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A B S T R A C T

Methods for supporting the bidding processes of hybrid wind-photovoltaic (W-PV) farms are scarce, especially
when numerous goals are included in the optimization problem. Therefore, the primary objective of this study is
to develop a novel model that can help bidding of W-PV farms considering a range of objectives that maximize
the environmental and welfare benefits. This new approach contributes to energy planning for any type of hybrid
farm through multi-objective programming, even in cases where the optimization of several correlated outputs is
desired. Using the proposed approach the optimal system configuration can be obtained in these cases with low
computational costs. A non-linear multi-objective optimization (NL-MO) is proposed to optimize the area oc-
cupied by the W-PV farm, minimum feasibility price, electricity production expected, and standard-deviation of
the electricity produced. The model has been elaborated from non-linear optimization using the normal-
boundary intersection (NBI) method, exploratory factor analysis (EFA), and Taguchi signal-to-noise ratio (SNR).
The optimal values for the response variables are an area of 132.92 km2, minimum price of 182.95 R$/MWh,
annual electricity production of 72.17 GWh, with a standard deviation of 1.74 GWh and the ideal share is 41%
wind power and 59% PV power.

Introduction

Currently as the demand for energy has been growing rapidly
worldwide, one of the great challenges is energy security [1–3]. The
energy market must meet this rising energy demand, which goes be-
yond limiting fossil fuel reserves [4]. Increasing populations, instable
access to energy sources, economic and urban growth, and water
scarcity, especially in desert and arid regions, are among the key ob-
stacles [5].

In this scenario, renewable energy technologies (RET) can con-
tribute to the supply of electricity with low greenhouse gas (GHG)

emissions [6–8]. To promote the growth of RETs, governments in sev-
eral countries have resorted to policy schemes, such as feed-in tariffs,
quotas with trading green certificates (TGC), and energy auctions [5,9].
The renewable energy source (RES) policy schemes encourage the de-
velopment of the RES market by attracting the capital of investors
primarily by increasing the user network. As this network grows, it
generates learning gains (spillovers), favoring the reduction in the
technological cost for the production of green electricity through RESs
[10–12].

Other benefits promoted by the RES policy schemes are improved
energy efficiency in the production process and the increase in the ratio
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of electric energy to the total primary energy, with a significant portion
coming from green electricity [13]. Consequently, the share of RETs in
electricity generation has increased, making energy planning more
complex.

The entry of intermittent sources, such as wind and PV, in the
electricity matrices increases the relevance of improving aspects that go
beyond decreasing generation costs, such as energy security, reliability,
flexibility, and the reduction in GHG emissions [14]. Multi-objective
optimization methods are a way to support these complex energy
planning decisions.

Previous studies by Park et al. [15], Kannan et al. [16], and Sirikum
et al. [17] used formulations that included only cost minimization as
the primary objective. However, with these models, the optimal func-
tion is reached without considering conflicting objectives. In energy
planning, classical models that include cost minimization as the only
objective have become unrealistic as more attributes are required [14].
Multi-objective optimization methods have been used as a solution for
similar problems with more than one objective. Certain previous studies
presented in the literature have used multi-objective optimization for
the planning of hybrid systems.

Mavrotas et al. [18] formulated a multi-objective model for plan-
ning the electrical system in Greece based on the branch-and-bound
technique to generate and compare a set of efficient solutions for the
pair. This model aimed to reduce the cost and carbon emissions, and the
study addressed a series of technical restrictions of the system. After-
wards, Antunes et al. [19] presented a multi-objective linear pro-
gramming model for planning the expansion of electricity generation
with the objective of minimizing the total cost of expansion and its
environmental impacts.

Aghaei et al. [20] proposed a multi-objective model for planning a
system with the purpose of minimizing costs, environmental impacts,
energy consumption from fossil fuels, and the exposure to volatility in
the import price of fossil fuels and increasing the reliability of the
system. The problem was formulated using mixed integer linear pro-
gramming and solved using the ε-method. Vahidinasab and Jadid [21]
formulated a model using the normal-boundary intersection (NBI) fo-
cusing on the strategy of contracting electric-generation projects,
minimizing the power flow combined with coefficients that represent
the emission of pollutants and maximizing production, including phy-
sical generation restrictions.

Aghaei et al. [22] developed a multi-objective programming based
on the NBI, aiming at generation expansion that prioritizes minimizing
costs and environmental impacts, in addition to maximizing reliability.

Ahmadi et al. [23] used multi-objective programming through the
NBI to integrate thermal plants with high voltage networks to minimize
costs and GHG emissions. An approach called the technique for order
preference by similarity to ideal solution (TOPSIS) was used to de-
termine the best Pareto-optimal solution.

Izadbakhsh et al. [24] developed an optimization model to de-
termine the best mix of micro wind turbines, photovoltaic panels, fuel
oil generators, battery banks, and larger wind turbines for a small off-
grid generation system. The NBI method was used with two objective
functions: one to minimize the total cost of the system and the other to
minimize pollutant emissions. TOPSIS fuzzy was used to choose the best
Pareto-optimal solution.

Luz et al. [25] addressed solutions for the expansion of the Brazilian
electrical system through different techniques of multi-objective linear
programming. The models were based on the new government targets
for RESs, considering three objective functions: minimizing the total
cost and maximizing the peak load generation and the contribution of
non-hydro RESs.

Fonseca et al. [26] proposed an optimization model to determine
the best combination for a diesel-PV off-grid system in the Amazon
region. The results were then compared with those found using the
Homer® software. The authors performed the NBI method for non-
linear multi-objective optimization (NL-MO), considering the

minimization of GHG emissions and the levelized cost of electricity
(LCOE). The model aimed to guide investors regarding isolated diesel-
PV generation systems and used data envelopment analysis as an ex-
post method to obtain the best Pareto-optimal solution.

Roberts et al. [27] presented an NL-MO simulation-based approach
to dimension an off-grid hybrid generation system based on diesel and
RES. This method integrates a genetic algorithm model and a simula-
tion module to represent the operation of an isolated hybrid system.
The objectives considered are the uncertainties related to RES avail-
ability, level of demand, and likelihood of equipment failure. The
performance of the model was evaluated using actual conditions for an
off-grid system in rural communities in the Amazon region.

Aquila et al. [28] developed an NL-MO method to help Brazilian
electricity regulators to contract W-PV farms on grid considering eco-
nomic and environmental aspects. However, the developed method was
computationally complex and not appropriate for decisions requiring
numerous, possibly correlated, objectives to determine the optimal
parameters of a W-PV farm.

We can observe that the literature about energy planning supported
by NL-MO methods usually investigates electricity systems expansion or
off-grid systems planning. Although studies related to the planning of
hybrid W-PV farms on grid are still incipient, for both regulators and
investors is relevant NL-MO methods focused on define share of W-PV
farms based on criteria that optimize relevant objectives for stake-
holders. Thus, it becomes possible to feasible W-PV bidding process,
since the developed model allows to standardize the process of defining
share of each source for W-PV farms that will compete in the bidding.

Thus, the present study aims to develop and validate a proposal that
fills the gaps presented in Aquila et al. [28]. Furthermore, the proposed
model is not specifically geared to serve only the Brazilian electricity
system but is also applicable to other types of electrical systems with
low computational costs. Another novelty of the study is the application
of multivariate statistical analysis to improve the NL-MO process of
bidding for W-PV farms by managing correlated responses.

In a practical approach, the NBI-EFA-SNR method proposed in this
study can help the regulator to impose a standard for the competitors of
a bidding process for W-PV farms to configure the shares of the projects.
Initially, bidders must plan the W-PV farm using the standard method
and so they would be able to compete isn the bidding. Thereby, a
bidding process between W-PV farms configured using the same criteria
would become viable.

Since hybrid W-PV farms optimization can involve several corre-
lated outputs, the proposed methodology allows to reduce the compu-
tational cost without neglecting any output. Thus, the objective of this
study will present the following logical sequence: the need to define
parameters for contracting W-PV farms; presence of several outputs to
be considered, of an economic, social and technical aspects; existence of
a large number of correlated characteristics; use of multivariate analysis
methods to reduce the problem, without neglecting any information;
share definition of each source in the W-PV farms, serving as a basis for
policy-makers during the hiring process.

Although the case study in this paper is based on a farm located in
Brazil, the proposal may also be adapted and applied to W-PV farms in
other localities. The analyzed outputs are the average electricity pro-
duction (AEP), standard deviation of the AEP (sdAEP), ideal occupied
area, and minimum price (Pmin) that allows for financial viability of the
W-PV farm.

Materials and methods

This section describes the main tools explored in the development of
the method, including NL-MO from NBI, exploratory factor analysis
(EFA), Taguchi signal-to-noise ratio (SNR), and mixture design of ex-
periment (MDOE).

In practical situations, where the required effort or desired benefit
can be expressed as a function of certain decision variables,
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optimization is a procedure maximize or minimize the value of a
function [29]. In an optimization problem, the first step is recognizing
the problem objective that is represented by a quantitative measure that
represents the system performance [30].

Decision variables can be restricted in certain way, for e.g., as a
molecule density and an interest rate that cannot be negative. Problem
of identifying variables, objectives, and constraints to describe a pro-
blem is known as modeling.

Mathematically, an optimization problem can be represented as
follows:

Min f x. ( )
x Rn

=subject to c x i
c x i I

: ( ) 0,
( ) 0,

i

i (1)

where x is the vector of the decision variables, f is the objective func-
tion, ci are the functions of constraints, and and I comprise the set of
equality and inequality constraints.

Usually, in multi-objective optimization problems, the equations
that represent the processes to be optimized are not previously known.
Thus, a modeling methodology is needed to discover the mathematical
relationship between the response variables and the objective functions.

Initially, in MDOE, the input variables (xi) are characterized as
mixture components, and the responses are calculated as a function of
the proportions of each component [31]. Thus, for a problem involving
q mixing ingredients, the sum of the fractions of each component is
equal to one [31], illustrated as follows:

= =
=

x x i q1, 0, ( 1, ..., )
i

q

i i
1 (2)

where xi is the ith mixture ingredient.
Experimental design for mixtures is configured using a simple co-

ordinate system. Therefore, in this context, simplex designs are mostly
used (see more in [31]).

The optimal configuration of W-PV hybrid systems is characterized
as a mixture problem because the objective is to find the ideal share of
each source in the system. As shown in Fig. 1, one of the most

interesting advantages of W-PV hybrid systems is the complementarity
between the sources; the wind regime is more intense at night, whereas
solar radiation occurs only during the day [32–34]. In addition, if the
configuration of the farm considers economic and socio-environmental
aspects, the impacts resulting from the disadvantages of each source
can be minimized.

For example, wind power has the following disadvantages: visual
pollution, noise pollution due to the sound of the wind blowing on the
blades, and the possibility of migratory bird accidents, which may lead
to the death of the animals [35]. Furthermore, Ramanathan [36] no-
ticed that wind farms occupy significant area, and consequently, the
implantation of wind power farms can cause alterations to the natural
landscape with limitations and disturbances for the local population,
especially during the construction phase of the farm. Land leasing ex-
penses are also increased, and available space for other productive
activities is reduced.

Before performing the EFA, it is important to analyze the outputs of
the problem. If there are responses with conflicting optimization di-
rections, maximization or minimization of the factors will favor some
variables, Taguchi SNR normalizes individual responses to eliminate
this problem. Taguchi originally uses SNR to measure the deviations of
quality characteristics from target values [37].

Variability can be analyzed by choosing an appropriate SNR [37].
Thus, three SNRs are generally used:

1) “Smaller-the-better” (goal is to minimize a performance):

=
=

SNR
n

y10 log 1

i

n

i
1

2

(3)

where y is the ith output observed.
2) “Bigger-the-better” (goal is to maximize a performance):

=
=

SNR
n y

10 log 1 1

i

n

i1
2

(4)

3) “Nominal-is-better” (objective is to achieve a certain nominal
value):

Fig. 1. Complementarity between solar irradiance and wind speed.
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=SNR y
S

10 log
2

2 (5)

where S is the sample standard deviation.
Thus, because the optimal levels of influence variables are those

that maximize SNR [37], it is possible to standardize the optimization
direction of the individual responses from SNR.

Finally, EFA attempts to explain the correlation among a set of
observed variables through a linear combination of an unknown
number of unobserved random factors [38]. Notably, the planner of a
hybrid system could consider several outputs that may be relevant to
the characteristics of the generation system. By reducing the di-
mensionality of the problem through EFA, the computational cost of
multi-objective optimization with several outputs is also reduced.

Similarly, as a principal component analysis, EFA can reduce the
dimensionality of the problem without significant loss of information
through the approximation of the covariance or correlation matrix ( ).
However, EFA considers that variables can be grouped by their corre-
lations and all variables within a particular group are highly correlated
among themselves, but have small correlations with variables in other
groups. Each group then represent an underlying construct or factor
that is responsible for the observed correlations [39].

EFA models express each variable as a linear combination of un-
derlying common factors (f1, f2, …, fn) with an error term (ε1, ε2, …, εn)
added which will account for the part of variable that is unique. For any
y1, y2,…,yn observation, vector y, model is as follows [40]:

= + + + +
= + + + +

= + + + +

y µ f f f
y µ f f f

y µ f f f

...

...

...

m m

m m

p p p p pm m p

1 1 11 1 12 2 1 1

2 2 21 1 22 2 2 2

1 1 2 2 (6)

where fm is the random variable that produces yp, λpm is the coefficient
that represents loadings and serves as a weight showing how each yp
individually depends on fm, and p > m to achieve a conservative de-
scription of the variables as functions of a few underlying factors.

Two methods can be used to estimate loadings and commonalities:
the principal component (and principal factor) method, used in this
study, or maximum likelihood, with a regression method to calculate
the factors score (see more in [41]) [40–41]. After the factors are ex-
tracted by creating a rotation of new axes, the data is simplified al-
lowing a better understanding of the factors [40]. In this study, we
focus on methods of orthogonal rotation.

When m = 2, the transformation to a simple structure can be de-
termined graphically based on a plot of factor loadings [39]. The rows
of are pairs of loadings, and the angle is that which the axes can be
rotated to move them closer to a grouping of points [40]. The new
rotated loadings can be calculated by = T , where T is the sine and
cosine matrix in the counterclockwise and clockwise rotation [40]:

= =T
cos sin
sin cos

cos sin
sin cos

counterclockwise clockwise (7)

The primary orthogonal rotation methods are varimax, quartimax,
and equimax.

a) Varimax
Varimax is defined as a transformation with the objective of max-

imizing the variance, subject to constraint = ij. However, this oc-
curs only when the factor loads of column m are minimized (i.e.,
minimizes the complexity of factors).

=
= = = =

V
m m
1 1

j

k

i i

m

ij
i

m

ij
1 1 1

4
2

1

2

(8)

where ij = = mi
m

ij1 is the average of the squared loadings of factor j.
b) Quartimax
As the inverse of varimax, this method is based on the maximization

of the variance of square of loadings in each line p of matrix .

=
= = =

V
p p
1 1

j

k

i

p

ij
i

p

ij
1 1

4
2

1

2

(9)

c) Equimax
Equimax considers simplifying the rows and columns of , mini-

mizing the complexity of the factors and variables simultaneously.
Therefore, this method has been used for factor rotation in this study.

For routine optimization, NBI is an approach developed to find
Pareto-optimal solutions evenly distributed for a nonlinear multi-ob-
jective problem [42]. The NBI formulation increased with the restric-
tions of the mixing problem, illustrated in Eq. (2), is

=
=

Max D

s t w D e F x
x

x
x

. . : ( )
( ) 1

0

x D( , )

(10)

where w is the convex weighting, D is the distance between the utopia
and Pareto frontier, F x( ) is a vector containing individual values of
normalized objectives in each run, and e is a column vector of ones.
and are the payoff and normalized payoff matrices and can be illu-
strated as follows:

= =
f x f x

f x f x

( ) ( )

( ) ( )

m

m m m

f x f x
f x f x

f x f x
f x f x

f x f x
f x f x

f x f x
f x f x

1 1 1

1

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

m
m

m m

m m m

m m m
m m m m

m m m

1 1 1 1
1 1 1

1 1 1
1 1

1
1 1

(11)

where fi*(xi*) is the solution that minimizes the i-th objective function fi
(x); fi(xi*) is the remaining objective function when fi*(xi*) is opti-
mized.

The ex-post method used to identify the best Pareto-optimal solu-
tion was the technique for order performance by similarity to ideal
solution (TOPSIS) [43]. The decision matrix A for the present problem
composed of values of criteria or objectives, and the weighting ma-
trix X , which in this case, is represented by the wind power and PV
fractions found in each optimum Pareto solution, can be illustrated by
Eq. (12) and Eq.13, respectively:

=A
y y

y y

. . .
. . . . . . . . .

. . .
n

m mn

11 1

1 (12)

=X x x x[ , , ..., ]n1 2 (13)

The evaluation criteria can be classified into two types: benefit and
cost. Benefit indicates that the direction of optimization is desired (A+),
whereas for criterion, cost is the inverse (A-). As the data of matrix A
have different origins, the matrix must be normalized to transform it
into a dimensionless matrix for the comparison of different objectives of
the problem. Matrix A is normalized as follows:

=y
y

m x yá ( ¯)ij
ij

(14)

Thus, the normalized matrix An, representing the performance of
the alternatives, can be illustrated by , with i= 1,…,m and j= 1,…,n.

The calculation of the best Pareto-optimal solution from TOPSIS is
done through the following steps.

1) Calculation of A+ and A- as follows:

=+ + + +A y y y( , , ..., )m1 2 (15)

=A y y y( , , ..., )m1 2 (16)

where
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=+y y j J y j J(max , ; min , )j i ij i ij1 2 (17)

=y y j J y j J(min , ; max , )j i ij i ij1 2 (18)

where J1 and J2 are benefit and cost criteria.
2) Calculation of Euclidean distance between Ai and A+ and Ai and

A-:

=+

=

+d x d( )
j

n

j ij
1

2

(19)

=
=

d x d( )
j

n

j ij
1

2

(20)

where =+ +d y yij j ij, with i= 1,…, m and =d y yij j ij, with i= 1,…,
m.

3) Calculation of relative proximity C* for each alternative Ai in
relation to the ideal solution of A+:

=
++C d

d d( ) (21)

4) Choose Pareto-optimal solution with the largest C*, which is the
closest to the optimal positive solution.

Measurements of variables analyzed in farm

Herein, we present the calculations of the objectives considered for
the optimal W-PV farm share: AEP, sdAEP, Pmin, and area. The share of
MDOE was based on the simplex lattice, with two components (wind
and PV) and at 10°, with the inclusion of axial points and a center point,
totaling fourteen scenarios to calculate each variable, as listed in
Table 1.

Wind and photovoltaic power

The procedures to calculate the AEP of the hybrid farm are pre-
sented here. The sdAEP of the farm is also used in the same calculation
but is obtained by a stochastic process performed by the Monte Carlo
simulation (MCS). Five thousand simulations were performed, varying
the monthly wind speeds and monthly hours of sunlight in the Weibull
probability distributions.

The MCS processed numerous different models, using random va-
lues from predetermined probability distributions for the uncertain
parameters [44–45]. Several samplings of the parameter inputs were
performed by the execution of simulation rounds. Eq. (22) describes the
stochastic process to calculate the AEP expected by the MCS, as a
function of monthly wind speeds and monthly hours of insolation.

= +
+ +

AEP v v h h

fdp AWEP dAWEP fdp APVEP dAPVEP

( . .. ; . .. )

( ) ( )
n n1 1

0 0 (22)

where AEP is the annual electricity production, AWEP is the annual
wind electricity production, APVEP is the annual PV electricity pro-
duction, vi is the mean wind speed in month i, hi is the mean insolation
hour in month i, and fdp is the function density probability.

When performing the AEP simulations using the Crystal Ball® soft-
ware, the probability distribution with the predicted values and sta-
tistical data for the series of results calculated by the simulation are
obtained. One of the calculated parameters is sdAEP, which has been
considered in the analysis.

To estimate AWEP, the electricity was calculated with 8,760 h of
recovery, discounting an approximate 7% loss of electricity [45]. Power
curves for wind turbines from the manufacturer Enercon were also
considered, with powers of 2 MW, 2.3 MW, 3 MW, and 4.2 MW [46],
and values of η = 0.98 and ρ = 1.225 kg/m2 were used [24]. The wind
speed data to estimate the wind power were collected from the SWERA
base [47] for Caetite, and similar to Aquila et al. [28], the wind speed
data were corrected for turbine heights. A mix of wind turbines for each
scenario was simulated to achieve best the AWEP.

In the stochastic estimate of wind electricity, uncertainty was in-
corporated in the average monthly wind speed. The two-parameter
Weibull functions are the most appropriate to fit the wind speed [48]
and were inserted with specific parameters for 12 months of the year for
the lifetime of the W-PV farm of 240 months.

To estimate the parameters of the Weibull distribution, the shape
factor (k) of 2.00 was used for each month for the wind farms in the
state of Bahia [49], and the scale factor (c) was calculated using Eq.
(23) [50].

=
+( )c v

1 k
1

(23)

where k is the shape factor (dimensionless) and c is the scale factor (m/
s).

Table 2 lists the average wind speeds used to estimate the AWEP
and the parameters of the Weibull distribution. Thus, MCSs were per-
formed, incorporating uncertainty into the wind behavior.

PV cell data from Yingli Solar [51] were used to estimate the annual
average PV electricity production (APVEP). In the scenario with 100%
PV power, 100,000 PV cells were considered, and for other scenarios, a
proportional percentage of PV power was assumed.

In the stochastic calculation of part of the APVEP, uncertainties
were attributed to average sunshine hours for each month of the year,
compatible with monthly seasonality. However, to estimate the para-
meters of the Weibull distributions, sunshine hours for each month
between 1994 and 2017 were collected from the INMET base [52].

Using the data series of hours of insolation, it was verified that the
Weibull distribution represented a good fit for the data, and with these

Table 1
Simplex lattice share for mixture design of experiment.

x1 Wind power (MW) x2 Photo voltaic power (MW)

30.0 0.0
27.0 3.0
24.0 6.0
22.5 7.5
21.0 9.0
18.0 12.0
15.0 15.0
12.0 18.0
9.0 21.0
7.5 22.5
6.0 24.0
3.0 27.0
0.0 0.0

Table 2
Average monthly wind speeds and Weibull parameters.

Mounth vi c k

Jan 7.36 5.56 2.00
Feb 7.76 5.86 2.00
Mar 7.25 5.47 2.00
Apr 7.81 5.90 2.00
May 7.99 6.04 2.00
Jun 7.70 5.82 2.00
Jul 8.46 6.39 2.00
Aug 7.49 5.66 2.00
Sep 7.45 5.63 2.00
Oct 8.07 6.09 2.00
Nov 8.07 6.09 2.00
Dec 7.90 5.97 2.00
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parameters, each distribution was estimated using Crystal Ball® soft-
ware. Table 3 lists the average hours of insolation and Weibull para-
meters for each month of the year.

Minimum price

The net present value (NPV) can be used to determine the Pmin at
which the electricity must be sold to reach the minimum return on
investment. The NPV is calculated using a discounted cash flow with a
rate calculated by the weighted average capital cost (WACC) approach
used in several studies related to RET systems [53–56]. The NPV cal-
culation is illustrated as follows:

=
+

=NPV
CFy
r

C
(1 )

y
Y

y
1

0 (24)

where Y is the lifetime of the investment, CFy is the net cash flow in
period y, y is the period analyzed, C0 is the initial investment, and r is
the discount rate.

=
+

+
+

×WACC S
S D

k D
S D

k T(1 )S D (25)

where S is the amount of equity used to finance the investment, kS is the
equity rate of return, D is the amount of debt used to finance the in-
vestment, kD is the cost of the loaned capital, and T is the income tax
rate (%).

The capital asset pricing model (CAPM) was applied to calculate kS,
with a country risk premium, estimated as 2.62%, added [53]. The kS in
the CAPM is given as follows:

= + +k R R R R( )S m b (26)

where R is the risk-free rate of return (%), Rm is the average return on
equity from the stock market (%), β is the factor measuring the risk
level, and Rb is the country risk premium.

Eq. (27) was used for the cost of the loaned capital (kD) [57–58],
where Rc is the credit risk.

= + +k R R RD f c b (27)

The structure for calculating the free cash flow of the W-PV farm for
each period is shown in Table 4.

Gross sales revenue is equal the product of the amount of electricity
produced and the Pmin to obtain an NPV with an estimated physical
guarantee. Taxes collected on the revenue are PIS and Cofins, with rates
corresponding to the presumed profit of the investment. Operating
expenses refer to the sector charges (ANEEL rate, ONS rate, CCEE rate,
and rate of use of the distribution system), lease, operating and main-
tenance cost (O&M), and insurance expenses.

For the investment values of the wind and PV fractions of the farm,
a baseline was calculated using the results of auctions in 2014 and
2015, which include the latest disclosed investment values.

In Table A1 (in appendix), the premises, their respective values, and
the source of data are listed.

Occupied area

By minimizing the area used by the plant, the local territory can be
used for other productive activities. In some regions or countries, the
space available for the deployment of W-PV plants will exhausted
quickly. If part of the area that could be occupied by a plant is pre-
served, the project investor may also reserve an option for future ex-
pansion when it is economically favorable and learning gains related to
the operation of the system have been achieved. A measure of pro-
ductivity to be considered is the energy density, which indicates the
capacity of the system to produce maximum energy per occupied space.

Based on the occupied area in km2 per installed GW, the area oc-
cupied by a hybrid farm with 0.03 GW can be inferred as 297 km2 and
18.9 km2 for wind and PV, respectively [36]. Therefore, the area oc-
cupied by a W-PV farm with different compositions can be calculated as
follows:

+x x297 18.91 2 (28)

Results

The optimum parameters of W-PV farms, using the method that we
have named NBI-EFA-SNR as the fundamental tool for the optimization
process, can be determined from the 7 steps that are illustrated in Fig. 2.

Step 1 is represented by the scenarios from MDOE shown in Table 1.
Then, in Step 2, the values of AEP, sdAEP, Pmin, and area are estimated
for each scenario presented in Table 1. Among the variables considered
in the analysis in this study, it is desired to maximize AEP and minimize
sdAEP, Pmin, and area. Therefore, in Step 3, the sense of optimization for
the AEP variables will be inverted by means of Eq. (3) (“smaller-the-
better”). With the direction of the inverted AEP variable, the objective
of the optimization problem will be the minimization of the factor
functions. In Table 5, all the values of all the variables calculated in Step
2, other than the SNR of the AEP variable calculated in Step 3, are il-
lustrated.

Subsequently, a correlation analysis is performed between the SNR-
AEP, sdAEP, Pmin, and area responses. P-value < 0.05 confirms the
existence of a correlation between all response variables, as shown in
Table 6.

After confirming the existence of the correlations, in Step 4 an EFA is
performed. The original correlation matriz (∑) related to the analyzed
data is illustrated in Eq. (29). The orthogonal model is applied, with
loadings estimated from the analysis of the main components, and an
equimax rotation is utilized to rotate the loadings.

=
1.000 0.970 0.977 0.976

0.970 1.000 0.991 0.954
0.978 0.991 1.000 0.983

0.976 0.954 0.983 1.000 (29)

An EFA with the rotation from equimax explains that from two
factors, we obtain the information of four variables analyzed in the
problem, as listed in Table 7 and displayed in the scree plot in Fig. 3.
Therefore, the optimization of a hybrid farm that would initially be

Table 3
Mean hours of insolation and Weibull parameters.

Month hi C k

Jan 7.70 8.36 5.40
Feb 7.91 8.39 8.19
Mar 7.08 7.56 7.14
Apr 7.22 7.69 7.21
May 7.06 7.40 10.88
Jun 7.22 7.50 13.08
Jul 7.63 7.92 13.94
Aug 8.55 8.22 18.76
Sep 8.64 8.98 11.13
Oct 8.14 8.74 6.94
Nov 6.08 6.68 4.55
Dec 6.36 6.99 4.03

Table 4
Structure of cash flow for wind-photovoltaic farm in presumed profit.

(+) Gross Sale balance
(−) Taxes proportional to balance
(=) Liquid balance
(−) O&M costs
(=) Results before tax over legal entity/social contribution over liquid profit
(−) Tax over legal entity/social contribution over liquid profit
(−) Investment
(=) Cash flow
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solved using four objective functions can now be solved using two
functions.

The scree plot illustrated in Fig. 3 characterizes that two factors are
sufficient to explain the information represented by the four variables
to be optimized for the configuration of the W-PV farm.

The biplot shown in Fig. 4 complements the loading plot informa-
tion (Fig. 3). In this case, it is possible to observe in detail how the first
two factors concentrate the information on the four variables analyzed
in the problem.

As Table 7 shows, the first factor explains 54% of the variance of the
set, and the second factor explains 46%. As the loading plot of Fig. 5
indicates, for the first factor, the AEP and Pmin variables have a negative
loading, whereas for sdAEP and area, the loading is positive. The si-
tuation is reversed for the second factor, with a positive loading for AEP

and Pmin and negative loading for sdAEP and area.
Scores for the first and second factor (F1 and F2) were also obtained

for each scenario generated from MDOE and are listed in Table 8. In
Step 5, the values of F1 and F2 are used to performed quadratic re-
gressions that provide the objective functions to be used in the NL-MO
with the NBI method.

The quadratic regression used to obtain the objective functions of F1
and F2 includes two additional terms, which contributed to the increase
in the adjusted R2 (R2

adj) of the equations. The quadratic regressions
were also performed to obtain the AEP, sdAEP, and Pmin functions.
Table 9 lists the functions for F1 and F2, and Table 10 contains the
functions of AEP, sdAEP, Pmin, and area after the optimal percentage of
wind power and PV power is determined.

In Step 6, functions F1 and F2 are optimized using the NBI method.
First, the payoff matrix was elaborated, as indicated in Eq. (11), and
then the multi-objective problem was solved using the NBI routine il-
lustrated in Eq. (10). In Eq. (35), the formulation for the multi-objective
problem related to the configuration of W-PV farms was described
mathematically.

=
+

= +
+

=

+

=

Min F x x x x x x x x
x x x x

Min F x x x x x x x x
x x x x

s t w

w

2.23 0.32 7.25 2.38 ( )
4.64 ( )

0.02 2.62 8.06 3.08 ( )
2.12 ( )

. . : 1

0 1
i

n
i

i

1 1 2 1 2 1 2 1 2

1 2 1 2
2

2 1 2 1 2 1 2 1 2

1 2 1 2
2

1
(35)

Fig. 2. Steps for optimal share of wind-photovoltaic farm.

Table 5
Simplex lattice share for mixture design of experiment.

x1 wind
power
(MW)

x2 Photovoltaic
power (MW)

AEP
(GWh)

SNR-AEP sdAEP Pmin (R
$/MWh)

Area
(km2)

30.0 0.0 109.89 −40.82 4.44 109.72 297.00
27.0 3.0 102.29 −40.20 3.67 117.97 269.19
24.0 6.0 96.55 −39.70 3.54 127.47 241.38
22.5 7.5 79.62 −38.02 2.42 154.10 227.48
21.0 9.0 89.70 −39.06 3.06 138.25 213.57
18.0 12.0 83.59 −38.44 2.62 150.57 185.76
15.0 15.0 78.98 −37.95 2.14 164.79 157.95
12.0 18.0 72.88 −37.25 1.77 181.39 130.14
9.0 21.0 66.51 −36.46 1.33 201.01 102.33
7.5 22.5 57.48 −35.19 2.42 236.37 88.43
6.0 24.0 60.36 −35.62 0.98 224.57 74.52
3.0 27.0 54.18 −34.68 0.61 201.01 46.71
0.0 30.0 48.20 −33.66 0.52 289.42 18.90

Table 6
Results of correlation analysis.

Area Pmin AEP

Pmin −0.97p-value (0.00) –
AEP −0.978p-value (0.00) 0.991p-value (0.00) –
sdAEP 0.976p-value (0.00) −0.954p-value (0.00) − 0.983p-value (0.00)

Table 7
Exploratory factor analysis results.

First Factor Second Factor

Eigenvalue 3.95 0.025
Proportion 54% 46%
Accumulated 54% 100%
Eigenvectors First Factor Second Factor
Area −0.50 −0.36
Pmin 0.499 0.36
AEP 0.498 −0.84
sdAEP −0.50 −0.12
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For the NBI results, a Pareto frontier was designed in an equally
distributed form, with the function weights varying by 0.05 in each
round of optimization, resulting in 20 Pareto solutions. After the design
of the Pareto frontier, best Pareto-optimal solution was selected from
TOPSIS, and the solution with highest C* value was considered to be the
best Pareto-optimal solution.

The 20 solutions determined by the Pareto frontier are illustrated in
Table 11, and the best Pareto-optimal solution is highlighted in the
Pareto frontier of Fig. 6.

In Table 11 and the Pareto frontier in Fig. 6, the ideal composition
for W-PV in Caetité is 41% wind power and 59% PV power. That figure
corresponds to approximately 12.3 MW of wind power and 17.7 MW of
PV power for a 30 MW farm. In an existing farm, the composition is

82% wind power and 18% PV power. This result reinforces that the use
of models that consider numerous objectives relevant to the electric
sector, especially those related to maximization of well-being, can
provide more favorable decisions for all stakeholders, without causing
financial damage to the investor.

According to Fig. 6, using the proposed approach for planning a W-
PV farm, it was possible to build the Pareto border two-dimensionally,
with the solutions of the problem presented more visibly than using the
multi-objective method with the original four responses. For the present
problem, for example, a traditional approach would be impossible to
graphically represent the problem with four dimensions. In addition,
the computational cost would be much higher, and the problem re-
solution would be greater with more objectives to be optimized.

Fig. 3. Scree Plot.

Fig. 4. Biplot for two factors.
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Another fundamental question is that the traditional methods of multi-
objective optimization do not address the question of the correlation
between the answers, which can bring serious distortions to the re-
solution of the problem and induce Pareto-optimal responses that
would be impossible to achieve in reality.

Finally, the approximate values of AEP, sdAEP, Pmin, and area were
estimated using Eq. 32, 33, and 34 for W-PV with the optimum com-
position of 41% wind power and 59% PV power. The estimated results
are in Table 12.

The proposed approach had reached the objective of finding an
optimal configuration for W-PV farms, while optimizing multiple cor-
related responses. Thus, the approach could be a possible mechanism to
support the bidding process for W-PV farms and guide the criteria for

investors to define the ideal share of each source. Finally, outputs and
restrictions can be added to meet the context of the electricity sector
and the marketing schemes for investors.

Conclusions

This study aimed to propose a new approach to determine the op-
timum parameters of hybrid farms, using normal boundary intersection
(NBI), exploratory factor analysis (EFA) and Taguchi signal-to-noise
ratio (SNR), characterized NBI-EFA-SNR method. This method presents
greater flexibility in the modeling process, which can be applied to
several types of electricity systems using various sources.

In this study, the model was applied to reach an optimal share for a
wind-photovoltaic (W-PV) farm in which variables that impact en-
vironmental issues are considered, such as area occupied by the farm
and electricity security, while also seeking the maximum production
with the lowest possible financial risk to investors and the final con-
sumer. Furthermore, this method has been shown to guarantee en-
vironmental and electricity security objectives, without compromising
the profitability of the investment.

The results of EFA and scree plot reveal that from the eigenvalues of
the experimental matrix results, two factors are sufficient to explain
100% of the information related to the four correlated outputs to be
optimized. Thus, it was possible to develop the optimization problem
with only two objective functions and find the optimal share of 41%
wind and 59% PV.

The optimal results achieved are AEP = 72.17 GWh, sdAEP = 1.74,
Pmin = 182.95 R$/MWh, and area = 132.92 km2. Because of the
conflicting behavior of the objectives, the optimization process implies
that improving one objective impairs the others. Thus, a higher AEP

Fig. 5. Loading Plot.

Table 8
Factor score for each scenario.

x1 wind power (MW) x2 Photovoltaic power (MW) F1 F2

30.0 0.0 −2.30 −0.13
27.0 3.0 −1.06 0.64
24.0 6.0 −0.98 0.44
22.5 7.5 −0.11 0.50
21.0 9.0 −0.35 0.65
18.0 12.0 0.14 0.74
15.0 15.0 0.67 0.86
12.0 18.0 0.88 0.63
9.0 21.0 1.09 0.36
7.5 22.5 0.69 −0.68
6.0 24.0 0.99 −0.24
3.0 27.0 0.69 −1.09
0.0 30.0 −0.35 −2.68

Table 9
F1 and F2 functions for optimization.

Variable R2
adj y1

F1 94.70% −2.23x1 −0.32x2 + 7.25x1x2 −2.38x1x2(x1-x2) + 4.64 x1x2(x1-x2)2 (30)
F2 91.77% −0.02x1 −2.62x2 + 8.061x2 −3.08x1x2(x1-x2) + 2.12 x1x2(x1-x2)2 (31)
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and smaller Pmin produce a larger sdAEP and area.
Notably, the primary contribution of the method is to provide a

more flexible criterion to define the share of hybrid farms, especially W-
PV, in the bidding process. In the developed model, the application of
EFA and SNR to assist in the design of the method is a new approach.
The model is applicable to any electric system regardless of its char-
acteristics and allows for the inclusion of several variables with a low
computational cost. The method was able to indicate an optimal solu-
tion using information related to wind and PV resources of the region
and the technical characteristics of the farm.

The proposed approach can be extended to more complex cases,
involving restrictions related to system operations in addition to other
technical restrictions. Moreover, other sources of renewable energy can
be applied to the system by changing the inputs and the objectives to be
optimized according to the planning requirements of each system. For
future research, the approach of this study can be applied to systems
with energy storage, other types of hybrid RES plants (wind + hydro,
PV + hydro, biomass + coal, and others), and systems that use more
than two energy sources, such as RES sources.
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Table 10
AEP, sdAEP, Pmin and area functions.

Variable R2
adj y1

AEP 95.09% −40.93x1 –33.72x2 −1.91x1x2 + 2.30x1x2(x1-x2) + 5.15 x1x2(x1-x2)2 (32)
sdAEP 95.26% 4.45x1 + 0.55x2 – 1.33x1x2 + 0.07x1x2(x1-x2) – 4.58x1x2(x1-x2)2 (33)
Pmin 96.89% 108.03x1 + 287.36x2 −123.76x1x2 + 50.33x1x2(x1-x2) + 72.10x1x2 (x1-x2)2 (34)
Area 100% Eq.32

Table 11
Optimization results.

x1 x2 y1 y2 C*

100% 0% −2.23 −0.03 0.690
92% 8% −1.43 0.28 0.568
87% 13% −1.09 0.42 0.542
82% 18% −0.75 0.54 0.512
76% 24% −0.43 0.64 0.504
69% 31% −0.15 0.71 0.560
63% 37% 0.11 0.74 0.660
57% 43% 0.32 0.74 0.754
51% 49% 0.51 0.70 0.828
46% 54% 0.67 0.63 0.880
41% 59% 0.80 0.54 0.901
36% 64% 0.90 0.41 0.872
32% 68% 0.97 0.26 0.802
28% 72% 1.00 0.06 0.707
23% 77% 0.99 −0.17 0.630
19% 81% 0.93 −0.46 0.627
15% 85% 0.81 −0.83 0.660
10% 90% 0.58 −1.30 0.693
5% 95% 0.17 −1.95 0.719
0% 100% −0.32 −2.62 0.734
0% 100% −0.32 −2.62 0.734

Fig. 6. Pareto frontier.

Table 12
Results estimated for wind-photovoltaic in op-
timum share.

Variable Results

AEP (GWh) 72.17
sdAEP (GWh) 1.74
Pmin (R$/MWh) 182.95
Area (km2) 132,92
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Others taxes 3% (PIS) and 0.65% (Cofins) [45]
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ke 13.97% Eq.17
kd 8.72% Eq.18
Rc 3.37% [60]
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