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ABSTRACT

We assess the sensitivity of residential electricity demand in 48 U S. states to seasonal climate variations
and structural changes pertaining to state-level household electricity demand. The main objective is to
quantify the effects of seasonal climate variability on residential electricity demand variability during the
winter and summer seasons. We use state-level monthly demographic, energy, and climate data from
2005 to 2017 in a linear regression model and find that interannual climate variability explains a sig-
nificant share of seasonal household electricity demand variation: in 42 states, more than 70% and 50% of
demand variability in summer and winter, respectively, is driven by climate. Our work suggests the need
for new datasets to quantify unexplained variance in the winter and summer electricity demand.
Findings from this study are critical to developing seasonal electricity demand forecasts, which can aid
power system operation and management, particularly in a future with greater electrification of end-use
demands.

Electricity use intensity

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

US electricity demand has been growing at 1.6% annually since
1990. This rate is higher than other major energy sources used in
the residential sector [1]. In 2018, 37% of total US electricity demand
was consumed in the residential sector, which is the highest among
US end-use sectors [2]. Electricity in the residential sector is used to
meet various energy services, some of which are subject to high
seasonal variations. Recent surveys show that 46% of the total
residential electricity consumption in the continental United States
(CONUS) is used for indoor space conditioning [3]. This dependency
of aggregate seasonal demand on seasonal climate poses challenges
for power system operators and has critical implications for both
demand and supply-side planning in the electric sector. Improve-
ments in monthly to seasonal electricity demand forecasts can aid
in the development of emergency, contingency management, and
system maintenance plans (Mukerji et al., 1991), forward fuel
purchases, demand-response programs, and scheduling of hydro
and thermal power plants [4]. For example, improved demand
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forecasts could support seasonal power generation planning [5]
and can be used to properly define unit commitment schedules in
power systems. Similarly, a 1% reduction in forecasting error for a
10,000 MW utility can provide savings of more than US$ 1.5 million
per year [6]. Despite these findings, the role of variability in sea-
sonal temperature on residential electricity demand is not yet fully
understood across the CONUS. In addition, climate change will
affect future electricity supply and demand [37], thus further
motivating the need to understand the degree to which electricity
demand is driven by temperature variations.

Electricity as a heating source has been increasing at the
expense of other fuels, including natural gas, over the past decade
[3]. The Energy Information Administration's Annual Energy
Outlook projects this trend will continue [2]. Further, deep decar-
bonization of the U.S. energy system requires, among other mea-
sures, large-scale electrification of end-use services. Numerous
studies on deep decarbonization show that electrification of heat-
ing services can play a key role in reducing direct emissions from
the end-use sectors [7,8].

The dependency of electricity demand on climate has been
studied extensively over different spatio-temporal scales. Tso et al.
[9] provides a detailed comparison of three types of demand pre-
diction models, including regression, neural networks, and decision
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trees. A review of the common methodologies reveals that
regression techniques, mostly due to their ease of application, have
been widely used to quantify climate-load relationships [9]. One
class of studies estimate future electricity demand, particularly
residential cooling and heating loads, over the long-term consid-
ering climate change projections, as opposed to other studies that
have analyzed the load-temperature relationship at shorter time-
scales such as hourly. In Table S1 of the Supplementary Informa-
tion, we reviewed the most closely-related literature published
after 2000 for the United States. Recent studies give a clearer pic-
ture of the evolving temperature-load relationship in the country.

The seasonality of electricity demand and its association with
meteorological variability has been studied extensively. One of the
earliest works on this topic, Sailor [10]; used monthly weather and
load data to develop residential and commercial sector load sen-
sitivities to specific climate change scenarios and found heteroge-
neity in load sensitivity to climate change for six states. Amato et al.
[11] developed temperature response functions of overall energy
consumption using state population, energy prices, daylight hours,
and heating and cooling degree days as explanatory variables and
found within-state energy consumption was explained well by the
identified variables. Using a similar modeling approach, Ruth and
Lin [12] identified combined climate and non-climate induced
variations in Maryland's energy demand. Lam et al. [13], investi-
gated the seasonal variations in electricity demand in Hong Kong
and explained the monthly electricity demand in the residential
and commercial sectors using climatic variables as predictors based
on regression. OrtizBevid et al. [14], analyzed the influence of
meteorological variability on the daily electricity demand of Spain.
Mukherjee and Nateghi [15] incorporated monthly Florida weather
data including dew point temperature, mean wind speed, precipi-
tation, monthly electricity consumption, and socio-economic pa-
rameters in Bayesian additive regression trees and found more
spatio-temporal heterogeneity in the residential sector compared
to the commercial sector in Florida. Li [16] analyzed the link be-
tween residential electricity demand and outdoor climate in
Singapore using regression analysis and found that electricity
consumption in different households varies based on outdoor
climate variations. Alberini et al. [17] analyzed how sensitive resi-
dential demand is to temperature in Italy using a regression model
and found that temperature accounts for a very small share of daily
electricity demand in the country due to its mild Mediterranean
climate. Wang et al. [18] developed a hierarchical Bayesian
regression model for predicting summer monthly per capita elec-
tricity demand for the coterminous United States (CONUS). Though
Wang et al. [18] focused on a national predictive model for summer
per-capita consumption over the 48 states, the study did not
consider the sensitivity of winter electricity demand to climate and
other heating sources. While most studies considered various sta-
tistical approaches ranging from simple regression to Bayesian
decision trees, none include state-level analysis of residential
electricity demand in both the summer and winter seasons at the
CONUS scale.

The main objective of this study is to quantify the main drivers
of both summer and winter seasonal variability of residential
electricity demand over the CONUS. For this purpose, we system-
atically decompose the explained variance by each driver using
linear regression and use that information to explain the role of
different seasonal demand drivers across the nation. Thus, to our
knowledge, this manuscript is the first to quantify how population,
climate, and alternative heating sources affect interannual variation in
total residential electricity demand in the summer and winter seasons
across the contiguous United States. The manuscript is organized as
follows: Section 2 of the paper discusses the methodology and data.
Section 3 presents the results and Section 4 discusses the findings
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of the paper.
2. Methods and materials

This study systematically explains the interannual variability of
residential electricity demand during the winter (December,
January and February, DJF) and summer (June, July and August, JJA)
over the CONUS [ [19]]. We consider only the summer and winter
seasons because power systems face more variability in electric
loads during the summer and winter seasons compared to spring
and fall [20]. Fig. 1 illustrates the conceptual framework adopted for
quantifying the role of the four selected variables — population,
climate, natural gas substitution effect, and the previous month's
demand — in explaining the winter and summer electricity demand
over the CONUS. The procedure quantifies the explained variance
by each predictor in a multiple linear regression. We perform this
regression sequentially in order to quantify the influence of
different predictors on seasonal electricity demand. Monthly elec-
tricity demand for the residential sector was obtained from the U.S.
Energy Information Administration for the period 2005—2017 [21]
and only the seasonal demand during the winter and summer were
considered. Data associated with the proposed explanatory vari-
ables are described in Sections 2.1-2.4.

2.1. Population

We use state population as a driving factor for the increase in
residential electricity demand. A review of electricity demand
models by Suganthi and Samuel [22] identifies population as a
driving factor to explain the variability of residential electricity
demand. Annual population data and housing unit estimates for
each county are obtained from the US Census Bureau [23]. Annual
data were interpolated linearly to the monthly time scale based on
differences between the annual values.

2.2. Population-weighted HDD and CDD

Seasonal climate variabilities are represented by the widely-
used metric of heating and cooling degree days (HDD and CDD)
[22,24]. The work of Sailor and Munoz [25] compares the applica-
tion of HDD and CDD in a regression model against the application
of temperature and conclude that the former better explains the
climate-induced variability in electricity demand. Daily HDD and
CDD are defined as the number of degrees the daily average tem-
perature is below and above 65 °F respectively. Monthly heating
and cooling degree days are obtained by summing the daily HDD
and CDD over all days in the month. Monthly HDD and CDD were
obtained for each state from 2005 through 2017 through NOAA's
National Climate Data Center [26]. In order to examine the exis-
tence of temporal trends in the CDD and HDD data, we performed a
Mann-Kendall test on the state-level CDDs and HDDs. First, we
calculated the average annual HDD and CDD from the seasonal time
series, and then the test was carried out separately for the winter
and summer seasons. Across all 48 states, the p-values ranged from
0.16 to 1 for winter, and from 0.13 to 1 for summer. These results
indicate that there is no long-term trend in the data (p-
values > 0.05).

To understand the role of HDD and CDD in explaining the state-
level electricity demand variability, monthly state-level HDD and
CDD could be obtained by spatially averaging the monthly HDD and
CDD by climate division. However, given the role of population in
electricity demand, the climate in more highly populated areas is
expected to have a larger impact on electricity demand than the
climate in less populated areas [27]. Thus, we calculate state-level
HDD and CDD using a population weighted average, which



H. Eshraghi, A. Rodrigo de Queiroz, A. Sankarasubramanian et al.

Energy 236 (2021) 121273

Electricity regression #1 . regression #4 Nat. Gas
Population :
Demand Consumption
R2,
Residuals of | regression #2 [Heating Degree | regression #5 | Residuals of
regression #1 Regression #4
RZ,
Prev. Month | regression #3 [ pasidyals of Residuals of | resression #6[ prev. Month Nat.
Flectricity Demand regression #2 Regression #5 Gas Consumption
R2,
Residuals of regression #7 Residuals of
regression #3 regression #6

R,

Fig. 1. Schematic diagram illustrating how we quantify variability explained in residential electricity demand by the four explanatory variables for the winter season over the
CONUS. The same approach is used to quantify variability for the summer, using CDD instead of HDD.

employs the monthly county population data described above.
Given that the county data overlaps with the climate division data,
we weighted the HDD and CDD based on the population at the
climate division level using Equations (1) and (2).

‘l Ned . .

HDD 1y = ps— > _ Pty HDDj . (1)
tLm j—1
‘l Med . .

CDD; yy =p5— > Pm*CDDp (2)
tm j—q

where, P{,,, HDD{ , and CDD; ,, denote the population and state
population weighted average HDD and CDD for month m in year tin
state ‘s’ with ngq climate divisions and P{,,, HDD} ,, and CDD} ,
denote the population, HDD, and CDD for each climate division
within the state, respectively.

2.3. Residential winter natural gas consumption

The space heating market is another structural factor, besides
the state population, that affects long-term residential sector
electricity demand. This market varies considerably over the
CONUS. Over the last decade, natural gas has been the dominant
heating fuel in colder areas, and electricity has been used by more
homes in milder areas [28]. However, the heating fuel mix by state
has changed over time. Since 2005, more houses have been using
electricity for space heating at the expense of natural gas, except for
the Northeast [3]. We incorporate these long-term changes in the
space heating market by adding the monthly state residential
winter natural gas consumption as one of the explanatory variables.
This data for the period 2005—2017 is drawn from the EIA website
[29].

2.4. Electricity demand from the previous month

Similar to the previous studies (e.g. Ref. [18]), we use the pre-
vious month's electricity consumption as an additional explanatory

variable to capture the monthly persistence in the electricity de-
mand time series. Chronology is an important factor, and we
perform the regression with the previous month's demand even if
that month belongs to another season. This is the case for
December in the winter season and June in the summer season
whose previous months are in fall and spring, respectively.

2.5. National analysis of electricity consumption

Our intent is to quantify the interannual variability in electricity
demand explained by population, climate, the substitution effect
between electricity and natural gas, and the previous month's de-
mand. Recently, Wang et al. [18] developed a hierarchical Bayesian
regression model for predicting summer monthly per capita elec-
tricity demand. While regression is still central to their analysis,
they partitioned the lower 48 states into 8 clusters based on similar
historical cooling degree day patterns. The summer season for the
states in each cluster is also defined differently according to the
duration, start month, and end month and the regression models
for individual states in each cluster is related with gross domestic
product, electricity price, previous monthly demand, and cooling
degree days being the explanatory variables. We take a similar
approach by analyzing the variance in seasonal residential elec-
tricity demand explained by each explanatory variable using a se-
ries of linear regression models (Fig. 1). One could also obtain
similar results by using traditional ANOVA techniques. We first
quantify the role of population and temperature on electricity de-
mand and natural gas consumption. These regressions provide the
variability explained by both population and temperature on
winter and summer electricity demand for each state over the
CONUS. Then, the resulting residuals (i.e., after regressing with
population and temperature) from electricity demand and natural
gas consumption are regressed against each other to quantify the
role of substituting natural gas with electricity in order to further
explain the variation in electricity demand. In the equations below,
for ease of exposition, we drop the index s, which denotes the state.
We only present the equations for the winter season. The summer
season analysis is done in a similar fashion except that the CDD
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time series is used instead of HDDs. First, we extract the population
effect from the electricity demand using Equation (3):

EDt:apXPt+5p+8t‘p (3)

Where P; is the winter population, ED; is the winter season elec-
tricity demand time series, ap and (p are the regression coefficients,
and &|p is the residual after regressing against population. We
define Ry? as the explained variance (i.e., the coefficient of deter-
mination in Equation (3)) in electricity demand by population). We
then regress &¢|p against the HDDs based on Equation (4) and obtain
the explained variance, R, by HDDs on electricity demand re-
siduals (et|p. ypp):

et|p=appp x HDD¢ + Bupp + €tlp_ppp (4)

where aypp and Bypp are the regression coefficients and &t|p ypp
represents the regression residuals, which represent the unex-
plained variability in electricity demand by population and HDDs.
Ry2, is the coefficient of determination from the regression in
Equation (4).

Since the regression in Equation (4) is performed using the re-
sidual electricity variability conditioned on population, the contri-
bution of HDDs to explaining the variability in electricity demand is
given as: Ry% x (1 — Ry2). Thus far, the analysis has a total explained
variability of electricity demand equal to [Ry% x (1 — Ry?) + Ry?] x
100. Next, we consider the role of the previous month's demand
and the substitution effect between electricity and natural gas.

In order to capture monthly persistence in the electricity de-
mand time series, we perform regression between &t|p ypp and
ED;_q:

et|p. pp = ApremonthLc % EDe—1 + BpreMonthELc 1 €t|p, HDD. PreMonthELC
(5)

Again, aprepontherc aNd  Bpremoncherc are the regression  co-
efficients, R3? is the variance explained by the previous month's
demand on &t|p ypp prenonthrc: Which is the regression residual.

The fourth explanatory variable is natural gas consumption in
the residential sector. However, since natural gas consumption, just
like electricity consumption, is correlated with population and
climate conditions, and the previous month's (natural gas) demand,
we need to calculate the residuals of natural gas consumption
conditioned on population, HDDs, and the previous month's de-
mand,  Vtlp ypp premonthng.  The  steps  needed to calculate
Vtlp HDD PreMonthNG ar€ similar to what was done earlier to calculate

et|p HpD preMontheLc- ONCE Ve|p ypp premonthng 1S calculated, Equation
(6) calculates the substitution effect on electricity demand:

&t \P, HDD, PreMonthELC = ®ELC—NG X Vt |P,HDDAPreMonthNG +BELc-NG
+ €ELC-NG (6)

where &g nc is the final unexplained variability in electricity
demand, agc_ng and Bgc_ng are the regression coefficients and
R42 is the coefficient of determination.

Thus, the total variability explained in the winter season, TV,inzer
due to the four factors can be quantified using Equation (7):

TVypiner = [1212 £ Ry x (1 —R12> TR x (1 — (R12 TRy x (1 —R12)>> FR4% % (1 _ <R12 TRy x (1 —R12>

TRy x <1 - <R12+R22 x (1 —R12)>)m % 100
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The total explained variance by all four variables in Equation (7)
is simply the R? of the regression between winter electricity de-
mand against the selected four variables. Since we are interested in
quantifying the explained variance by each explanatory variable,
we performed the regression sequentially on the residuals obtained
in each step. A similar procedure is followed with CDDs to obtain
the total variability TVsmmer explained in the summer. The only
difference is that since cooling demand is exclusively met by elec-
tricity, we do not consider substitution with natural gas. Results are
summarized below on the explained variance by each explanatory
variable for both seasons.

Time series data pertaining to the dependent and independent
variables were stored in separate.csv files. These files are read into
MatLab, where we used the fitim() function to conduct the linear
regressions in the order explained above.

3. Results

Our results indicate that the previous month demand's makes a
negligible contribution to explaining the total variability in elec-
tricity demand. Therefore, we only present the results pertaining to
variability explained by population, climate, and the natural gas
substitution effect. Tables S2 and S3, and Figs. S1 and S2 of the
Supplementary Information provide the full regression results for
the summer and winter seasons with more details.

3.1. Summer season

Fig. 2 shows the amount of variability in electricity demand
explained by population and climate for each state in the summer
season. Other than Washington and Maine where summers are
generally mild, the total explained variability of summer electricity
demand across the remaining 46 states is more than 50%. In addi-
tion, 42 states out of the 48 states have a total explained variability
of more than 70%, as shown in Supplementary Fig. S3.

Fig. 2b generally exhibits greater explanatory power than Fig. 2a
and therefore, the largest portion of the household summer elec-
tricity demand variation is explained by interannual climate vari-
ability. In order to better understand the residential electricity
demand-population relationship, in a separate test case (not
shown here) we ran the same model with 1990—2005 (rather than
2005—2017) data and we observed that state residential electricity
demand was more correlated with the state population. The recent
divergence between household electricity demand and population
(as indicated by the relatively small numbers in Fig. 2a) can be
explained by looking at household electricity consumption in-
tensity trends since 2005. This data is available through a nation-
wide survey of buildings in selected years [3]. A declining electricity
consumption intensity means population growth effects are not
translated into electricity demand growth. Fig. 3 shows that the
intensity of electricity consumption in American homes increased
from 1993 to 2005. This increase is mainly driven by larger home
sizes and increased electrification of household energy services
[30]. After 2005 however, household electricity consumption in-
tensity has been consistently declining across all nine Census Di-
visions. While the average square foot per household and

(7)
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Fig. 2. Variability in residential electricity demand explained by population (a) and climate (b) in the summer season. (a) Both the colors and numbers on the states denote the
contribution of population to explaining electricity demand variation in the summer season. Generally, population has greater explanatory power in the western states. (b) Raster
colors indicate the cumulative share of population and CDD in explaining total variability of electricity demand in the summer season. Number labels by state indicate the CDD share
alone in explaining total variability of electricity demand in the summer season. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)

penetration of electric appliances continued to increase from 2005
to 2015 [3], their impact is countered by stricter energy efficiency
standards as well as technology improvements at the household
level [30]. Fig. S4 in the Supplementary Information visualizes the
fitted model against observations in the summer season for four
major states: California, Texas, Florida, and New York.

To understand how interannual climate variability modulates
electricity demand across the country, we plot the standard

deviation of CDD against the interannual variability explained by
CDD (i.e., state-level estimates drawn from Fig. 2-b) in Fig. 4. As
Fig. 4 shows, even a relatively small variation in CDD can cause a
large variation in electricity demand in states such as Florida, Col-
orado and Louisiana. The main observed pattern is that regardless
of states’ average temperature, climate-induced variability of
household summer electricity demand is correlated with summer
climate variability. This pattern is indicated by a 0.3 coefficient of
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Fig. 4. CDD share in explaining household summer electricity demand variations (as given in Equation (4)) as a function of the standard deviation of CDD for the regression period
(2005—2017). Colors indicate the average mean temperature for each state in the summer season. On the vertical axis, only the portion of variability in electricity demand due to
climate is plotted. The linear relationship between the two axis is indicated by a 0.3 coefficient of determination, R? = 0.3. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

determination. Part of the spread around the regression line in
Fig. 4 could be due to other state-specific factors, such as humidity
and air conditioning penetration levels. The reason for plotting
climate-induced demand variability on the vertical axis is that it
does not include the effect of other factors, and therefore it isolates
the role of climate variability on seasonal load.

3.2. Winter season
Fig. 5 shows the variability in winter electricity demand

explained by population and climate, for each state. In winter,
similar to summer, only a small portion of interannual variability in

electricity demand is due to population alone. The model explains
more than 50% of the total variability of winter electricity demand
in 42 states, as shown in Supplementary Fig. S3.

The state-specific numbers in Fig. 5b denote the variability in
electricity demand explained by HDD alone. Fig. 5b indicates that
climate information can explain part of the electricity demand in
the upcoming winter season, as the demand variation due to the
population is known at the beginning of each season.

Similar to the summer season, we plot climate variability against
the climate-induced variability in electricity demand in Fig. 6.

Unlike the summer season where larger climate variations
generally translate to larger monthly demand variations, climate-
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Fig. 5. Variability in residential electricity demand explained by the population (a) and climate (b) in the winter season. (a) Both the colors and numbers on the states denote the
contribution of population to explaining electricity demand variation in the winter season. (b) Raster colors indicate the cumulative share of population and HDD in explaining total
variability of electricity demand in the winter season. Number labels by state indicate the HDD share alone in explaining total variability of electricity demand in the winter season.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

induced winter electricity demand variability does not appear to be
a function of HDD variations. Although we can observe some sim-
ilarities among the states within the same climate region, large
differences in climate-load sensitivities persist even in some
neighboring states. This lack of correlation is consistent with the
findings of other studies and is the result of a number of factors,
including income per capita, choice of heating fuels, housing type,
appliance efficiency, building envelopes, other climatic parameters
such as humidity, and a host of demographic factors [10]. Among
these factors, we speculate that the fraction of heating demand met

by electricity could vary significantly, even among neighboring
states. In such a case, states with high HDD variability could
nonetheless exhibit little variability in electricity demand if other
less climate sensitive contributors to winter electricity demand are
dominant. Ideally, we could test this hypothesis by isolating the
portion of state-level electricity demand used for space heating.
Unfortunately, this data is not available at the state-level, but the
most recent residential sector energy consumption surveys provide
this information for each Census Division [3]; see Supplementary
Table S4. We use this Census Division-level data to normalize the
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quantities plotted. R? = 0.01. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

variability in electricity demand explained by HDDs (the dependent
variable in Fig. 6). The result is shown in Fig. 7. The normalized
estimates now account for the share of households using electricity
for space heating, which in Fig. 7 effectively scales states with less
electric heating upward.

As the new coefficient of determination shows, incorporating a
measure of states’ space heating market helps to better explain
seasonal climate-load sensitivity variations by state. However, this
scaling is imperfect because it employs the share of household
heating met with electricity at the Census Division level, and there
are significant variations in electricity used for space heating
among some states within the same Census Division.

The substitution effect explains part of the remaining variability
in electricity demand (Fig. 8). The state-specific values on the map
are higher where substitution of natural gas with electricity (or vice
versa) has taken place.

From a national perspective, EIA [3], indicates that electricity
has a higher market share, in comparison to natural gas, in meeting
household heating needs. In addition, there has been a shift from
natural gas to electricity as a heating fuel [3]. Part of this shift is due
to population migration further south and west, where the elec-
tricity share is increasing, and the natural gas share is declining [3].
The choice of electric heating pumps in the South is a key reason for
this substitution with natural gas. This substitution is in contrast to
colder parts of the country, particularly the Midwest, where natural
gas is still the dominant heating fuel, mainly because the applica-
tion of heat pumps in very cold climates is more expensive than
natural gas furnaces. Nevertheless, even in the Midwest, owing to
improvements in electric heat pumps, the electricity share con-
tinues to increase [3]. In the Northeast, both electric and natural gas

heating shares are increasing at the expense of liquid fuels [3]. To
summarize, the ability to explain the variability in winter electricity
demand is challenging over the northern states since different fuel
types are used for heating. Still, as shown in Figs. 4 and 7, inter-
annual temperature variability explains a significant portion of
electricity demand in most states across the CONUS.

With regard to winter electricity demand, no existing US dataset
provides space heating demand met by electricity at the state level.
As a result, we are not able to isolate the effects of climate on the
state-level space heating loads met by electricity. Recent residential
energy consumption surveys provide some measure of space
heating and cooling, but only at the Census Division level and for
select years [3]. This information is more critical for winter than
summer because residential cooling demand is met exclusively
with electricity, whereas heating demand is met with a wider range
of fuel sources. The Energy Information Administration should
consider collecting data on state-level heating demand met with
electricity, as it would prove valuable in future analyses.

The state-level disparities observed in the winter (Figs. 5 and 8)
stem from several factors, such as income levels, choice of heating
fuels, housing type, appliance efficiency, and building envelopes. In
addition, as discussed in Yang [31]; psychological and behavioral
factors are also key to determining thermal comfort zones. Psy-
chological adaption refers to the effects of cognitive, social, and
cultural factors in determining human perceptions to thermal
comfort, while behavioral adaption, refers to the adjustment of the
body temperature balance in order to achieve thermal comfort
through actions such as adjusting the physical activity and clothing
levels and opening or closing windows and switching on fans [31].
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Fig. 7. Winter electricity demand explained by HDD normalized (inflated) by the share of households with electric heating. The household shares are only provided by Census

Division, and thus we assigned the same shares to all states in the same Census Division. The coefficient of determination is 0.1, indicating improved explanatory power compared to
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Fig. 8. Role of natural gas substitution in explaining the winter electricity demand variability. Raster colors indicates the cumulative share of population, HDDs and the substitution
effect in explaining total variability of winter electricity demand. Numbers in each state indicate the natural gas substitution effect alone in explaining total variability of electricity
demand in the winter season. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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4. Discussion and concluding remarks

This study is the first to assess the variation of total seasonal
residential electricity demand over the CONUS to population, sea-
sonal climate variation, the substitution of electricity for natural
gas, and the month-to-month persistence in electricity demand.
These explanatory variables were evaluated sequentially to quan-
tify their incremental contribution to explaining electricity demand
variability. Our general observation from the analysis, consistent
with Amato et al. [11] and Wang et al. [18]; is that seasonal climate
variability plays a crucial role in explaining household electricity
demand variations: in 42 states, more than 70% and 50% of demand
variability in summer and winter, respectively, is driven by climate.
While the ability of climate variability to explain electricity demand
is significant, there is substantial spatial variation, especially during
winter, across the CONUS. The same level of climate variations in
two different states does not necessarily lead to the same demand-
side variation in these states.

The methodology presented here can be adopted to better
manage electricity demand under a changing energy system. As
countries move to reduce greenhouse gas emissions, a key strategy
is to decarbonize the electric sector and then electrify many end-
use demands. As the share of electricity meeting end-use de-
mands increases under such a scenario, quantifying the role of
seasonal climatic variation on seasonal electricity demand will
become even more critical. Such seasonal information gleaned
from regression models could be used to inform demand-response
programs aimed at reducing electricity demand during peak pe-
riods and develop contingency measures such as fuel stockpiling
for the upcoming season. Future work could extend this analysis to
the spring and fall seasons, where the demand variability is likely to
be less pronounced. Finally, while this paper is focused exclusively
on the residential sector, future work could extend this analysis to
include the commercial sector as well, since its electricity con-
sumption is also expected to vary with climatic conditions.
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