New Jersey, and
New York have implemented zero emissions credits91,92 for
existing nuclear generators. The credits represent the zero
emissions attribute of each megawatt-hour produced by a
qualified nuclear power plant. Previous analysis indicates that
the preservation of existing nuclear is a cost-effective carbon
avoidance strategy.93

Federal action on climate is not imminent. The United
States plans to withdraw from the Paris Agreement, and the
EPA Clean Power Plan has been repealed. However, several
states have pledged to uphold the Paris Agreement,94 and
many states have already taken actions, such as the Regional
Greenhouse Gas Initiative95 and California’s cap-and-trade
system.96 The requisite policy planning would benefit from
ESOM-based analysis, which can help states achieve their
desired emissions targets cost-effectively. This analysis
provides a blueprint that can be replicated in other states
with a publicly available model.

Caveats. In this analysis, we try to place focus on our
modeling approach and generalized insights that are robust to
the model limitations and high future uncertainties. Nonethe-
less, several caveats are worth noting. First, scenario-specific
results pertaining to future electricity generation, break-even
costs, and emissions are dependent on the baseline
assumptions used in the model. The capital cost sensitivity
performed in break-even cost analysis demonstrates how
technology-specific cost-effectiveness can change when the
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baseline capital cost of other technologies are varied. Though
not presented here, we also tested a ±40% range on other
capital costs and observed a linear increase in the width of the
gray and green uncertainty bands presented in Figure 3.
Second, using a single solver occasionally returned anomalous
results. SI Section 4 explains in detail the procedure we
implemented to work around this difficulty. Third, while the
increased number of time slices, capacity reserve constraint,
and ramp rate constraint help constrain system performance
within reasonable bounds, the model does not perform hourly
unit commitment and dispatch97 or consider the need for
operating reserves.98 Additional effort is required to increase
the temporal resolution in ESOMs to better represent power
system operation. Fourth, we assume a fixed exogenous
demand across all scenarios. Price-responsive demands would
lower electricity demand in cap scenarios with higher
electricity prices, but would not fundamentally change the
relative grid mix or technology cost-effectiveness. Finally, while
we demonstrate the utility of break-even cost analysis, it
represents one of many sensitivity and uncertainty analysis
methods that should be brought to bear on model-based
analysis aimed at informing policy.99
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