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Abstract
This work analyzes the use of artificial neural networks in the short-term streamflow forecasting for large interconnected 
hydropower systems. The state-of-the-art optimization algorithms, activation functions, and weight initialization techniques 
are investigated together with classic methods. We present an algorithm to define the neural network inputs in large hydrosys-
tems and apply it to create models for 55 major hydro plants located in the Paraná Basin, which contribute to more than 30% 
of the total power generated in Brazil. The paper also compares the performance of the neural networks with the hydrological 
models that are currently used by the independent system operator to define the dispatch of the electric power generators. 
Our results show that, overall, the neural network models provide more accurate forecasts than the hydrological models 
used by the Brazilian System Operator. Finally, the paper discusses the contributions of historical rainfall information in the 
forecasting of streamflow while using neural network models.

Keywords  Artificial neural networks · Hydropower generation · Hydrological run-off models · Large interconnected 
hydrosystems

Abbreviations
Adam	� Adaptive moment estimation
ANN	� Artificial neural network
AR	� Autoregressive
ARMA	� Autoregressive moving average
CPU	� Central processing unit
GD	� Gradient descent
GDM	� Gradient descent with momentum
GPU	� Graphics processing unit
ISO	� Independent system operator

IVS	� Input variable selection
MAPE	� Mean absolute percentage error
MGB-IPH	� Large-scale hydrological model
MLP	� Multi-layer perceptron
MSE	� Mean square error
NSE	� Nash–Sutcliffe efficiency
OWI	� Optimal weight initialization
PAR	� Periodic autoregressive
PARMA	� Periodic autoregressive moving average
ReLU	� Rectified linear unit
RMSprop	� Root-mean-square propagation
SMAP	� Soil moisture accounting procedure
SVM	� Support vector machine
VELMA	� Visualizing ecosystem land management 

assessments
WI	� Weight initialization

Indices and sets
In	� Set of input candidates
In∗

S
	� Best set of streamflow inputs used in a spe-

cific ANN
IstI	� Input streamflow candidate ( sI , tI)
Ip

DAR

tI
	� Input rainfall candidate accumulated through 

DAR days ( pI , tI ); DAR = 1 : nonaccumulated 
rainfall

Osto	� Output streamflow ( sO , tO)
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pI ∈ In_p	� Set of rainfall stations considered for input 
candidates

sI ∈ In_s	� Set of streamflow stations considered for 
input candidates

sO	� Output streamflow station
tI	� Number of days preceding the first day of 

forecast
tO	� Day of forecast

Functions
C	� Component of the cost function that penal-

izes the difference between y(i) and ŷ(i)
Cr(A,B)	� Function that computes the correlation coef-

ficient between the variables A and B
Edev(k)	� Error in the development set until the kth 

epoch simulation
J	� Cost function with �2 regularization
M2	� Cost function (28)
R2	� Cost function (29)
U
(
a1, a2

)
	� Continuous uniform distribution in the inter-

val [ a1 , a2]
UD

(
a1, a2

)
	� Discrete uniform distribution in the interval 

[ a1 , a2]
Var

[
w�

]
	� Variance of the weights in the �th layer

w2
2
	� Square of the �2 norm of the weight matrixes

�(x)	� Logistic sigmoid activation function

Variables and parameters
b	� Bias vector
CIS/OS	� Lowest correlation coefficient between the 

streamflow input candidates and output 
streamflow

CIR	� Maximum correlation coefficient for the input 
rainfall candidates

CIR/OS	� Lowest correlation coefficient between 
the rainfall input candidates and output 
streamflow

CIS	� Maximum correlation coefficient for the input 
streamflow candidates

db	� Gradients of the bias vector
dw	� Gradients of the weights
DAR	� Number of days lag that rainfall is 

accumulated
DIS	� Number of days lag of input streamflow 

investigated
DOS	� Number of days of output streamflow
DIR	� Number of days lag of input rainfall 

investigated
Epoch	� Maximum number of epochs
kprob	� Regularization hyperparameter in dropout
m	� Number of output variables
n	� Number of output examples
n
�
	� Number of neurons in the �th layer

NHyp	� Number of times that different hyperparam-
eters are tested

NRC	� Number of times that different CIR/OS and CIR 
correlation coefficients are tested

NSC	� Number of times that different CIS/OS and CIS 
correlation coefficients are tested

w	� Weights
y(i)	� Average streamflow for the ith example
y(i,t)	� Estimate for the tth output variable (day of 

forecast) in the ith example
ŷ(i,t)	� Expected value for the tth output variable 

(day of forecast) in the ith example
�	� Learning rate variable
�	� �2 Regularization hyperparameter
�0	� Mean of the output variables ŷ
�0	� Standard deviation of the output variables ŷ

Introduction

The use of artificial intelligence techniques to support deci-
sion making has grown substantially and reached higher 
levels of quality and robustness in the last decade. This fact 
has been driven by the fast advance of nanotechnology fol-
lowed by cost reductions and processing capacity boost of 
components such as GPUs and CPUs. In this context, the 
increase in data availability and quality allowed a wide dis-
semination of big data analytics techniques such as artificial 
neural networks (ANNs) (Russom 2011; Najafabadi et al. 
2015) in several areas of engineering. Applications of ANNs 
can be found in load and wind power forecasting in (Quan 
et al. 2014), commodity price forecasting (Li et al. 2018), 
and many others (Tian et al. 2018; Jo et al. 2015). The enor-
mous potential in this field of study has made companies 
such as Google provides open-source frameworks such as 
TensorFlow (TensorFlow 2019), specialized in the develop-
ment of ANN models with a strong support for deep learn-
ing, which contributed even more to a faster development of 
this research field. Compared to other shallow ANN models, 
deep learning was proven to be consistently superior while 
dealing with complex problems such as image classifica-
tion (Krizhevsky et al. 2012) and speech recognition (Hinton 
et al. 2012a).

The first applications of ANNs in streamflow forecast-
ing are related to the end of the twentieth century (Zealand 
et al. 1999; Hsu et al. 1995). By that time, researchers had 
already noticed the potential of applying ANNs in hydrol-
ogy. However, limitations in computer performance and data 
availability prevented a more effective adoption of these 
studies in practical applications for supporting planning 
and operations decisions associated with hydropower gen-
eration. Nowadays, several of the previous limitations were 
completely eliminated or severely reduced. The advances 
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in nanotechnology allowed the development of CPUs and 
GPUs several times faster and significantly more accessible 
in terms of costs. This new environment generated the condi-
tions for an efficient use of ANNs techniques in real applica-
tions. While the widespread of the internet and cheap storage 
systems contributed to the advances in big data analytics, 
it also played a fundamental role with respect to the avail-
ability of climate and hydrological data which can be better 
used to enhance data-driven streamflow forecasting models.

Water resources are of great importance for the electric-
ity supply in countries and regions where the availability 
of hydropower is relevant (Faria et al. 2018). For example, 
in Brazil hydroelectricity corresponds to near 70% of the 
total generated energy and hydropower installed capacity is 
approximately 100 GW (ONS 2017) (65% of the total gen-
eration capacity), characterizing a hydrodominated power 
system (de Queiroz et  al. 2016). In China, hydropower 
only accounts for about 20% of the total generated energy; 
however, this country has the highest installed hydropower 
capacity in the world (341 GW), making water a strategic 
resource (Iha 2018). Globally, hydropower is the world’s 
largest source of renewable generation, accounting for 
more than 60% of the total renewable energy generated in 
2017 (REN21 2018). This high dependence on hydropower 
resources raises the need for developing better models to 
forecast streamflows that are influenced by hydrological 
trends and future weather conditions.

The models used in streamflow forecasting can be divided 
into three main categories, namely empirical, conceptual, 
and physical based (Eslamian 2014). In empirical mod-
els, the relationship between input and output variables is 
established statistically, without any reference to the laws of 
the hydrological process. Commonly used empirical mod-
els are ANNs (Tongal and Booij 2018; Bravo et al. 2009), 
support vector machines (SVM) (Tongal and Booij 2018; 
Yaseen et al. 2016), and some linear time series models 
(Box et al. 2015) such as autoregressive (AR), AR mov-
ing average (ARMA), periodic AR (PAR), periodic ARMA 
(PARMA) (Rasmussen et al. 1996), and the dynamic linear 
model (Lima et al. 2014). Conceptual models are based on 
the continuing equations of water and represent an inter-
mediate modeling between the empirical and the physical 
models. In what concern the representation of South Amer-
ica, the models SMAP (Lopes et al. 1982; Lopes and Mon-
tenegro 2017) and MGB-IPH (Pontes et al. 2017) are two 
well-known examples of conceptual hydrological models. 
Finally, the physical models make use of physical laws such 
as conservation of mass, energy, and momentum in order to 
represent the hydrological processes (Sitterson et al. 2017).

From the investigated literature, empirical, conceptual, 
and physical-based models perform differently in terms of 
accuracy depending on the characteristics of the region ana-
lyzed, data availability, data quality, and timescale (Eslamian 

2014). Empirical models such as ANNs and SVMs are usu-
ally less reliable than conceptual and physical-based models 
when forecasting scenarios too different from those used 
in their training set; therefore, they are not frequently used 
to analyze anomalous hydrological conditions. Empirical 
models are also very dependent on the size of their training 
data and tend to perform exceptionally well in large data-
sets and poorly in small datasets; this limitation is becoming 
less relevant with the increase in the availability and reso-
lution of measured hydrological data. Finally, conceptual 
and physical-based models require a good representation 
and understanding of the basin characteristics including 
soil type, topology, relief, climate conditions, and others; 
therefore, uncertainties in this data representation can sig-
nificantly affect the accuracy of these models.

In what concerns streamflow forecasting problems mod-
eled using ANNs, a large number of papers have focused on 
the comparison of this technique using different data pre-
processing strategies and different forecasting methods. For 
example, Santos and Silva 2014 apply a wavelet transform in 
the input streamflow and show relevant improvements of the 
ANN performance when compared to models that do not use 
this technique. The work of (Tongal and Booij 2018) inves-
tigates the performance of ANN, SVM, and random forest 
models, while using a base flow separation strategy. The 
work of (Chen et al. 2014) uses the copula-entropy theory 
to identify optimal inputs for ANNs, while Bravo et al. 2009 
compares the performance of an ANN model with the con-
ceptual hydrological model MBG-IPH, where ANNs showed 
lower forecasting skills at the time when compared to the 
conceptual model.

Despite the extensive literature available on ANNs 
applied to streamflow forecasting, few of these works have 
investigated the influence of different optimization models, 
activation functions, and weight initialization techniques in 
their application. These characteristics are usually selected 
arbitrarily, based on the few works that have evaluated them 
(KİŞİ 2007; Zadeh et al. 2010), or are based on general 
results from other ANN applications. Although this approach 
ends up saving modeling and simulation time, it may lead to 
a drastic reduction of computational efficiency and accuracy. 
Also, with the fast advance of deep learning, new techniques 
such as the ones developed in (Kingma and Ba 2015; Glorot 
and Bengio 2010) are frequently being proposed and show-
ing promising benefits in different applications. Therefore, 
the streamflow forecasting literature using ANNs must be 
updated to provide reasonable insights over the benefits of 
incorporating these new algorithms and strategies.

This work focuses on short-term natural streamflow fore-
casting, in the range of two weeks ahead, using multi-layer 
perceptron ANNs. One of the original contributions of this 
piece is the extensive evaluation of new approaches that can 
be used to improve the quality of the information available 
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for hydropower operational planning. Although this paper 
gives greater attention to ANN models that use as input only 
historical streamflow, it also discuss the marginal benefit of 
incorporating rainfall information as input for some hydro 
plants. Another significant contribution of this paper is the 
evaluation of different optimization techniques used in the 
ANN training process, as well as activation functions and 
weight initialization (WI) methods. An algorithm to define 
the ANNs inputs in large hydrosystems is also applied to 
evaluate ANN-based forecasting models in a real study case 
composed of 55 hydro plants located in the Paraná Basin in 
Brazil. To our knowledge this is the first work that investi-
gates the use of ANNs for forecasting water inflows in large-
scale systems.

Materials and methods

This work employs a feedforward neural network architec-
ture called multi-layer perceptron (MLP) that maps a set of 
input values to output values. This ANN is called feedfor-
ward because the information flows from the input layer to 
the output layer without feedback connections. In contrast, 
an ANN in which information from the output is fed back 
into the input is called recurrent neural network (Kumar 
et al. 2004; Sttari et al. 2012). MLPs are commonly used in 
several areas of forecasting and, together with the recurrent 
neural networks, have shown an excellent performance in 
numerous applications.

Figure 1 presents a schematic of an MLP. The input layer 
receives the ANN inputs ( i(k)) that are traditionally selected 
based on the modeler experience or through a statistical pro-
cess. Formally, this step is called input variable selection 
(IVS). After passing through the input layer the informa-
tion is transmitted to the hidden layers where a series of 
computations are performed. The neurons on the hidden 
layers, represented by circles, make linear combinations of 
the information arriving, apply a nonlinearity to the results, 
and transmit this information to the next layer of neurons. 
This nonlinearity is formally called activation function and 

is discussed in a different section. Finally, after leaving the 
hidden layers, the information passes through the output 
layer where its neurons apply a final linear combination to 
the information that arrived and generate an estimate (pre-
diction) for the output variables. In some applications, a 
nonlinearity is also applied at the output layer such as in 
classification problems (Goodfellow et al. 2016).

Overall, the main goal in an MLP is to calibrate the 
parameters w (weight) and b (biases), responsible for the 
linear combinations, in a way that the difference between the 
ANN estimate and expected value is minimized.

Data segmentation and normalization

In ANN models, the data that relate input/output historical 
information are called learning examples. Traditionally, the 
set of learning examples is divided into three sets, called 
training (train), development (dev), and test sets. The objec-
tive of this segmentation is to provide independent data to 
optimize the weight and biases of the ANN model (training 
set); to make interactive adjustments in the ANN hyperpa-
rameters and validate the training, that is, verify whether the 
behavior observed in the training set can be generalized to 
other sets (dev set); and finally to estimate the performance 
of the ANN (test set). The percentage of the data allocated to 
each of these sets depends on the complexity of the model, 
and amount of data available, two common segmentation 
strategies for small datasets, up to 10,000 examples, is 60% 
train set, 20% dev set, and 20% test set (60/20/20), and 
(70/20/10).

Additionally, in many ANN applications, it is a common 
practice to shuffle the learning examples before dividing 
them in each set (Goodfellow et al. 2016), but this is not 
the case in streamflow forecasting studies (Santos and Silva 
2014; Tongal and Booij 2018). Due to the temporal interac-
tion of each learning example, the data shuffle indirectly 
transfers relevant information of the dev and test sets to the 
training set, leading to an overestimation of the ANN per-
formance. In this case, the ANN would present an average 
error during forecasting (after training) much higher than its 

Fig. 1   Example of multi-layer perceptron
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test set error. Additionally, due to changes in climate, soil, 
and vegetation it is interesting to choose a development set 
that is closer to the present so that the tuning of the ANN 
architecture using the dev set would also lead to an ANN 
model that better represents the present.

Normalization is also key in the ANN data preparation 
since it tends to speed up the optimization algorithms by 
reducing the dependence of the gradients on the scale of the 
parameters. A common way of normalizing data is by res-
caling it to have a predefined mean and variance (standardi-
zation), typically mean 0 and variance 1 (1) (Géron 2017; 
Aggarwal 2018). This was the normalization adopted in this 
work.

Optimization algorithms

There are several optimization algorithms applied for train-
ing ANN models, but the gradient descent with momentum 
(GDM) (Polyak 1964), the root-mean-square propagation 
(RMSprop) (Hinton et al. 2012b), and the adaptive moment 
estimation (Adam) (Kingma and Ba 2015; Géron 2017) cer-
tainly had a significant influence in the recent explosion and 
success of machine learning applications. The idea behind 
the ANN learning process is related to the backpropaga-
tion algorithm (Géron 2017). After providing a weight ini-
tialization for the ANN parameters and completing a for-
ward propagation step, going from the input layer to the 
output layer computing linear combinations, and applying 
the results to activation functions, all outputs/inputs of each 
neuron and the value of the cost function are obtained. With 
this information, it is possible to apply the backpropagation 
algorithm where the chain rule (Goodfellow et al. 2016) is 
used to compute the gradients of the weights and biases from 
the output layer to the input layer. In the gradient descent 
method (GD), the weight and biases are updated by making 
small steps in the gradient direction. After these updates, 
the process mentioned above repeats until a certain conver-
gence criterion is reached. Equations (2) and (3) describe 
the weight and bias updates, respectively, while using the 
GD algorithm, � is the learning rate, and dw and db are the 
gradients for the weight and biases.

The GDM, the RMSprop, and the Adam algorithms fol-
low the same steps as mentioned for the GD except for the 
weight and biases update. The GDM basically computes an 
exponentially weighted average of the gradients and uses this 

(1)XN =
X −mean(X)

std(X)

(2)w = w − � ⋅ dw

(3)b = b − � ⋅ db

value to update the weights and biases. Equations (4)–(7) 
describe the w and b updates. The variables Vdw and Vdb are 
initialized with zero, and �1 is a parameter that control the 
number gradients the model averages over (Géron 2017). A 
common value for �1 is 0.9, what in practice means averaging 
over the previous ten gradients (Géron 2017; Ruder 2017). 
By performing the update in such a way, the GDM tends to 
smooth oscillations of the gradients, leading a faster learn-
ing process when compared to the traditional GD method.

The RMSprop computes an exponentially weighted aver-
age of the square of the gradients and uses this information 
to indirectly adjust the learning rate (Hinton et al. 2012b). 
Among its characteristics, the algorithm is especially use-
ful in escaping from plateaus with small gradients (Morse 
and Stanley 2016) and usually presents a better perfor-
mance when compared to the GDM (Géron 2017; Ruder 
2017; Dozat 2016). Equations (8)–(11) describe the w and 
b updates for this algorithm; Sdw and Sdb are initialized with 
zero; dw2 and db2 are the square of the gradient with respect 
to w and b , respectively, an elementwise operation; �2 con-
trols the exponential decay rate for the moment estimates; 
and � is a small constant that is inserted in the denominator 
in order to provide numerical stability. Typical values for �2 
and � are, respectively, 0.9 and 1e−8.

The Adam algorithm incorporates the ideas of GDM 
and RMSprop, and it is a robust method which is simple to 
implement and has shown to be consistently superior when 
compared with several other gradient-based optimization 
methods (Kingma and Ba 2015; Dozat 2016). The Adam 
algorithm first initializes Vdw , Vdb , Sdw , and Sdb to zero and 
then computes (8)–(9) and (12)–(13). After determining 
the new Vdw , Vdb , Sdw , and Sdb values, the model computes 

(4)Vdw = �1 ⋅ Vdw + dw

(5)Vdb = �1 ⋅ Vdb + db

(6)w = w − � ⋅ Vdw

(7)b = b − � ⋅ Vdb

(8)Sdw = �2 ⋅ Sdw +
(
1 − �2

)
dw2

(9)Sdb = �2 ⋅ Sdb +
(
1 − �2

)
db2

(10)w = w − dw ⋅
�

√
Sdw + �

(11)b = b − db ⋅
�

√
Sdb + �
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(14)–(15), where t is the iteration number of the algorithm 
( t ≥ 1 ). Finally, w and b are updated as in (16)–(17).

Equations (12)–(13) are very similar to (4)–(5), both 
are exponentially weighted averages, but (12)–(13) are a 
decaying mean, and (4)–(5) are a decaying sum. Actually, 
Eqs. (12)–(13) could be used substituting (4)–(5) in the 
GDM. Equations (14)–(15) are responsible to perform a bias 
correction. In the early stages of the algorithm, since fewer 
values have been accumulated in Vdw , Vdb , Sdw , and Sdb , the 
algorithm makes an underestimation of the expected values 
for these parameters. It is important to notice that as the 
algorithm evolves, the denominator of the algebraic expres-
sions in (14)–(15) becomes one, and the bias correction step 
is no more needed. A bias correction can also be performed 
in the GDM and RMSprop, but it is not a common practice 
reported in the literature.

Typical values for �1 , �2 , and � are 0.9, 0.999, and 1e−8, 
respectively.

Activation functions

In each hidden layer, after making a linear combination of 
the previous inputs, it is important to apply a nonlinearity 
to the result; otherwise, the overall capacity of the ANN to 
identify nonlinear behaviors would be nullified. There are 
several options of nonlinear functions that can be used, but 
the logistic sigmoid activation function ( � ), hyperbolic tan-
gent (tanh), and rectified linear unit (ReLU) are among the 
most well-studied (Goodfellow et al. 2016).

The logistic sigmoid activation function can be math-
ematically described as (18). Although extensively used in 
the past, in the last few years, this function is becoming less 

(12)Vdw = �1 ⋅ Vdw +
(
1 − �1

)
dw

(13)Vdb = �1 ⋅ Vdb +
(
1 − �1

)
db

(14)V̂dw =
Vdw(

1 − � t
1

) , and V̂db =
Vdb(

1 − � t
1

)

(15)Ŝdw =
Sdw(

1 − � t
2

) , and V̂db =
Sdb(

1 − � t
2

)

(16)w = w − � ⋅
V̂dw

√
Ŝdw + �

(17)b = b − � ⋅
V̂db

√
Ŝdb + �

commonly used in the hidden layers of new ANN models as 
several papers have reported better results while using the 
tanh or ReLU (Glorot and Bengio 2010; Glorot et al. 2011, 
2014; Maas et al. 2013). Equations (19) and (20) describe 
the tanh and ReLU activation functions, respectively.

According to (Wan et al. 2013) one of the main draw-
backs of the sigmoid and tanh activation functions is that 
they saturate when x becomes very positive or negative, and 
when this happens the gradients become too small slowing 
down the learning process. Compared to the logistic sigmoid 
function the tanh has mean zero and is symmetric about the 
origin, and these properties make this activation function 
more likely to produce outputs that are on average closer 
to zero what helps the gradient descent algorithm (LeCun 
et al. 1998). If the output of an activation function is always 
positive (logistic sigmoid or ReLU) or always negative, the 
weight updates of each node can only all increase or all 
decrease together at each epoch, potentially slowing down 
the optimization (LeCun et al. 1998).

Finally, the ReLU activation function is not zero-cen-
tered and suffers from a problem called dying ReLU (Géron 
2017), and this is observed during training when the sum of 
a specific neuron’s input is negative. When this happens, this 
neuron will only output zero for the remaining of the train-
ing since the gradient of the ReLU function in x < 0 is zero. 
Despite these negative characteristics, the ReLU function 
has shown an excellent performance in several applications. 
Its simple formulation allows faster gradient calculations and 
the dying ReLU problem has shown not to be much prevail-
ing when the weight initialization and the learning rate are 
properly chosen (Géron 2017). Additionally, some alterna-
tives such as LeakyRelu (Xu et al. 2015) and ELU (Clevert 
et al. 2015) have been proposed in order to solve the dying 
ReLU problem and enhance the learning performance, but 
these functions also have pros and cons and are not used as 
often as the ReLU currently is.

Weight initialization

In order to train ANNs using algorithms based on the gra-
dient descent method, it is crucial to properly initialize the 
model weights. These weights need to be initialized randomly 
and have an optimum scale, not too close neither too far from 
zero. A random initialization assures symmetry breaking in the 

(18)�(x) =
1

1 + e−x

(19)tanh (x) =
ex − e−x

ex + e−x

(20)ReLU(x) = max (0, x)
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training phase (Goodfellow et al. 2016). Weights of the same 
layer would be updated identically during the backpropagation 
phase if they were initialized with the same value, making the 
ANN maybe even less effective than a linear regression model 
in that case.

Additionally, it is important to initialize the ANN weights 
with proper magnitudes in order to avoid the vanishing/explod-
ing gradient problem (Schmidhuber 2015). Weights initial-
ized with values very close to zero can potentially vanish the 
information that arrives from the input layer to the output layer 
ending up with extremely small output values in the first itera-
tions and consequently small gradients. On the other hand, the 
initialization of the ANN weights with values far from zero 
may increase the output values severely, ending up with exces-
sive large gradients. Overall, the vanishing/exploding gradient 
problem decreases the training speed and is exacerbated with 
the ANN depth. Actually, this is the main reason why it took 
longer for deep learning to start flourishing when compared to 
other shallow neural network models (Géron 2017).

Before the development of more sophisticated techniques 
(Glorot and Bengio 2010), weights were usually initialized 
to follow a uniform random distribution with zero mean and 
standard deviation one (Géron 2017). Although this initializa-
tion method can provide symmetry breaking in the ANN train-
ing, it does not properly scale the ANN weights what often 
leads to the vanishing/exploding gradient problem.

The work of (Glorot and Bengio 2010) proposed a new 
method to perform weight initialization in ANNs. The main 
idea was to control the variance of the input/output signals 
(forward propagation) and the variance of the gradients dur-
ing the backpropagation phase so that one could avoid that 
input/output signals and gradients get exponentially large or 
small. When using the tanh activation function the authors in 
(Glorot and Bengio 2010) manage to prove that (21) needs to 
be satisfied in order to assure equal variance in the inputs and 
outputs of each ANN layer, and that (22) needs to be satisfied 
in order to assure equal variance in what concern the gradients 
of the backpropagation step. In (21) and (22), Var

[
w�

]
 and n

�
 

are, respectively, the variance of the weights and the number 
of neurons in the �th layer. Finally, it is only when n

�
 is equal 

to n
�+1 that (21) and (22) can be simultaneous satisfied, so as 

a compromise, the authors decided to take the average of (21) 
and (22), arriving at the famous expression (23), which can 
be written in terms of uniform distribution (24) still satisfying 
the premises of the original proof presented in (Glorot and 
Bengio 2010).

(21)Var
[
w�

]
= 1∕n

�

(22)Var
[
w�

]
= 1∕n

�+1

Still following the derivation proposed in (Glorot and 
Bengio 2010), it is possible to arrive at proper weight ini-
tializations for the sigmoid (25) (Bengio 2012) and ReLU 
(26) (He et al. 2015) activation functions.

With respect to the biases, they are usually initialized 
to zero since they do not contribute to symmetry breaking 
or training speed as the weight’s initialization does (Witten 
et al. 2017).

Cost function and regularization

The training of complex ANN models with a small amount 
of data often leads to overfitting. However, this problem can 
be minimized in several cases by using some regularization 
techniques. Overfitting is a problem that happens when the 
ANN is too closely fit to a limited dataset. When this hap-
pens, the ANN has problems in generalizing its predictive 
ability to inputs/outputs that do not belong to the set which it 
has been trained. One way of solving this issue is by increas-
ing the amount of data used during training. However, in 
several cases, it is difficult if not practically impossible, to 
obtain more data (Géron 2017; Glorot et al. 2014).

Overfitting is a combination of two factors, training data 
size, and ANN complexity. If an ANN is very large with 
many neurons and hidden layers, but the training dataset is 
small compared to the ANN complexity, the model tends to 
have an excessive number of degrees of freedom (Hinton 
et al. 2012c). In this situation, it is likely that the optimi-
zation model explores this over-parameterization to overfit 
the training dataset when none regularization technique is 
incorporated during learning (Glorot et al. 2014; Hinton 
et al. 2012c).

Three commonly used regularization techniques are �2 reg-
ularization, dropout (Glorot et al. 2014), and early stopping 
(Goodfellow et al. 2016; Géron 2017). In the �2 regulariza-
tion, the square of the �2 norm of the weight matrixes ( w2

2
 ) is 

used in the objective function as in (27), where the first term 
in the sum penalizes the difference between the expected and 

(23)Var
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n
�
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estimated value, and � is a regularization hyperparameter that 
has to be tuned (Goodfellow et al. 2016; Géron 2017).

In the dropout regularization, neurons are randomly turned 
off during training; this means that the weights and biases of 
these turned-off neurons are not considered during the epoch 
optimization. Because this method is constantly changing 
the ANN topology, it indirectly reduces the ANN capacity to 
overfit the training data (Glorot et al. 2014). In practice, this 
algorithm only needs to be zero the output of a specific neuron 
in order to assure that it will not interfere in the forward step 
neither have its parameters updated in the backward step. In a 
specific layer, while assuming a probability kprob of keeping an 
individual neuron active, it is important to rescale the output of 
the reaming active neurons to ensure that the expected value of 
the turned-off neurons remains the same at each iteration, this 
is done by multiplying the output of each neuron by 1∕kprob . 
Finally, the early stopping technique basically stops the ANN 
learning process right after the error in the development set 
starts increasing, giving signs of overfitting (Géron 2017).

In this work it was used the �2 or dropout regularization 
with early stopping. In the �2 (dropout) regularization the pro-
cess of tuning the hyperparameter � ( kprob ) can be difficult, 
traditionally leading to several � ( kprob ) choices, where overfit-
ting is still present. From this perspective, if the early stopping 
method is applied together with the �2 (dropout) regulariza-
tion, the early stopping ends up interrupting simulations as 
they start presenting increases in the development set error, 
what helps to save computational time. Also, the cost function 
C was investigated in two different formulations (28)–(29), 
where y(i,t) ( ̂y(i,t) ) is the estimate (expected value) for the tth 
day of forecast in the ith historical example. It is important to 
notice that (27) is only used as objective function for the �2 
regularization method, while in the dropout method the objec-
tive function is defined directly by C.

Cost function (29) is the mean square error (MSE), where 
the difference between the estimated and expected streamflow 
is divided by �0 , variance of the output variables, in order to 
normalize the error and disaggregate the metric from the 
streamflow scale.

(27)J = C +
�

2
w2
2

(28)C =
1

m ⋅ n

n∑

i=1

m∑

t=1

(
y(i,t) − ŷ(i,t)

ŷ(i,t)

)2

(29)C = MSE =
1

m ⋅ n

n∑

i=1

m∑

t=1

(
y(i,t) − ŷ(i,t)

𝜎0

)2

Performance metrics

Different error metrics can be used to evaluate the perfor-
mance of streamflow forecasting models. Since each metric 
has its own distinct characteristics, being more sensitive to 
certain error patterns, many authors have sown the impor-
tance of choosing multiple metrics while comparing dif-
ferent streamflow forecasting models (Moriasi et al. 2007; 
Legates and McCabe 1999).

This work considers error metrics (29)–(32). As previ-
ously explained, Eq. (29) is the mean square error (MSE). 
Equation (30) computes the mean absolute percentage error 
(MAPE) considering each day of forecast individually, 
whereas (31) computes the MAPE for the average stream-
flow ( y(i) ) in each example i . Equation (32) is the Nash–Sut-
cliffe coefficient for the average streamflow y(i).

The NSE coefficient can vary between −∞ and 1 where a 
NSE = 1 corresponds to a perfect fit, NSE = 0 means that the 
model prediction is as accurate as the mean of the observed 
data, and NSE ≤ 0 means that the model is a worse predictor 
than the mean of the observed data (Legates and McCabe 
1999).

The largest disadvantage of error metrics such as MSE 
and NSE that use the square of the difference between the 
estimated and observed values, is that they tend to be over-
sensitive to peak flows and are not very sensitive to system-
atic errors during low flow periods (Legates and McCabe 
1999). On the other hand, the MAPE tends to assume the 
opposite characteristics of MSE and NSE; the MAPE is 
more sensitive to systematic errors and less sensitive to peak 
flows.

ANN input variable selection

Even though the input variable selection (IVS) process 
plays an important role in the ANNs model performance 
(May et al. 2011; Taormina and Chau 2015), some works 
still fail to provide a more detailed IVS investigation. The 
incorporation of redundant information in the ANN inputs 
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increases the number of local optimal solutions making 
the optimization algorithms more likely to converge to 
an unsatisfactory result. Also, the presence of irrelevant 
inputs adds noise into the model, what may disguise 
relevant input–output characteristics (May et al. 2011; 
Taormina and Chau 2015). Overall, both redundant and 
irrelevant information increase the computation efforts 
required during training and decrease the generalization 
capacity of the model.

This work follows an IVS procedure where the analysis 
of the correlation coefficients between the input/output is 
used to reduce the number of irrelevant information, and 
the analysis of the correlation coefficients between the 
input variables themselves is used to reduce redundancy. 
Arguably, IVS methods that are based on the Pearson cor-
relation are among the most used for ANNs (May et al. 
2011) that is not different in streamflow forecasting stud-
ies (Yaseen et al. 2015, 2016; Tongal and Booij 2018).

However, as the Pearson correlation gives a measure 
of the linear association between two variables, it may 
not properly sign the importance of relevant nonlinear 
interactions (Galelli et al. 2014). This is most likely not 
an issue in what concern the interaction between input/
output streamflows since there is a significant linear cor-
relation between each other. However, this may be an 
issue while analyzing the interaction of daily historical 
rainfall and daily forecasted (output) streamflow. This 
would happen because the Pearson correlation between 
these variables tends to be traditionally small if no data 
pre-processing approach is performed such as accumulate 
the rainfall through time periods or compute a weighted 
average rainfall (Bravo et al. 2009; Egawa et al. 2011).

Finally, before proceeding to the next sections where 
different IVS strategies are going to be presented, it 
is helpful to make the following definition. For a spe-
cific hydro plant X  , the first set of plants immediately 
upstream of plant X  is going to be called the 1st level 
of upstream plants. Similarly, the 2nd level of upstream 
plants will correspond to all hydro plants that are imme-
diately upstream of each plant of the 1st upstream level. 
Expanding the definition, the nth level of upstream hydro 
plants corresponds to all plants immediately upstream 
of each plant of the (n − 1)th level. Figure 2 illustrates 
an example in a cascade system with different levels 
of upstream plants; in this case, Ilha Solteira and Três 
Irmãos are in the second level of upstream plants for 
Porto Primavera.

Also, the streamflow variables mentioned in this sec-
tion and used throughout this work refer to natural water 
flow; that is, the flow that could be measured if the water 
was moving freely without the interference of dams.

Input variable selection—streamflow

Figure 3 presents a flow diagram of the streamflow IVS pro-
cess. First, it is defined the forecasted output streamflow 
variables ( sO and DOS ), the set of input candidates, that is, 
which streamflow stations are going to be considered for a 
specific ANN model ( In_s ), and how many days of input 
streamflow are going to be investigated ( DIS ). In this paper, 
the IVS considers as input candidates, all streamflow sta-
tions from the third downstream plant up to the 10th level 
of upstream hydro plants, and it is investigated 30 days of 
lag for input streamflow with 14 days of forecast (output 
layer). The previous constraints concerning the streamflow 
stations and days of lag were arbitrarily defined. However, 
after a proper analysis of the input candidates, if the results 
indicate that the ANN performance could benefit from a 
larger number of streamflow stations or days of lag, the IVS 
process can be repeated with more adequate intervals.

The number of nonrelevant input information is con-
trolled by eliminating input candidates that do not assume 
correlation coefficients higher than CIS/OS with any of the 
output variables. After that, from the remaining input can-
didates, the streamflow stations that have correlation coef-
ficients higher than CIS are considered redundant. In this 
case, the station with the highest average correlation with 
the output variables is preserved and the other redundant 
stations are eliminated.

The optimal selection of CIS/OS and CIS is made through 
a dynamic procedure, where random values of CIS/OS and 
CIS are proposed between a pre-defined range and the cor-
respondent input/output set is used in the training of an ANN 

Fig. 2   Exemplifying levels of upstream hydro plants
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model. In this algorithm, after a fixed number of iterations 
( NSC ) the best input set is selected as the one with the lowest 
development error. In order to save computational time, if 
the CIS/OS and CIS selection generates a set of input variables 
previously simulated, the algorithm then skips this ANN 
training and goes to the next random values for CIS/OS and 
CIS.

In this work, CIS/OS and CIS are proposed using (33) and 
(34), respectively, where UD(a, b) is a discrete uniform dis-
tribution in the interval [a, b]. Initially, the limits for these 
variables are arbitrarily defined. However, after some simu-
lations, new insights about better limits can be draw, and in 
this case, one can re-write (33) and (34) and proceed with 
a new IVS analysis. This coarse-to-fine search was not per-
formed in this work due to simulation time constraints.

Input variable selection—rainfall

Figure 4 is a flow diagram that explains the IVS process 
that includes rainfall and streamflow information. The 

(33)CIS/OS = 0.4 + UD(0, 5) ⋅ 0.1

(34)CIS = 0.8 + UD(0, 4) ⋅ 0.05

IVS process that includes only rainfall information can be 
directly inferred by neglecting the elements depicted in red 
in this figure. First, it is defined a set of input candidates 
( In_s , DIs , In_p , DIR ) and output variables ( sO , DOS ). In this 
work it is investigated 30 days of lag of input daily/accu-
mulated rainfall and streamflow for 14 days of forecasted 
streamflow. After that, the model of Fig. 3 is used to deter-
mine the optimal set of streamflow inputs ( In∗

S
 ). In this work, 

the term daily rainfall is used to refer to the total rainfall 
observed in a single day and the term accumulated rainfall 
to refer to the sum of multiple daily rainfalls.

If one decides to accumulate rainfall information, the 
number of accumulated rainfall days for a specific rainfall 
station is the one that maximizes the average correlation 
between the first day of accumulated rainfall and forecasted 
streamflow. It is important to mention that the same rainfall 
station may use a different number of days to accumulate 
rainfall depending on the hydro plant ( sO ) analyzed.

The next steps of this IVS process follow a similar pro-
cedure as explained for Fig. 3. The number of nonrelevant 
input information is controlled by eliminating input candi-
dates that do not assume correlation coefficients higher than 
CIR/OS with any of the output variables. After that, from the 
remaining input candidates, the rainfall stations that have 
correlation coefficients higher than CIR are considered 

Fig. 3   Flow diagram IVS—
streamflow
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redundant. In this case, the station with the highest aver-
age correlation with the output variables is preserved and 
the other redundant stations are eliminated. After reducing 
redundancy and nonrelevant information it is still possible 
that a large number of input candidates are considered, what 
could increase expressively the simulation time. To mini-
mize this problem, only a maximum of ten rainfall stations 
are kept and the other are eliminated. These maximum ten 
remaining stations are the ones with the highest average cor-
relation with the output variables.

The redundancy between daily rainfall and streamflow 
inputs was not controlled since these variables have low 
correlation coefficients (on average 0.1 with maximum val-
ues around 0.4). Accumulated rainfall and input streamflow 
have higher correlation coefficients between each other; 
thus, in order to control redundancy, the process of defining 
the number of accumulated rainfall days was constrained 
to outcome rainfall input candidates with correlation coef-
ficient lower than 0.7 with the previously determined input 
streamflow variables.

In what concern the CIR/OS limits, they were proposed as 
(35) in the case of daily rainfall and as (36) in the case of 
accumulated rainfall; the CIR limits are proposed as (37) in 

both cases. Both (35)–(36) and (37) were arbitrarily defined 
based on a previous analysis of the correlation coefficients 
involved.

Results and discussion

Case study

The case study is focused on streamflow forecasting for 
hydropower plants in Brazil. Short-term forecasting stud-
ies are extremely important in Brazil since they are not 
only used in the operation of the electrical system but also 
in the definition of the electricity spot prices (Souza and 
Legey 2008; de Queiroz et al. 2007). These prices value the 
energy traded in the short-term energy market that nowadays 

(35)CIR/OS = 0.2 + UD(0, 2) ⋅ 0.05

(36)CIR/OS = 0.4 + UD(0, 4) ⋅ 0.05

(37)CIR = 0.8 + UD(0, 4) ⋅ 0.05

Fig. 4   Flow diagram IVS—
streamflow and/or rainfall
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corresponds to about 30% of the electricity consumption in 
Brazil (ABRACEEL 2018) and moves billions of dollars 
each year.

The models trained in this work used historical natu-
ral streamflow and/or rainfall information from the Par-
aná Basin in Brazil. The historical streamflow data were 

obtained from the Brazilian National Water Agency (ANA 
2019) and are available in daily discretization measured for 
each of the 55 hydro plants shown in Fig. 5. The historical 
rainfall data from CPTEC-INPE can be found in (CPTEC 
2019) and combine satellite precipitation estimates with 
observed rainfall, this model is called MERGE (Rozante 

Fig. 5   Paraná basin—schematic of the hydro plants considered
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et al. 2010), and its data are available in daily discretization 
and 0.1° grid resolution. The data used in this work span 
from January 1, 2000, up to December 31, 2016. The first 
60% of the record is used as the training set (years 2000 to 
2010), the next 20% for the development set (years 2010 to 
2013), and the remaining 20% for the test set (years 2013 to 
2016) of the ANNs.

All ANNs trained are fully connected, the number of 
neurons in each hidden layer is equal to the number of neu-
rons in the input layer, and the number of hidden layers is 
fixed in three as in Tongal and Booij (2018), Bravo et al. 
(2009). Fine-tune the number of hidden layers and neurons 
per hidden layer was not pursued because this would imply a 
substantial increase in model training time. Instead, an over-
parameterized model was adopted, with number of hidden 
layers high enough to overfit the training set, and providing 
freedom for the regularization models to control the gener-
alization capacity of the neural networks (Goodfellow et al. 
2016; Géron 2017).

Additionally, when nothing is specified, the ANN training 
stops if a maximum number of 30,000 epochs are reached 
( Epoch = 30, 000 ) or condition (38) is satisfied, where 
Edev(k) is the development set error for the kth epoch. It is 
important to mention that, independently of the number of 
epochs, the models will always store the weights and biases 
of the epoch with the lowest development set error. It is also 
important to mention that Edev(k) is computed using the ele-
ment C of the cost function.

The optimal values for � , � , and kprob are investigated 
iteratively through a cross-validation process where different 
values for these hyperparameters are selected randomly and 
used in the ANN training. The hyperparameters  � and � are 
selected from a uniform distribution in a base 10 log-scale 
in order to assure equal probability while sampling values 
in very different scales say 10−2 and 10−6 (Goodfellow et al. 
2016). On the other hand, kprob is sampled directly from a 
uniform distribution because this hyperparameter is not as 
sensitive as � and � are to small variations. In a determined 
ANN input configuration, for all � , � , and kprob values tested 
only the training with the lowest development set error is 
stored.

For all simulations presented in this section, the upper 
bounds for � and � are 1e−2, and the lower bounds are 1e−5 
and 1e−6, respectively, (39)–(40). For the hyperparameter 
kprob it is investigated the interval (0.2, 1] (41). Additionally, 
for the sake of simplicity, the number of random � , � , and  
kprob values tested is going to be denoted as NHyp , and the 
number of random CIS/OS ( CIR/OS ) and CIS ( CIR ) correlation 
coefficients tested is going to be denoted as NSC ( NRC ). The 
intervals of search for � , � , and kprob were kept wide in order 

(38)Edev(k) − Edev(k − 5000) > 0 ∀k > 5000

to be applied in the different algorithms and methods inves-
tigated in this work. Also, the consistency of the results pro-
vided by these search intervals was checked at each model 
simulation to guarantee that no model would lose perfor-
mance due to inadequate hyperparameter sampling.

For the simulations further presented in this section, the 
computational experiments were performed using a PC with 
an i7-7700 k CPU (4 cores, 4.2 GHz), 16 GB RAM, and a 
GPU NVIDIA GTX 1070 (8 GB). The TensorFlow (Tensor-
Flow 2019) framework was used with GPU parallelization.

The performance of different ANN techniques

It is investigated ANNs for forecasting streamflow 14 days 
ahead in daily discretization. Five hydro plants are explored, 
namely, Furnas, I. Solteira, Itaipu, Itumbiara, and Promis-
são (Fig. 5). The models for I. Solteira and Itaipu represent 
critic simulations. For I. Solteira, the water of two large 
basins discharges in this plant, with a significant number 
of upstream hydro plants and rivers. For Itaipu the scenario 
is even more complex since the water of all other 54 hydro 
plants simulated discharge in this plant. The Furnas and Itu-
mbiara plants are extremely important for their basins but 
have very different upstream configurations. Finally, Promis-
são represents a small hydro plant with smaller inflows when 
compared to the other plants mentioned above.

For these models, NHyp is fixed at the value 30, and it was 
used three hidden layers as in (Tongal and Booij 2018; Bravo 
et al. 2009). Each ANN uses as input 30 days of lag with 
respect to the streamflow information from the first down-
stream plant up to the 5th level of upstream hydro plants.

In the applications presented in this section it was not 
considered an IVS process, since the large number of simu-
lations would increase significantly the computational time, 
when compared to an approach where the best input configu-
ration is not investigated in a cross-validation process. As the 
main goal of this application is to compare the performance 
of different ANN techniques for streamflow forecasting, the 
use of a fixed input configuration for each hydro plant satis-
fies the overall goal.

Comparison of activation functions, optimization, 
and weight initialization

The objective of this section is to evaluate the contributions 
of different activation functions, weight initialization, and 

(39)� = 10−U(2,5)

(40)� = 10−U(2,6)

(41)kprob = U(0.2, 1)
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optimization methods while training ANN models to per-
form streamflow forecasting. It is investigated the ReLU, 
the tanh, and the logistic sigmoid activation functions using 
three different optimization algorithms, namely, Adam, 
RMSprop, and GDM. The weight initialization is investi-
gated in two different variants, one that uses the standard 
normal distribution, and another that uses the methods 
described in (24)–(26) that attempts to preserve the variance 
between input/output during training, this last one called 
optimal weight initialization (OWI). It is important to notice 
that for the OWI each activation function has its own weight 
initialization distribution.

Table 1 shows the results for the simulations mentioned 
above. Columns “ MSE ” and “ MAPE ” represent, respec-
tively, the average of metrics (29) and (30) for all hydro 
plants considered. In this case, it is used only the perfor-
mance of the best ANN model for each hydro plant. The 
column “Avg Epoch” represents the average number of 
epochs during training, and the column “Total Wall Time” 
represents the sum of the wall time during training. In these 
two last columns it is considered all simulations performed 
for each hydro plant while using a specific set of techniques 
(weight initialization, optimization algorithm, and activation 
function), not only the ANNs with the best performance. 
For more information regarding other error metrics such as 
(31)–(32) and individual hydro plant performance, please 
refer to Supplementary Note 1.

The results from Table 1 bold highlight the importance of 
a proper weight initialization. From the Adam models that 
do not use an OWI to the ones that use, there is a reduction 
in the simulation time of at least 52%. The stability of the 
models also benefited expressively from the OWI methods; 
for the Adam/ReLU model without OWI, all hydro plants 
faced the exploding gradient problem (Géron 2017), leading 
to model divergence in the first iterations.

According to Table 1 the OWI/Adam models have a very 
consistent performance being the best or close to the best 
model for all metrics. Also, for the models that use OWI, 
the tanh activation function shows a better performance in 
terms of accuracy when compared to the ReLU and Sig-
moid. Although the GDM/tanh model had the worst perfor-
mance regarding computational time and average number of 
epochs, it still performed well in terms of the error metrics 
analyzed. In terms of individual hydro plant performance 
and other error metrics such as “ MAPEa ” and “ NSE ” (Sup-
plementary Note 1) the model OWI/Adam/tanh still shows 
the most promising results.

Comparison of cost functions and regularization techniques

This section evaluates the performance of the ANN models 
while using cost functions (28)–(29) together with the �2 or 
dropout regularization techniques. It used the Adam opti-
mization algorithm with the tanh activation function and 
variable initialization described by Eq. (30).

The results are presented in Table  2. In the column 
“Configuration,” M2 represents cost function (28) and R2 
cost function (29), the second element after the dash rep-
resents the regularization technique; the columns “MSE,” 
“ MAPE,” “ MAPEa ,” and “ NSE ” represent the average of 
each individual error metric (29)–(32) for the hydro plants 
investigated; in these columns it is considered only the best 
ANN model for each hydro plant. Still regarding Table 2, the 
column “Wall Time” is the sum of the total wall time for all 
simulations performed in the ANNs investigated. For more 
information and details about individual hydro plants, please 
refer to Supplementary Note 2.

Based on the results of Table 2, it is possible to notice 
that the dropout regularization technique presented a bet-
ter performance when compared with the �2 method. It is 

Table 1   Performance for different weight initializations, optimization algorithms, and activation functions

Weight initialization (WI) Optimization 
algorithm

Activation function Error test set Error dev set Avg epoch Total wall 
time (h)

MSE MAPE MSE MAPE

Standard normal distribution Adam ReLU Simulations Diverged in the First Iterations
Tanh 0.2710 17.99 0.4012 15.14 13,464 11.20
Sigmoid 0.2605 18.11 0.3859 14.63 10,956 10.61

Optimal weight initialization (OWI) Adam ReLU 0.2729 18.71 0.3821 14.92 2598 5.09
Tanh 0.2574 17.76 0.3762 14.78 1668 4.26
Sigmoid 0.2577 18.43 0.3883 14.72 1680 4.24

RMSprop ReLU 0.2668 19.52 0.3700 15.15 2700 5.10
Tanh 0.2647 18.21 0.3941 15.22 2516 4.67
Sigmoid 0.2647 20.33 0.3945 15.88 4024 5.35

GDM ReLU 0.2809 19.37 0.3959 15.50 15,862 14.37
Tanh 0.2605 17.64 0.3785 15.05 19,488 16.48
Sigmoid 0.2749 18.92 0.4011 15.11 15,918 13.76
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interesting to notice that this difference in performance is 
less significant for models that use the M2 cost function than 
for the models that use the R2 cost function.

In what concern the test set, the M2-dropout configuration 
had the best average performance for all error metrics. In 
terms of the dev set error, the metrics MSE and NSE per-
formed better in the R2 cost function; on the other hand, the 
metrics MAPE and MAPEa performed better in the M2 cost 
function. In terms of individual hydro plants (Supplementary 
Note 2) a few points are interesting to mention: the  NSE 
tends to follow the MSE behavior; with a few exceptions, the 
M2-dropout configuration presents the most stable perfor-
mance, being the best or near the best model for all metrics 
in the test set. In general terms, the individual hydro plant-
level performance is similar to the one presented in Table 2.

The behavior of the dev set, where the metrics MSE and 
NSE performed better in the R2 cost function and the metrics 
MAPE and MAPEa perform better in the M2 cost function, 
was already expected. The cost function R2 carries more 
similarities with the metrics MSE and NSE ; on the other 
hand, the cost function M2 is more similar to the metrics 
MAPE and MAPEa . As the dev set participated in a cross-
validation process, it is common that the error metrics that 
carry more similarities with the cost function are benefici-
ated. In this context, it is important to understand that the 
dev set error may not provide a “true” estimate of the model 
performance as the test set does.

In Table 2, between models M2−�2 and M2-dropout is 
possible to notice an increase of about 26% in the total simu-
lation time. Given that these two models have similar perfor-
mance, this time difference must be taken into consideration 
while deciding for the use of the �2 or dropout regularization 
technique. Finally, it is also possible to notice, in the indi-
vidual hydro plant level, that ANNs trained using the R2 cost 
function tend to be much more sensitive to sudden increases 
in flow, whereas ANNs trained using the M2 cost function 
are more stable, with small errors during low flow conditions 
but higher errors during sudden increases in streamflow. In 
order to illustrate this case Fig. 6 shows the estimated and 
measured streamflow for the Furnas hydro plant during the 
test set while using the R2 (Fig. 6a) and M2 (Fig. 6b) cost 
functions and dropout regularization. For the hydrographs 
of other hydro plants please refer to Supplementary Note 2.

Comparison of ANNs and Brazilian ISO streamflow 
model

In this section, ANNs were trained to forecast streamflow 
14 days ahead for all 55 hydro plants of Fig. 5 and the results 
were compared with the performance of the models cur-
rently used by the Brazilian ISO from 2014 up to 2016 (ONS 
2014, 2015, 2016). In terms of data and models used during 
training of the ANNs, only streamflow information is used 
as input, an IVS model is applied as described in Fig. 3, the 

Table 2   Performance for 
different cost functions and 
regularization

Configuration Test set error Dev set error Wall time (h)

MSE MAPE MAPE
a

NSE MSE MAPE MAPE
a

NSE

R2-dropout 0.2517 24.51 20.58 0.677 0.3269 21.45 18.83 0.772 4.90
M2-dropout 0.2332 17.30 15.56 0.736 0.3618 14.53 13.23 0.737 5.38
R2−�

2
0.2789 31.06 27.54 0.626 0.3403 21.43 18.81 0.760 3.88

M2 − �
2

0.2574 17.76 16.09 0.699 0.3762 14.78 13.56 0.724 4.26

Fig. 6   Hydrograph—ANN estimate versus measured stream flow (Furnas Hydro Plant) 
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OWI/Adam/tanh model is used with NHyp fixed in 20, NSC 
fixed in 20, and the number of hidden layers equals to three 
as in (Tongal and Booij 2018; Bravo et al. 2009). Also, it 
used M2 (28) cost function with the dropout regularization 
technique.

The Brazilian ISO is continually evaluating the perfor-
mance of its hydrological models in order to implement 
and propose changes to increase accuracy. Nowadays, for 
the Paraná Basin, mainly two models are used, namely soil 
moisture accounting procedure (SMAP) and Previvaz (ONS 
2017). The SMAP (Lopes et al. 1982; Lopes and Montene-
gro 2017) is an empirical deterministic model that consid-
ers three mathematical reservoirs to represent surface, soil 
and groundwater store and uses as input data rainfall and 
evaporation dividing the overland flow based on the con-
cepts of the soil conservation service model (Mishra and 
Singh 2003). The Previvaz is a univariate stochastic model 
that uses the historical streamflow of each hydro plant to 
evaluate different linear time series models such as AR, 
ARMA, PAR, and PARMA (Souza et al. 2010; Box et al. 
2015; Rasmussen et al. 1996); from these different models 
it is selected for each hydro plant the alternative with the 
best accuracy.

Figure 7a shows a boxplot of the difference between the 
average forecast errors ( MAPEa ) of the Brazilian ISO and 
the ANN models from 2014 up to 2016. Figure 7b shows a 
similar information of Fig. 7a but comparing the NSE coef-
ficient. In both figures a positive value means a better per-
formance of the ANNs over the ISO models. Additionally, 
the errors MAPEa and NSE were chosen because they are 
the error metrics officially used and reported by the Brazilian 
ISO in the documents (ONS 2014, 2015, 2016).

Overall, it is possible to notice that the ANNs performed 
significantly better when compared to the models used by 
the Brazilian ISO. In terms of the MAPEa metric, the ANNs 
had lower forecasting errors for all hydro plants and years 

investigated (Fig. 7a). In terms of the Nash–Sutcliffe metric 
(Fig. 7b), the majority of the ANNs performed better than 
the Brazilian ISO during the years of 2015 (93%) and 2016 
(82%), but in 2014 the ISO had a better performance in this 
metric for 72% of the hydro plants. However, it is interest-
ing to notice that in 2014 the median and the third quartile 
presented in Fig. 7b are very close to zero, meaning that at 
least 25% of the ANN and ISO models had a similar perfor-
mance in this period, with the ISO slightly outperforming 
the ANNs. For more information regarding individual hydro 
plant-level performance please refer to Supplementary Note 
3.

Evaluating the historical rainfall as an input variable

This section evaluates the contributions of historical rainfall 
information as input for ANN models trained to perform 
streamflow forecasting 14 days ahead. It is investigated five 
hydro plants, namely, Furnas, I. Solteira, Itaipu, Itumbiara, 
and Promissão.

The simulations made in this section use the OWI/
Adam/tanh model with NRC fixed in 10, NHyp fixed in 20, and 
the number of hidden layers fixed in three as in (Tongal and 
Booij 2018; Bravo et al. 2009). Both daily and accumulated 
rainfall information are investigated using the IVS process 
described in Fig. 4. Also, M2 (28) and R2 (29) cost functions 
are investigated using the dropout regularization technique.

Table 3 presents the results for these simulations in terms 
of the MSE and MAPE . Other error metrics such as MAPEa 
and NSE are available in Supplementary Note 4.

Although the process of accumulate rainfall increased the 
average correlation between the input rainfall and output 
streamflow from 0.21 (daily rainfall) to 0.65 the results sign 
no clear advantage in applying this procedure. Additionally, 
the models that used both rainfall and streamflow informa-
tion performed generally worse than the ones that used only 

Fig. 7   Comparison of the fore-
casting error between the Bra-
zilian ISO models and ANNs 
from 2014 to 2016—boxplot 
MAPE (a) and NSE (b)
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streamflow. This intriguing result was already noticed in a 
few works (Akhtar et al. 2009; Aytek et al. 2008) and should 
be taken into consideration while developing new ANN 
models for short-term streamflow forecasting.

Still analyzing Table 3 (and Supplementary Note 4), it is 
possible to notice that some hydro plants slightly improved 
the MSE and NSE metric. On the other hand, these improve-
ments are followed by the worsening of the MAPE metric, 
what shows that the ANN models are facing a certain dif-
ficulty in incorporating gains for these three metrics simul-
taneously. It is also interesting to notice that although the 
R2 cost function presents a more sensitive behavior to rapid 
increases in streamflow when compared to the M2 cost func-
tion, the historical rainfall information still does not pro-
vide a consistent contribution for the forecasting in the R2 
models.

Conclusion

Due to the large number of decisions that have to be made 
while building an ANN model, it is a common practice to 
arbitrary select some of them, mainly the optimization algo-
rithm, activation function, and weight initialization method. 
On the other hand, when multiple comparisons of different 
ANN algorithms/techniques are made, better ANN struc-
tures can be obtained, leading to improved forecasts and 
computational time savings.

In the case of streamflow forecasting, although the lit-
erature is diverse in terms of ANN models studied, it lacks 
comparisons among some aspects of each model. From this 
perspective, due to the large heterogeneity of the hydrologi-
cal data used in each work, it is difficult to draw meaning-
ful comparisons between papers that use different ANN 
algorithms/models, because most of them focus on specific 

configurations better suited for the application at hand. With 
the objective to contribute to a better understanding of the 
performance of different ANN models in streamflow fore-
casting studies, this paper evaluates various optimization 
models, activation functions, and weight initialization tech-
niques in a large-scale system with 55 streamflow stations, 
each corresponding to a hydro plant from the Paraná Basin 
in Brazil. The results present relevant insights for those 
interested in applying the ANN theory in streamflow fore-
casting studies. Specially, we show that some ANN configu-
rations perform more accurately to fast rises of streamflow. 
On the other hand, some models attenuate the forecasting of 
streamflow peaks giving preference to long-term low flow 
periods.

The paper also formalizes an input variable selection pro-
cedure using the correlation coefficients between input/out-
put information in a cross-validation process where different 
limits of correlation coefficients are investigated together 
with other hyperparameters such as the learning rate and 
the regularization coefficient. The performance of the ANNs 
developed in this work is compared with the hydrological 
models used by the Brazilian ISO. The results show a strong 
superiority of the ANNs and provide theoretical support for 
the incorporation of this technique as a tool in the generation 
and trading processes performed by the Brazilian ISO and 
other electric power system agents. Finally, this paper evalu-
ates the marginal contribution of the historical rainfall infor-
mation while used together with historical streamflow in the 
ANN models. Although some hydro plants presented small 
benefits in accuracy while using this information, in general 
terms, the results show no clear advantage in incorporating 
this variable in the ANN training. This marginal influence 
of the historical rainfall information is likely due to the time 
horizon and hydrological basin explored. Nonetheless, it is 
interesting to notice that the ANN models overperformed the 

Table 3   Contribution of the 
historical rainfall information

Cost function 
and regulariza-
tion

Hydro plant Test set error

Streamflow Streamflow and 
accumulated 
rainfall

Streamflow and 
daily rainfall

Daily rainfall

MSE MAPE MSE MAPE MSE MAPE MSE MAPE

M2-dropout Furnas 0.1511 21.20 0.1539 23.57 0.1596 23.02 0.2370 57.97
I. Solteira 0.0694 11.39 0.0744 14.06 0.0903 15.61 0.3431 43.27
Itaipu 0.2635 11.14 0.3071 12.80 0.2897 12.35 0.5991 23.53
Itumbiara 0.1039 16.34 0.0989 18.89 0.1083 18.94 0.1887 38.81
Promissão 0.5603 19.58 0.5377 21.37 0.5509 20.07 0.7189 36.53

R2-dropout Furnas 0.1565 29.07 0.1760 35.07 0.1842 36.17 0.4520 71.27
I. Solteira 0.0880 15.42 0.1012 19.97 0.1181 20.66 0.4099 52.02
Itaipu 0.2205 10.89 0.3042 13.94 0.2877 13.99 0.5422 23.03
Itumbiara 0.1207 30.41 0.1568 29.00 0.1749 25.52 0.4020 70.13
Promissão 0.4900 27.05 0.6423 38.91 0.4827 27.42 0.7133 39.77
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empirical and conceptual models used by the Brazilian ISO 
with only streamflow information as its input.

Future works should evaluate the performance of other 
ANN techniques such as convolutional and recurrent when 
compared to the MLP models in the forecasting of stream-
flow for large interconnected hydro systems. Also, the ben-
efits of using historical forecasted rainfall and temperature 
could be investigated using different weather forecast models 
such as the ones provided by (NOAA 2019) and (ECMWF 
2019). Finally, it would be interesting that future works 
investigate new objective functions and optimization strate-
gies that benefit the training of streamflow forecasting ANN 
models.
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