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A B S T R A C T   

In power systems, the electricity distribution sector requires proper regulation to guarantee power supply se
curity, electricity tariffs modicity and universal service to customers. Generally, electric utilities operate 
differently and are distinguished in terms of costs, quality of supply, market and network size, and other aspects, 
that affect their efficiency. In this context, the Data Envelopment Analysis has been used in electricity distri
bution regulation to define efficiency scores and compare practices. The Data Envelopment Analysis application 
sometimes comes with weight restrictions and negative variables that modify the original methodology which 
affects the efficiency scores. The main goal of this paper is to evaluate weights restrictions influence on effi
ciencies results and to perform a sensitivity analysis of efficiency scores using additional benchmarking tech
niques. We apply the Cross-Efficiency Analysis and the Ratio-based Efficiency Analysis benchmarking methods, 
in order to provide relevant quantitative information to compute relative efficiency scores and perform peer 
evaluations among utilities even if they are outside of the efficient frontier. The Brazilian electricity distribution 
system is selected as study case. Brazil has strong diversity in terms of economic development, climate and 
geography, and the current procedure adopted by the regulator determine efficiency metrics for all distribution 
companies based on their operation cost. Results from our analysis show that the diversity of concession areas 
significantly influence the stability of efficiency scores. Moreover, considering the approach proposed here it is 
possible to identify an efficiency relationship among all the distribution companies and not only using the ones 
that are in the efficiency frontier.   

1. Introduction 

The electricity transmission and distribution sectors in power sys
tems have characteristics of natural monopolies. In this environment, 
economic regulation is the key to ensure cost efficiency, quality of 
supply and an efficient distribution network pricing. The distribution 
network pricing scheme used to compose electricity rates can be sepa
rated into two steps: establishing the required revenue and allocating 
this revenue among network users. The regulatory revenue incorporates 
operation expenditure (OPEX), remuneration of regulated asset base and 
depreciation [1]. The efficient operational cost is usually based on a 

benchmarking model that ranks electricity distribution companies 
(DISCOs) using a set of variables. Among commonly used benchmark 
techniques are the Data Envelopment Analysis (DEA) [2], the stochastic 
frontier analysis (SFA) [1], and the Corrected Ordinary Least Squares 
(COLS) [3]. 

The DEA technique is widely used to define efficiency scores of 
decision-making units (DMUs), or in the case of electricity distribution 
sector, DISCOs. The model has inputs such as operational and capital 
expenditures, while considering outputs such as network length, elec
tricity consumption and number of consumers. The efficiency is 
measured by weighting these inputs and outputs such that the ratio of 
weighted outputs divided by weighted inputs is maximized. In this 
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process, an efficient DMU will have score equal to 1 or 100%. The 
original model proposed by [2] considers constant returns to scale 
(CRS), i.e., an increase in inputs cause the same proportional increase in 
outputs. Alternatives to the DEA CRS to accommodate variable, non- 
increasing and non-decreasing returns to scale can be found in [4]. 
For a review of DEA applications to electricity distribution systems see 
[5] and for international experiences with distribution and transmission 
benchmarking regulation [6]. 

Many applications of benchmarking analysis have assessed DISCOs 
in European countries, for example, in [7] the authors compare the re
sults of the DEA with the SFA and the Stochastic Non-smooth Envelop
ment of Data (StoNED) applied to compute efficiencies scores for the 
electricity distribution sector in Finland. Currently StoNED is the 
methodology adopted by Finland’s regulator, but from 2008 to 2011 
SFA and DEA approaches were used to define efficiency scores. DEA, 
COLS and SFA methodologies are applied to investigate DISCOs in other 
European countries in [1], where the authors show that the choice of 
benchmarking techniques, model specifications, and variables can affect 
the efficiency scores, as well as the efficiency rank of companies. In [9], 
authors analyse productivity growth in the Swedish electricity distri
bution sector under different ownership models and different service 
territories. The work of [30] presents the use of the Network DEA model 
applied to the Turkish electric distribution companies while taking into 
account expansion cost for additional energy supply, undesirable out
puts such as annual faults and interruptions as well as energy losses. An 
efficiency analysis for the largest 50 DISCOs in the United States using 
the DEA to assist in decision-making aspects such as how to prioritize 
investments to improve efficiency scores appears in [8]. The afore
mentioned literature focuses on DISCOs mostly located in similar 

regions in terms of economic development and environmental 
characteristics. 

However, in applications where DISCOs operate in diverse areas 
more variables need to be incorporated to the model in order to better 
represent the different characteristics of the concession areas. Adding 
more variables will lead to improved efficiency scores since we are 
adding new possible combination of inputs and outputs. In this situation, 
it is important to avoid defining weight equal to zero to several variables 
or extremely high weights to a single one. One way to overcome the 
issue is to define production trade-offs among the variables that will be 
represented as additional constraints limiting the weights. The work 
presented in [10] compare the cost-efficiency of DISCOs in Portugal 
from 2002 to 2006 and concludes that the specification of production 
trade-offs is a difficult task. In [11] an analysis of the impact of adopting 
weight limits when using DEA to establish efficiency scores is performed 
for Norway’s power distribution system. The authors show that the use 
of many weight restrictions can have significantly impact in DISCOs’ 
efficiencies, because the associated benchmarking model constraints are 
often binding. However, previous works have analysed relatively small 
territorial areas and did not present a comprehensive sensitivity analysis 
of the weight limits in establishing efficiency scores. 

The main goal of this paper is to propose improvements in the pro
cess of defining the efficiency scores for DISCOs and its particularities 
adopted by the Brazilian regulator, such as non-decreasing returns to 
scale, weight limits and negative outputs. Given the territorial extension 
of the country, the NDRS approach allows one to compare DMUs of 
different sizes within the same analysis framework. We also investigate 
the use of other benchmarking techniques, the cross-efficiency analysis 
(CEA) [12] and the ratio-based efficiency analysis (REA) [13] to define 

Nomenclature 

Abbreviations 
CAPEX Capital Expenditure 
CEA Cross Efficiency Analysis 
COLS Corrected Ordinary Least Squares 
CRS Constant Returns to Scale 
DEA Data Envelopment Analysis 
DISCO Electricity Distribution Company a.k.a. electric utility 
DMU Decision-Making Unit 
NDRS Non-decreasing Returns to scale 
NIRS Non-increasing Returns to scale 
NTL Non-Technical Losses 
OPEX Operational Expenditure 
PTR Period Tariff Review 
REA Ratio-based Efficiency Analysis 
SFA Stochastic Frontier Analysis 
StoNED Stochastic Non-smooth Envelopment of Data 
VRS Variable Returns to Scale 
nunder underground network length 
nover overhead distribution network length 
nHV high voltage network length 
ncons number of consumers 
enavg delivered energy weighted by voltage level 
CHI adjusted customer’s hours of interruption 
NTL adjusted non-technical losses 

Indices and Sets 
k ∈ K Set of DMUs indexed by k 
i ∈ I Set of inputs indexed by i 
j ∈ J Set of outputs indexed by j 
l ∈ L Set of benchmarking DMUs 
r ∈ R Set of linked weight restrictions 

Parameters 
p DMU in set Kunder analysis 
xk

i Input i value relative to DMU k 
yk

j Output j value relative to DMU k 
αr Lower limit for weight restriction r 
βr Upper limit for weight restriction r 

Decision Variables 
ui Weight of input i 
vj Weight of output j 
φ Decision variable regarding returns to scale 
zk Binary decision variable that will be 1 when DMU k has an 

efficiency ratio higher than DMU p 

Functions 
wp Efficiency of DMU p 
wpk Cross-efficiency of DMU k with the multipliers that 

maximize efficiency of DMU p 
FPIp False positive index for DMU p, i.e., distance from average 

efficiency given by CEA and DEA efficiency 
rp

min Best position in the ranking interval for DMU p 
rp

max Worst position in the ranking interval DMU p 
Dpk Minimum efficiency of DMU p when DMU k efficiency is set 

to 1 
Dpk Maximum efficiency of DMU p when DMU k efficiency is 

set to 1 
Dpk Relative efficiency of DMU p with respect to the most 

efficient DMU in set K. 
Dpk Max of Dpk, i.e., maximum relative efficiency of DMU k 

with respect to the most efficient DMU in set K 
Dpk Min of Dpk i.e., minimum relative efficiency of DMU k with 

respect to the most efficient DMU in set K  
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efficiency metrics in the electricity distribution sector. The use of CEA 
aims to deepen DEA by expanding the self-appraisal to a peer-appraisal 
analysis and establishing a cross-efficiency matrix that gives information 
about the maximum efficiency that can be achieved for a DMU when the 
efficiency of another DMU is fixed. To our knowledge, this is the first 
CEA application to electricity distribution sector that considers non- 
decreasing returns to scale (NDRS) and weight limits. The NDRS was 
chosen to make the alternative model results comparable to the current 
model adopted and in compliance with the regulator assumptions. 
Another important contribution of this paper is the novel application of 
the REA methodology for electricity distribution systems aimed to 
determine ranking intervals, dominance relations and efficiency bounds 
for the DMUs, variations of efficiency measures that are not available 
with the DEA method only. 

The remainder of the paper is organized as follows. Section 2 de
scribes the DEA, CEA and REA models and particularities of efficiency 
analysis in the context of the electricity distribution sector. Section 3 
presents the case study considering the current regulatory framework of 
the Brazilian electric power distribution sector. Section 4 shows the 
results for the application of DEA, CEA and REA to the case study along 
with discussion and the impact of weight limits and negative outputs. 
Section 5 concludes the paper. 

2. Efficiency analysis methods in the context of the electricity 
distribution sector 

This paper investigates the use of three benchmarking techniques 
(DEA, CEA and REA) applied to define efficiency metrics for electricity 
DISCOs. Information related to the network characteristics, market, 
number of consumers, losses, quality and operational expenditure are 
considered when defining optimal efficiency scores for the DMUs. The 
efficiency analysis framework proposed in this paper is illustrated in 
Fig. 1. The following subsections provide details about the required 
information, efficiency analysis methodologies and the results obtained 
from applying such methodologies to the set of DMUs under analysis. 

2.1. The classic DEA model 

The classic DEA model is a non-parametric benchmarking technique 
based on linear programming used often in the literature for the eval
uation of DMUs that use the same inputs and generate similar outputs 
[2]. The method is based on the efficiency frontier concept which 
identifies the best practice among a set of DMUs. In this context, the 

efficiency frontier is formed by the DMUs that have the best ratio of 
outputs produced over the amount of inputs used. 

A DMU that is not located in the efficient frontier will have its effi
ciency measured by its distance to the efficient frontier. In that sense, the 
DEA model have two types of representation: oriented to inputs or ori
ented to outputs. The former seeks to maximize the efficiency by 
reducing inputs when outputs are fixed. The later maximizes efficiency 
by increasing the outputs level while maintaining inputs fixed. The 
choice of the model orientation is based on which variables (inputs or 
outputs) are considered manageable by the DMUs. 

The DEA model is developed considering that the underlying pro
duction function is characterized either by CRS or variable returns to 
scale (VRS) [4]. The latter can be further classified into non-increasing 
(NIRS) or non-decreasing (NDRS) returns to scale. The appropriate 
type of return varies with the application. In the particular case of the 
electricity distribution sector, one can find DEA applications using CRS 
or VRS and variations. The authors of [14] state an empirical model like 
DEA that specifies cost as a function of a few outputs is far from the 
theorical production/cost function and variable return to scale should be 
used to mitigate the model limitations. Here, we assume the NDRS to 
define the general formulation of the DEA-NDRS model as presented by 
model (1). 

wp = max
u,v

∑
j∈J

(
vjyp

j
)
+ φ

∑
i∈Iuixp

i
(1)  

s.t.
∑

j∈Jvjyk
j + φ

∑
i∈Iuixk

i
≤ 1,∀k ∈ K  

ui, vj,φ ≥ 0,∀i ∈ I,∀j ∈ J  

where, K is the set of DMUs indexed by k, p represents the DMU in set K 
under analysis; I is the set of inputs indexed by i; J is the set of outputs 
indexed by j; ui is a decision variable corresponding to the weight of 
input i; vj is a decision variable corresponding to the weight of output j; 
xk

i is the input i value relative to DMU k; yk
j is the output j value relative 

to DMU k; wp is the efficiency of DMU p and φ is the decision variable 
regarding returns to scale. If φ = 0, model (1) would correspond exactly 
to the DEA-CRS model representation from [2]. 

Model (2) is the linear version of the original nonlinear formulation 
presented in model (1). The linear DEA model is the most common one, 
because the optimal solution to linear programs can be achieved in 
polynomial time. 

Fig. 1. Overview of the proposed efficiency analysis framework.  
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wp = max
u,v

∑

j∈J

(
vjyp

j
)
+φ (2)  

s.t.
∑

j∈J
vjyk

j −
∑

i∈I
uixk

i +φ ≤ 0,∀k ∈ K  

∑

i∈I
uixp

i = 1  

ui, vj,φ ≥ 0, ∀i ∈ I,∀j ∈ J  

2.2. Modified DEA model for negative outputs consideration 

The DEA model orientation toward inputs or outputs may vary 
depending on the application and which variables are considered to be 
manageable by the DMUs. Most DEA applications to DISCOs consider 
the input orientation given the possibility of reducing operational and 
capital expenditure [1,16]. Some instances of the model incorporate 
additional DMUs’ inputs that are not manageable such as non-technical 
losses or reliability indexes. In that case, the work of [17] considers these 
non– manageable inputs as negative outputs as proposed by [18]. The 
negative outputs combined with variable returns to scale may lead to 
negative efficiency scores when calculated cross-efficiency between 
DMUs [2]. Negative outputs are incorporated in the model to account for 
variables that have a negative impact on the operational expenditure 
such as quality indexes, different for example from network extension 
and number of customers. 

The objective function in model (2) corresponds to the efficient score 
of the DMU under analysis. Therefore, the model tries to find weights vj 
and ui that maximize the efficiency ratio in the objective function. The 
first set of constraints ensures that these weights are chosen in such a 
way that when applied to inputs and outputs of all other DMUs in set K 
lead to an efficient score less than or equal to 1. The only other re
striction is that the weights should be non-negative. At this point it is 
clear that non-negative weights combined with non-negative variables 
(inputs and outputs) and non-negative return to scale (φ) will also 
ensure a non-negative efficiency ratio. 

The problem arises when one or more outputs are negative, when 
that is the case the non-negativity of the efficiency ratio is compromised. 
Note that for the DMU under analysis it will still lead to positive effi
ciency scores, but it may be the case that in order to maximize the ratio 
for DMU p the model is choosing a set of weights that drives the ratio of 
one or more DMUs in set K below zero. One way to overcome that is by 
adding Non-Negative Efficiency Score Constraint to models (1) and (2) 
that ensures the non-negativity of the efficiency scores for all DMUs as 
described in Equation (3). 
∑

j∈Jvjyk
j + φ

∑
i∈Iuixk

i
≥ 0, ∀k ∈ K (3) 

The approach suggested here is similar to [19,20] for dealing with 
negative efficient scores on DEA when φ, can be negative as in the DEA 
VRS model [4]. However, our goal here is to use this approach to make 
sure that negative outputs, yj,∀j ∈ J, will not lead to negative efficiency 
scores. 

2.3. Cross-efficiency analysis (CEA) 

Another benchmark method commonly used in the literature is the 
Cross-efficiency analysis (CEA) as in [12,21]. It can be used to 
strengthen the DEA analysis and check sensitivity of the efficiency 
scores. When the DEA model is simulated, the objective is to find the 
maximum efficiency score for a specific DMU by varying inputs’ and 
outputs’ weights, as long as the efficiency of all other DMUs in set K do 
not exceed one. This approach is known as self-appraisal because it only 
seeks to maximize the efficiency of the DMU under analysis. The idea of 
CEA is to expand the analysis to a peer-appraisal by calculating the 

efficiency score of the DMUs when the efficiency of a given DMU p is 
fixed and all others are either maximized or minimized simultaneously. 
For a comparison of the DEA and CEA methods for analysing the elec
tricity distribution system in Taiwan see [29]. 

The DEA model is known to have multiple optimal solutions [22]. 
Therefore, just simulating the DEA model (2) would lead to multiple 
possibilities for the cross-efficiency scores. The CEA model explored here 
overcomes the problem of multiple solutions by simulating another 
optimization model to find the optimal set of weights that maintain the 
optimal efficiency of the target DMU p but also maximizes the sum of the 
efficient scores of all other DMUs in set K\p (set K without considering 
the DMU p in analysis). The CEA model is divided in two stages: the first 
is represented by optimization model (2) and the second is the optimi
zation model represented in model (4), where cp is the CEA objective 
function. This is a variation of the original model proposed in [12,21] to 
handle non-decreasing returns to scale [23]. 

cp = max
u,v

∑

j∈J

∑

k∈K\p

(
vjyk

j +φ
)

(4)  

s.t.
∑

i∈I

∑

k∈K\p

uixk
i = 1  

∑

j∈J
vjyk

j −
∑

i∈I
uixk

i + φ ≤ 0, ∀k ∈ K\p  

∑

j∈J
vjyp

j − wp

∑

i∈I
uixp

i +φ = 0  

vi, uj,φ ≥ 0,∀i ∈ I,∀j ∈ J 

Note that wp is the DEA efficiency score for the DMU p obtained after 
the simulation of (2), where the decision variables obtained with model 
(4) are further used on Equation (5) with corresponding inputs and 
outputs to get the cross-efficiency values for all other DMUs in the set 
K\p . 

wpk =

∑
j∈Jvp

j yk
j + φ

∑
i∈Iu

p
i xk

i
, ∀k ∈ K\p (5) 

The score wpk is the cross efficiency of DMU k with the optimal 
weights of DMU p; up

i is the optimal weight for input variable i and vp
j is 

the optimal weights for output variable j obtained with model (4). The 
simulation of (4) for all DMUs and the computation of cross efficiency 
scores with (5) leads to the Cross-Efficiency Matrix (CEM) illustrated in 
Table 1, as described in [24]. 

One can compute the efficiency of DMU k by taking the average of all 
wpk, for all p ∈ K, i.e., the average of the column of the cross-efficiency 
matrix. The DMU with the highest average among all observed DMUs 
could be considered the benchmark, or the most efficient [12]. The 
variation of the average efficiency given by CEA with respect to the 
efficiency given by DEA is called the False Positive Index (FPI). The FPI 
is the increment in percentage of the efficiency score when you move 
from the peer-appraisal to the self-appraisal and is computed for each 
DMU p using Equation (6). 

Table 1 
Cross-efficiency matrix.   

DMU 

k = 1  k = 2  k = 3  … k = K  

Target DMU p = 1  w1  w12  w13  … w1K  

p = 2  w21  w2  w23  … w2K  

p = 3  w31  w32  w3  … w3K  

… … … … … … 
p = K  wK1  wK2  wK3  … wK   
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FPIp =
wp −

∑
k∈K

wkp
|K|

∑
k∈K

wkp
|K|

(6) 

From Equation (6), the greater the FPIp, the greater will be the DMU 
efficiency score variation with respect to the DEA model (2). The FPI was 
important in this paper analysis because of two reasons. First, we were 
able to detect the sensitivity of the DMU to the set of optimal weights. 
And second, the CEA results have pointed out to necessity of adding the 
non-negativity efficient score constraint. It is important to highlight that 
whichever additional constraints, such as the weight restrictions or the 
non-negativity efficient score constraint, are added to model (2) should 
also be added to (4) in order to make efficiency scores comparable. 

2.4. Ratio-based efficiency analysis (REA) 

The Ratio-based Efficiency Analysis (REA) model has been proposed 
by [13] to enhance the peer-appraisal approach. Similarly, to the CEA, it 
also has its roots in the DEA model, but analysis other concepts such as: 
super efficiency, ranking intervals, efficiency dominance and efficiency 
bounds. According to [13], an advantage of the REA approach is that 
even with a small number of DMUs the results are consistent since the 
analysis is not simply based on the efficiency frontier, i.e. the results are 
less sensitive to the addition or removal of a DMU to the analysis. The 
REA results can be separated in 3 main groups: DMUs ranking interval, 
efficiency dominance and efficiency bounds. 

The ranking interval establishes an efficiency ranking range for the 
DMUs under analysis. Recall that the efficiency score can vary according 
to a set of possible weights for inputs and outputs. The DEA model only 
cares for the set of weights that maximize efficiency. The REA explores 
the other sets of feasible weights. The ranking intervals are obtained 
through the optimization of two models. First, model (7) is optimized to 
find the highest efficiency ranking, i.e., the best position, that a DMU p 
can achieve relative to the others [13]. 

rp
min = min

u,v,z

(

1+
∑

k∈K\p

zk

)

(7)  

s.t.
∑

j∈J
vjyk

j +φ ≤
∑

i∈I
uixk

i +Mzk, ∀k ∈ K\p  

∑

i∈I
uixp

i = 1  

∑

j∈J
vjyp

j +φ = 1  

zk ∈ {0, 1}, ∀k ∈ K\p  

ui, vj,φ ≥ 0, ∀i ∈ I,∀j ∈ J  

where M is a large numeric constant; zk is a binary decision variable that 
will be 1 when DMU k has an efficiency ratio higher than DMU p; and rp

min 
is the best position in the ranking interval. The best position is achieved 
when rp

min = 1; zk are binary decision variables, whereas the multipliers 
ui, vj and φ are still continuous non-negative decision variables. Thus, 
model (7) is formulated as a mixed integer linear programming. 

The second model used in the REA approach is responsible to 
determine the worst position of DMU p, denoted by rp

max. The worst 
ranking is obtained by doing simple modifications in model (7). The 
optimization objective function should be changed to a maximization 
and the first set of constraints should be replaced by Equation (8). 
∑

i∈I
uixk

i ≤
∑

j∈J
vjyk

j +M
(
1 − zk)+φ, ∀k ∈ K\p (8) 

The efficiency dominance, which compare DMUs in pairs, is a com
plement to ranking intervals. Imagine a case where two DMUs, A and B, 

have overlapping ranking intervals. When that is true the ranking in
tervals will fail to discriminate A and B. But it could be that for all 
feasible weights DMU A always has an efficiency score higher than DMU 
B. And that’s when efficiency dominance comes into play. Recall the 
DEA model maximizes the efficiency ratio of DMU p with respect to the 
whole set K. The efficiency dominance is established by maximizing and 
minimizing efficiencies for DMU p with respect to a specific DMU k. 
Model (9) represents the maximization (and the minimization) version 
of the optimization model that finds the upper and lower bounds on the 
efficiency of DMU p when the efficiency of DMU k is equal to one. 
(

Dpk

)
Dpk =

(

min
u,v

)

max
u,v

∑

j∈J
(vjyp

j +φ) (9)  

s.t.
∑

j∈J
vjyk

j +φ =
∑

i∈I
uixk

i  

∑

i∈I
uixp

i = 1  

ui, vj,φ ≥ 0,∀i ∈ I,∀j ∈ J 

If the minimum efficiency Dpk > 1, DMU k dominates DMU p. If Dpk <

1 dominance does not hold. If Dpk = 1, one needs to check the maximum 
efficiency. If Dpk > 1, then dominance still holds [13]. The advantage of 
this approach is the ability to establish a dominance among DMUs 
without the need of one of them being in the efficiency frontier. Another 
feature of the REA methodology is the relative efficiency bounds. The 
relative efficiency of DMU p with respect to all DMUs in set K is given by 
Equation (10). 

Dpk(u, v) = min
k∈K

wp

wk
(10) 

Where wp is the efficiency of DMU p under analysis and wk is the 
efficiency of DMU k,∀k ∈ K, both obtained with model (2). From the 
definition of (10) the concept of two types of efficiency can be estab
lished according to [13] as in equation (11). The first is the minimum 
relative efficiency, Dpk, given by the minimization of (10) and the second 
relative efficiency, Dpk, given by the maximization of (10). 

(
Dpk

)
Dpk =

(

min
u,v

)

max
k∈K

Dpk (11) 

Considering that DMU p is not benchmarking according to DEA re
sults, its Dpk is equal to the efficiency given by the DEA model. If this 
DMU p is benchmarking its Dpk will be given by model (12), that is based 
on the super efficiency concept found in [25], where l ∈ L is the set of 
benchmarking DMUs obtained with the DEA model application. 

Dpk = max
u,v

∑

j∈J

(
vjyp

j +φ
)

(12)  

s.t.
∑

j∈J
vjyl

j −
∑

i∈I
uixl

i + φ ≤ 0,∀l ∈ L⫅K\p  

∑

i∈I
uixp

i = 1  

ui, vj,φ ≥ 0,∀i ∈ I,∀j ∈ J  

2.5. Efficiency analysis inputs and outputs in the electricity distribution 
sector 

There is no consensus on which variables should be considered for 
DEA applications to electricity distribution sector. A common practice is 
to consider an input orientation with operational expenditure (OPEX) 
and/or capital expenditure (CAPEX) as input variables or the total 
expenditure (TOTEX). Among common output variables those related to 
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network and customers such as number of customers, delivered energy, 
distribution network extension, number of transformers, transformers 
capacity and service reliability indexes [16]. 

2.6. Weight Limits to inputs and outputs 

Some applications of the DEA methodology to the electricity distri
bution sector consider weight restrictions [15]. The consideration of 
weights in the problem introduces new constraints to the optimization 
model, which modify the feasible region of the original formulation and 
therefore impact the efficiency scores. Among the reasons to incorporate 
weight limits are the small number of DMUs compared to the number of 
inputs and outputs considered and the structure of the weights in the 
optimal solution that should not exclude important variables from the 
efficiency score [10]. A common practice is to enhance model (2) by 
adding linked weight restrictions, i.e., imposing lower and upper limits 
in the weight ratios such as presented by Equation (13). 

αr ≤
vj

ui
≤ βr , ∀r ∈ R (13)  

where, R is the set of weight restrictions indexed by r; αr is lower limit for 
weight restriction r, βr is upper limit for weight restriction r; vj/ui is the 
linked weight ratio being limited with respect to output j and input i. 

Note that it is possible to consider the weight ratio involving two outputs 
instead of output over input. The upper and lower bound for the linked 
weights are often based on production trade-offs and historical data 
analysis. 

By rearranging (13), inequalities (14) and (15) are obtained and 
further added to model (2) to obtain DEA-NDRS with weight re
strictions, (4) to obtain the CEA-NDRS with weight restrictions and (7)– 
(12) to obtain the REA-NDRS with weight restrictions. 

− vj + αrui ≤ 0, ∀r ∈ R (14)  

vj − βrui ≤ 0,∀r ∈ R (15)  

3. Study case 

The case study is focused on the Brazilian electricity distribution 
system, which contains 61 DISCOs regulated by electricity regulatory 
agency ANEEL. The complexity attributed to the system is directly 
related to the vast territorial dimension of the country and, conse
quently, to diversity between the different concession areas. Brazil is cut 
by two parallels (Ecuador and Tropic of Capricorn), has four time zones 
and has a vast interior and coastal region. The territory of the country is 
approximately equal to the territory of the whole European continent. 

Table 2 
Correlation matrix between OPEX and outputs.  

ρ  OPEX nunder nover nHV ncons enavg NTL CHI 

OPEX  1.000  –  –  –  –  –  –  – 
nunder  0.384  1.000  –  –  –  –  –  – 
nover  0.874  0.044  1.000  –  –  –  –  – 
nHV  0.869  0.081  0.972  1.000  –  –  –  – 
ncons  0.976  0.417  0.821  0.837  1.000  –  –  – 
enavg  0.933  0.537  0.691  0.708  0.956  1.000  –  – 
NTL  0.454  0.353  0.306  0.292  0.374  0.361  1.000  – 
CHI  0.688  0.326  0.510  0.481  0.674  0.632  0.352  1.000  

Fig. 2. Scatter plot for the DMUs input and outputs.  
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Therefore, the concession areas of the DISCOs have different 
geographical characteristics, and in addition, distinct economic char
acteristics (ranging from more developed to considerably poor areas). 
The Southeast region stands out for higher income levels, while other 
regions such as the Northeast and the North are characterized by lower 
incomes. There are also different demographic density characteristics 
among concession areas with highly populated states, such as Rio de 
Janeiro and São Paulo, and other sparsely populated states such as 
Minas Gerais and Amazonas. 

One of the key elements of the electricity distribution regulation in 
Brazil is the Periodic Tariff Revision (PTR). The PTR is a regulatory 
mechanism, carried out by ANEEL [26] to ensure a proper and fair 
definition of the tariffs that will be further applied to consumers. During 
the PTR, the regulator establishes the allowed regulatory revenue for all 
DISCOs. One of the components of the required revenue is the efficient 
operational costs. Despite all the diversity described, ANEEL adopted the 
DEA model to calculate an efficiency score of all DISCOs that are further 
used to calculate the efficient operational costs. In an attempt to over
come heterogeneity, and consider all the 61 DISCOs in a single set, the 
regulator considers non-decreasing returns as in (2) and additional 
linked weight restrictions as in (14) and (15). The weight restrictions 
were incorporated based on production trade-offs and upper and lower 
bounds limits are based on the DISCOs data set from previous PTRs. 

3.1. Variables and data sets 

The data used in the case study are obtained from ANEEL database 
that was previously applied by regulator to calculate the efficiency of the 
DISCOs in the Publics Hearings 023/2014 (PH 023) and 052/2017 (PH 

052) available in [27]. During the fourth PTR cycle, ANEEL established 
the efficiency analysis would be based on one input and seven outputs. 
The input is represented by DISCOs’ OPEX. The outputs are divided into 
five conventional outputs and two outputs of operational efficiency. The 
conventional outputs are underground network length (nunder) in km, 
overhead distribution network length (nover) in km, high voltage 
network length (nHV) in km, number of consumers (ncons) and deliv
ered energy weighted by voltage level (enavg) in MWh. The operational 
efficiency outputs are adjusted customer’s hours of interruption (CHI) in 
hours and adjusted non-technical losses (NTL) in MWh; these outputs 
are considered as negative contributions of efficiency (negative out
puts), i.e., non-manageable inputs. Table 2 shows the correlation be
tween outputs and input (OPEX). By analysing the correlation matrix, 
one can notice a strong positive correlation between OPEX and most of 
the outputs. 

A description of some the variables can be found in Fig. 2, for 
illustration the variable values were all divided by the maximum. Note 
that there is a concentration of dots, i.e., DMUs, in the lower left corner 
of the scatter plots and then other DMUs that clearly are far away from 
the group and could be seen as outliers. For instance, D9, D13, D19, and 
D22 have larger values for both high voltage and overhead network 
length, representing DISCOs with wide concession areas. D6, D36 and 
D50 with larger values of underground network represent DISCOs in 
more urban areas. D9, D19 and D36 have large value for the CHI vari
able indicating that they might operate in areas of remote access leading 
to longer hours of interruption. 

3.2. Linked weight restriction 

The current model considers linked weight restrictions to better 
discriminate the DISCOs and also to try to overcome the complexity 
added due to the diversity in the set of concession areas. The restrictions 
and corresponding bounds are depicted in Table 3. 

4. Results and discussion 

4.1. Impact of the weight restrictions 

A detailed look at Fig. 3 shows the impacts of the weight restrictions 
in the efficiency analysis. As one can notice, the efficiency scores ob
tained by the application of model (2) is defined by the red squares on 
the chart. As all the additional constraints of the type (14) and (15) are 
added to (2), to represent the proper weight restrictions, the feasible 
region of the optimization model becomes tighter. In this situation, as 
the model seeks to maximize the objective function, the optimal solution 
obtained is now smaller than the one previously obtained and is repre
sented by the black line on the chart. Points between red squares and the 

Table 3 
Linked weight restriction added to the model.  

Limited Multiplier Linked 
Weight 

Bounds 

OPEX X overhead distribution network 
length 

vnover

uOPEX  

Minimum  725.98 
Maximum  2753.73 

underground network length X overhead 
network length 

vnunder

vnover  

Minimum  1.00 
Maximum  2.00 

high voltage network length X overhead 
distribution network length 

vnHV

vnover  

Minimum  0.40 
Maximum  1.00 

OPEX X number of consumers vncons

uOPEX  

Minimum  37.55 
Maximum  181.50 

OPEX X delivered energy weighted by 
voltage level 

venavg

uOPEX  

Minimum  1.25 
Maximum  75.10 

OPEX X non-technical losses vNTL

uOPEX  

Minimum  12.52 
Maximum  187.75 

OPEX X hours of interruption vCHI

uOPEX  

Minimum  – 
Maximum  2.50  
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Fig. 3. Linked weight restrictions impact on efficiency scores.  
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black line represent situations with model (2) and the addition of a 
single weight restriction constraint of the type (14)–(15). For instance, 
recall from Fig. 2 that D6 and D50 are DISCOs with large underground 
length and benchmarks according to DEA without weight restrictions. 
The results of DEA with weights limits on variables underground and 
overhead length (vnunder/vnover) represented by the orange triangles, 
show efficiency score reductions to 0.62 and 0.81, respectively. Some 
DISCOs were penalized for having large underground network length. 
Similar conclusions can be drawn for DISCOs D25 and D39 that have 
larger values of high voltage network length and were penalized by the 
addition of the weight restriction (vnHV/vnover) represented by the purple 
dash. 

Results show that without considering weight restrictions, 25 out of 
the 61 DISCOs are in the efficient frontier and with the added re
strictions only 6 remain at the frontier. Moreover, the restrictions with 
higher impact on efficiency scores are the ones limiting overhead and 
underground multipliers (orange triangles) and hours of interruptions 
and OPEX multipliers (gray circles). We note that when we add all the 
weight restrictions applied by the Brazilian regulator the reduction in 
the efficiency score ranges from 0% to 45% with an average of 10%. 

4.2. Analysis of the shadow prices associated with the weight restrictions 

The next step is to consider the model with all weight restrictions and 
to analyse the shadow prices associated with each one of them. The 
objective is to verify if either the minimum or maximum limit on the 
weight are active in the optimal solution. In other words, how many 
DISCOs have its efficiency limited by a specific weight restriction. The 
results are shown in Fig. 4. Recall that there are six restrictions with 
upper and lower limits and one restriction vCHI/uOPEX with only upper 
limit. Thevnover/uOPEX, vncons/uOPEX and venavg/uOPEX constraints are only 
active for 1/3 of the DISCOs. The concern is regarding vnunder/vnover and 
vnHV/vnover that are active on all DISCOs and vNTL/uOPEX that are active on 
55 DISCOs with 65% of the impact coming from lower limit restriction. 
The former imposes weight links among distribution grid characteristics 
like underground, overhead and high voltage network length. Each 
DISCO developed its network over the years as function of the local 
characteristics and often without control of the form of the expansion. In 
this particular study case, there are two extremes: an essentially urban 
DISCO with large underground network length values and another with 
high voltage network length because of the territorial extension of its 
service area. These companies would be penalized for having to serve a 
concession with these characteristic. 

The CHI variable was incorporated to the model to account for 
quality of service in the efficiency evaluation. A weight restriction linked 
to the OPEX weight was also added. In Fig. 4, 32 DISCOs have their 
optimal weight for CHI falling in the upper bound limit and 25 DISCOs 

do not attribute any importance to the quality criterion (i.e., CHI 
multiplier was equal to zero in the optimal solution). The non-technical 
losses (NTL) variable is incorporated to consider the losses directly 
related to energy theft and measurement and billing errors. Similar to 
CHI, a weight limit linked to the OPEX is added. The number of DISCOs 
that have their efficiency limited by this restriction is large, with 40 
DISCOs bounded by the upper limit and 15 by the lower limit. 

Given that the optimal solution is bounded by either the upper or 
lower limits, the numbers of weight restrictions that are active in the 
optimal solution ranges from 0 to 7. Table 4 shows that all DISCOs have 
at least two active weight limit constraints and most of them have 4 or 5 
active weight limits. Moreover, six DISCOs have their efficiencies 
defined by 6 boundary restrictions and one DISCO have their efficiencies 
defined by the all 7 constraints. 

From the results of the analysis the weight restrictions have shown a 
significant impact on the efficiency scores and need to be further 
investigated with a clear and robust methodology to establish the 
maximum and minimum bounds on their values. An approach to deal 
with Brazilian electricity utilities diversity is discussed in [16] where the 
authors segregated the utilities concessions areas into smaller regions 
and considered them as DMUs in the DEA following the lead from the 
third PTR cycle where the DISCOs were segregated into two groups, one 
with smaller and other with bigger DISCOs. But the regulator went in the 
other direction in the fourth PTR cycle by joining all DISCOs in one set 
and adding the weight restrictions. The effect of weight restrictions and 
lack of a methodology to define the upper and lower bounds raised 
concerns among agents regarding to the consistency and the fairness of 
the approach and associated results. 

4.3. Impact of adding non-negative efficiency score constraint to DEA 
model 

Here we explore the effect of the addition of the non-negative cross- 
efficiency score constraint using the original DEA model represented in 
(2). The original DEA-NDRS results are represented in blue and the DEA- 
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Fig. 4. Number of DMUs bounded above or below by each weight restriction.  

Table 4 
Linked Weight Restriction Added to the Model.  

Number of Binding weight restrictions Number of DISCOs affected 

1 or less – 
2 1 
3 13 
4 22 
5 18 
6 6 
7 1  
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NDRS with non-negative efficiency score constraint results are repre
sented in red in Fig. 5. The decrease in efficiency scores observed in the 
red series is proof that many DISCOs are maximizing their efficiency 
with a set of weights that should not be considered feasible since it 
drives the efficiency of others DISCOs outside the production set. 
Without the non-negative efficiency score constraint, 25 out of the 61 
DISCOs are classified as benchmarks. Results have shown that the pro
cess of adapting the DEA model to represent negative outputs reduces 
the need for all the weight constraints added by the Brazilian regulator. 
In addition, the concern associated with the establishment of production 
trade-offs that lead to upper and lower bounds for the weight restrictions 
is solved. 

4.4. Impact of adding non-negative efficiency score constraint to the CEA 
and REA models 

All the results in this section considers the optimization models (4)– 
(8) augmented by the non-negative efficiency constraint (3) and the 
linked weighted restrictions (14)–(15) to keep consistency among the 
simulations with respect to DEA, CEA and REA models. Fig. 6 shows the 
efficiency values of DEA-NDRS, the average efficiency of CEA-NDRS and 
FPI produced by the model runs. The average efficiency of CEA is always 
less than 100% unless one DISCO can achieve 100% for all columns in 
Table 1. The results for CEAavg are all divided by the maximum CEA 
average such that at least one DISCO is benchmark which turned out to 
be D20 that is also benchmark in DEA. The next two most efficient 
DISCOs in the CEA are D56 and D52, also benchmarking DMUs in DEA. 
CEA ranked D33 and D25 well despite not being benchmarks in DEA, but 
for demonstrating greater average performance. Ideally, the efficiency 

30%

40%

50%

60%

70%

80%

90%

100%

D
20

D
25

D
38

D
39

D
44

D
49

D
50

D
52

D
54

D
55

D
56

D
59

D
33

D
42

D
36

D
6

D
31

D
48

D
37

D
23

D
29

D
8

D
16

D
46

D
45

D
12

D
32

D
18

D
35

D
60

D
30

D
13

D
51

D
43

D
58

D
19

D
10

D
24

D
61

D
53

D
57

D
22

D
21

D
9

D
14

D
17

D
4

D
26

D
11

D
3

D
15

D
41

D
5

D
40

D
34

D
47

D
27

D
7

D
28

D
1

D
2

Effi
ci

en
cy

 S
co

re

DEA-NDRS PE Original DEA-NDRS

Fig. 5. Impact of non-negative efficiency constraint on efficiency scores.  
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score from both models should be close demonstrating a greater stability 
in the DEA scores. This is reflected in the FPI, i.e., the DISCOs whose FPI 
are lower than 10% have more stable results. That is not the case of 
DISCOs D38, D44, D39, D36, D48, D9, D60, D50, D45, D49 and D1 (in 
order of appearance in Fig. 6). It is no coincidence that these are DISCOs 
were labelled in Fig. 2 as outliers. Once again, the complexity of 
concession areas is significantly influencing the stability of efficiency 
scores. Specifically in the case of D44, the average CEA before dividing 
by the maximum is 72%. The reason it is well below the DEA score is 
when it is benchmarked against D49 and D24, D44 score is 44% and 
33%. It does not necessarily mean that D44 is inefficient compared to 
D24 and D49, what it means is that these DISCOs may not be 
comparable. 

The FPI value in Fig. 6 makes it easier to understand the differences 
between the CEA and the DEA efficiency results, since DISCOs with high 
FPI values are generally those with the largest differences between the 
average CEA efficiency and the one obtained with DEA. The worst 
performance of the set was from D49 with a FPI of 127%. This is an 
indication that the DEA model favoured the performance of this DISCO, 
i.e. when the DISCO is analysed individually, the efficiency score ob
tained is 88%, but when we maximize the efficiency of all DMUs 
together the efficiency is reduced to 41%. 

The REA results are presented in Fig. 7 (Raking Interval), Table 5 
(Efficiency Dominance) and Fig. A.1 (Efficiency Bounds). The ranking 
interval analysis seeks to measure sensitivity of a DISCO efficiency score 
with respect to the variation of the set of feasible weights. When ranking 
intervals are wide, it means that one DISCO can rank well or poorly 
depending on the choice of input and output weights. One can notice 
from Fig. 7 that the choice of weights significantly influences the effi
ciency results. The ranking intervals vary on average by 38 positions, but 
it is possible to see some DMUs whose highest rank is from one to five 

and worst rank from 55 to 61. Note that these intervals would be even 
wider if we removed the weight restrictions from the analysis. The wide 
intervals could be associated with the large number of variables 
considered as opposed to the number of DMUs and the non-decreasing 
returns to scale assumption. Here the DISCOs were ordered by the best 
rank that can be achieved (rp

min). DISCOs with same rp
min were further 

order from lowest to highest rp
max. D20 that was a benchmark DMU in the 

CEA analysis is actually in fourth place here since it can achieve lower 
positions than D52, D54 and D56. D49 that was among the worst per
formers for CEA, is in ninth place here because for some feasible set of 
weights it can reach rank 2. But the fact that DISCOs in the top 10 like 
D44 and D49 can reach positions from 1 to 57 and 2 to 55, respectively, 
means that DEA scores can be very sensitive to the set of DMUs, i.e., the 
removal of one or more DMUs from set K will have a strong impact in the 
results. 

The efficiency dominance analysis from REA establishes how many 
and which DISCOs have performance superior to the DISCO under 
analysis. One can argue that the dominance relations have similar 
interpretation to the peers’ concept, where DISCOs at the efficient 
frontier contribute, in the dual DEA model, to the efficiency composition 
of DISCOs outside the frontier [28]. The advantage is that with the 
dominance relationship from REA it is possible to identify an efficiency 
relationship among all the DISCOs and not only with DISCOs that are in 
the DEA efficiency frontier. If a DISCO is benchmark according to DEA 
results, it means that it cannot be dominated by any other DMU. If a 
DISCO p is not a benchmarking DMU, then the algorithm analyses all 
possible weights and identifies a set of DISCOs whose efficiency is al
ways greater than DISCO’s p. It is possible that a DISCO even if outside 
the efficiency frontier is not dominated by any other. In other words, this 
means that for some set of weights the DISCO in analysis can overcome 
the benchmarking DISCOs defined by the DEA model. From Table 5, we 

Table 5 
Dominance relation.  

DISCO Dominated By DISCO Dominated By 

D1 2–6,12,14–18,20,21,23,24,26–35,37–39,41–49,51–61 D32 52,55,56 
D2 3,4,16–18,21,24,26–30,35,41,45–49,51–54,58–61 D33 56 
D3 26,30,51,52,59 D34 3,4,16,17,24,26,29,30,51–54,58,59 
D4 30,52 D35 51,52,54 
D5 3,4,16,23,24,26,29,30,37,42,43,51–54,56,58,59 D36 55,56 
D6 3,4,16,23,24,26,29,30,42,43,48,51–53,55–59 D37 – 
D7 3–6,10,12,14–18,20,21,23,24,26,27,29,30–35,37–39,41–44,46–48,51–60 D38 54 
D8 20,33,55,56,59 D39 20,42,54,56, 
D9 10,12,20,23,33,42,54,56,59 D40 3,4,10,12,16,20,23,24,26,29,30–33,37,42,43,51–59 
D10 12,20,42,56 D41 16,21,24,26,27,48,51–54,59 
D11 12,20,23,33,42,56,59 D42 – 
D12 – D43 – 
D13 12,20,33,42,56 D44 – 
D14 23,37,38,42,54,56,59 D45 52 
D15 3,4,16,17,23,24,26,29,30,37,42–44,51–54,56,58,59 D46 52,54 
D16 52 D47 16,21,35,51,52,54 
D17 54 D48 52 
D18 16,21,24,51,52,54 D49 52 
D19 12,20,42,56 D50 20,25,32,33,52,55,56 
D20 – D51 – 
D21 51,52,54 D52 – 
D22 20,25,30,33,51,55,56,59 D53 52,59 
D23 – D54 – 
D24 51 D55 – 
D25 – D56 – 
D26 51 D57 56 
D27 52,54 D58 30,59 
D28 3,16–18,21,24,26,27,29,30,35,41,45–49,51–54,59–61 D59 – 
D29 – D60 51,54,59 
D30 – D61 45,49,52,54 
D31 56    
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can see that although 6 DISCOs are benchmarking according to DEA a 
larger number of them, more specifically sixteen, are not dominated by 
any other. Turning our attention again to D44 and D49, they have poor 
performance in CEA and REA ranking intervals, but D44 is not domi
nated by any other DMU and D48 is only dominated by D52. DISCOs D1, 
D2 and D7 are the ones dominated by most DMUs, which is expected 
from the DEA and CEA performance results. 

The relative efficiency results quantify the performance of DISCOs 
for all possible sets of weights relatively to the most efficient DMU of the 
set. The optimization model (11) defines the minimum and the 
maximum relative efficiency. It resembles the ranking intervals, but now 
we are actually defining an efficiency score instead of just a rank for the 
DMUs. The results of maximum possible efficiency will coincide with the 
DEA results. Exceptions are to be found for DISCOs that are in the effi
cient frontier. The DEA approach does not accept efficiencies larger than 
one. However, as the third stage of REA evaluates the relative effi
ciencies among DISCOs that are at the DEA efficient frontier, the model 
will lead to efficiency scores greater than one providing a ranking within 
benchmark DMUs. For the case study results (see Fig. A.1) from model 
(15) show that among the 6 benchmarks DISCOs, D54 is the most effi
cient followed by D52, D55, D20, D56 and D44. 

4.5. Final thoughts and caveats 

As a result of this research a few issues were identified: (i) existence 
of negative efficiency scores due to negative outputs; (ii) weight re
strictions based on production trade-offs that may not be physically 
feasible; (iii) non-homogeneous set of DISCOs being benchmarked all 
together; (iv) large number of variables being considered as opposed to 
the number of DISCOs. To address (i), we proposed here the addition of a 
new set constraints to avoid negative efficiency scores and we proved 
that these new constraints alone improve the results by better discrim
inating the DISCOs even without the need for the weight restrictions. On 
issue (ii), we understand that the weight restrictions were added to the 
model to better distribute the weights in the optimal solution, but the 
results show that for most DISCOs four or five out of the seven weight 
restrictions are binding in the optimal solution. In other words, the 
efficient scores are being dictated by these weight restrictions. 

As for issues (iii) and (iv), the regulator added more variables to the 
model and adopted the non-decreasing return to scale in an attempt to 
better represent the diversity of the DISCOs and allow for the simulation 
of all of them together. But CEA and REA simulation results proved that 
the model is benchmarking DISCOs that are non-comparable making the 
efficient score very sensitive to the removal of one or more DISCOs from 
the set. More specifically, the REA models add quantitative information 
to compute relative efficiency scores among the DMUs, i.e., it allows for 
a peer evaluation among DMUs even if they are not in the efficient 
frontier. But the results showed wide ranges for ranking intervals and 
failed to define strong dominance relationships among DISCOs. 

5. Conclusion 

This paper presented an analysis of different benchmarking tech
niques (DEA, CEA and REA) to the electricity distribution sector. The 
methodologies are computational efficient providing additional expe
dite insights to benchmark analysis in the electricity distribution sector. 
The CEA shows that the diversity of concession areas is significantly 
influencing the stability of the efficiency scores. The worst performance 
of the set was from D49 with an FPI of 127%, which means that there is a 
significant change in the efficiency scores when compared DEA to CEA. 
The ranking intervals from REA vary on average by 38 positions, but it is 
possible to see some DMUs whose highest rank is from one to five and 

worst rank from 55 to 61, showing that choice of weights significantly 
influences the efficiency results. With the dominance relationship from 
REA, it is possible to identify an efficiency relationship among all the 
DISCOs and not only with DISCOs that are in the DEA efficiency frontier. 
The ranking interval of REA evaluates the relative efficiencies among 
DISCOs that are at the DEA efficient frontier, the model will lead to 
efficiency scores greater than one providing a ranking within benchmark 
DMUs. 

A sensitivity analysis for the current benchmark model adopted in 
Brazil to compute the efficient operational cost for the utilities during 
the period tariff revision process was discussed. The inclusion of weight 
limits for benchmarking analysis of DISCOs is interesting and make 
possible for one to perform benchmark analysis for a complex set of 
DMUs, but it is important to note that some of the weight restrictions 
had higher impacts than others on the optimal efficiencies. This paper 
has shown this by performing an analysis of each weight restriction by 
adding them as individual Non-Negative Efficiency Score Constraint in 
the DEA analysis. 

As an alternative to deal with a non-homogenous set of DISCOs, a 
possible future research direction would be to consider a clustering 
analysis of the DMU set, prior to the application of the DEA model, in 
order to create subsets of similar DMUs to perform the benchmarking 
analysis. We expect that by considering homogeneous DMUs subsets the 
results from DEA, as well as the results from CEA and REA would be 
more consistent and eliminate the need to incorporate weight re
strictions. This would imply policy modifications in the DISCO tariffs 
revision process and would potentially improve fairness in the bench
marking process and the electricity tariffs establishment. Future work 
could also seek to segregate the DISCO concession areas in smaller DMUs 
and apply the CEA and DEA, creating an idea of self-efficiency bench
marking analysis. This could help to pinpoint areas that are affecting 
negatively the overall score obtained by the DISCO. 
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See Fig. A.1. 
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Fig. A.1. Relative efficiency bounds.  
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