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a b s t r a c t

This paper presents an overview about the hydro-thermal scheduling problem. In an electrical power
system power generators have to be scheduled over a time horizon in order to supply system demand.
The scheduling problem consists in dispatching the available generators to meet the system electric load
while minimizing the operational costs related to fuel and possible load curtailments. In a system with a
large share of hydro generation, different from a thermal dominant power system, the uncertainty of
water inflows play an important role in the decision-making process. In this setting the scheduling of
generators has to be determined considering different future possibilities for water availability. Also, in
the existence of a cascade system, the availability of water to produce electricity in hydro plants is
influenced by decisions taken in upstream reservoirs. These issues complicate the hydro-thermal sche-
duling problem that often in the literature is modeled as a multi-stage stochastic program. In this paper
we aim to give an overview about the main ideas behind this problem. We present model formulations, a
solution technique, and point out to new developments related to this research.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Renewable energy is a key piece in the supply side of power
systems as sustainable development becomes a goal of our
societies. New investments in renewables are necessary in order to
satisfy future energy production requirements. Moreover, the
worldwide renewable generation expansion is crucial in helping to
mitigate changes in climate due to global warming, while not
depriving humans of access to goods and services to which they
have become accustomed. In [1] the authors examine the thresh-
old effect of the proportion of renewable energy supply for CO2

emissions reduction, one of the main causes of global warming, for
some countries. The fossil age of the last century contributes to our
current way of living but we are facing the cost of that kind of
energy. Therefore, the access to clean energy is part of many
energy programs in European countries and others [2,3], which
are engaged in making a better world to live.

Renewable resources should be part of the solution to fulfill the
energy demands of seven billion people. There are many types of
green energy like wind, solar, geothermal, biomass and tidal
generation, which can be combined to compose a sustainable
portfolio of electricity providers. The main drawbacks with these
energy sources are their seasonality and storage limitations.
Renewable electricity production depends on the natural resour-
ces that usually do not match the demand at the time and loca-
tions that are necessary. The present storage technologies available
for renewables include hydro reservoirs, compressed air energy
storage (CAES) [4], and batteries (used to store electricity). In [5],
batteries with fuel cells are explored to mitigate intermittency of
renewables in power systems. In many countries such storage
technologies are limited because of a dependence on natural for-
mations and/or investment attractiveness to be constructed.

There are some exceptions in terms of renewable energy con-
trollability limitations and one example is hydro-energy resources,
which reservoir storage can be constructed and used to control the
timing of electricity generation. In many countries such as Canada
and Norway, most of the hydroelectric generation comes from
run-of-river power plants, which depend basically on the ice
cycles. In the province of British Columbia, Canada, the clean
energy act established that at least 93% of electricity generation
has to come from renewable resources [6] and the preferable
technology is run-of-river hydro plants [7]. However, in other
countries like Brazil and Colombia, a relevant portion of existing
hydro plants have large reservoirs, which can be used for opti-
mizing water use. In the Brazilian power system for example,
where hydroelectricity approximately corresponds to 80% of the
total electricity production, hydro reservoirs have the capacity of
providing energy supply for several months ahead even in periods
of heavy droughts.

Given a hydro-dominant system with the possibility to opti-
mize the water use and mix the electricity production with ther-
mal plants, the hydro-thermal scheduling problem (HTSP)
becomes extremely relevant. In such context the HTSP is one of the
most important problems in power systems [8]. In the HTSP one is
interested in minimizing the total operational costs related to
electricity production demanded by the system during a specific

time horizon. These operational costs are derived from the fuel
costs that feed thermal plants and the costs of possible demand
curtailments. This problem is complicated by the fact that we do
not have perfect forecasts for future water inflows into system
reservoirs.

Generally, the HTSP is modeled as an optimization program and
solved by special-purpose algorithms. In [9] authors discuss the
importance of optimization modeling and algorithms in the
planning of renewable integration in power systems. A review of
the role of optimization techniques in power generation and
supply can be found in [10]. The work of [11] presents a review on
risk-constrained hydropower scheduling in deregulated power
systems from a perspective of profit maximization for generation
companies. In [12] a survey on stochastic unit commitment pro-
blems for day-ahead market clearing is presented. In other per-
spective, we focus in a centralized dispatch scheme where the
objective is aimed to minimize operational costs over a planning
horizon, ranging from months to years ahead, in a system com-
posed by hydro and thermal plants. This paper provides
improvements in the knowledge basis by presenting a detailed
overview about the HTSP stochastic version, by formulating pre-
cise mathematical models and by pointing out and discussing new
research developments related to such challenging field.

Section II presents the basic concepts related to the HTSP.
Section III gives a general description of the HTSP characteristics
and mathematical model formulations to represent such problem
in the context of individual hydro plants and aggregated reser-
voirs. Section IV presents decision-making methodologies that
have been used to deal with several mathematical HTSP models
and new developments related to this research area. Section V
concludes this paper.

2. Basic concepts in hydro-thermal scheduling

In electric power systems where hydro and thermal power
generation scheduling decisions are performed in a centralized
manner, the independent system operator (ISO) may decide to use
the water available at hydro plant reservoirs to produce electricity
at any time. Doing so avoids economic expenses required to dis-
patch thermal power plants, but can risk hydro availability in
future time periods. In the HTSP one is interested in minimizing
electricity production costs to supply the system demand con-
sidering the operation of hydro and thermal power plants.

The water available to produce electricity at each hydro plant is
bounded by the reservoir storage capacities and the future water
inflows at the river basins where these reservoirs are located.
Depending on the share of renewable resources and other system
conditions, most of the time thermal generation must be used to
complement the electricity supply in order to meet system
demand. However, wise use of hydro and thermal system
resources by the decision maker can reduce costs over time. The
decision process faced by the ISO when operating a hydro-thermal
system is presented in Fig. 1.

Hydroelectricity is inexpensive to produce, with virtually no
associated costs for water usage once hydro turbines are installed.
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Actually, one possibility is to measure indirectly the value of
electricity produced by hydro plants by computing the difference
between the operational costs in a system containing only thermal
plants and the operational costs in that same system containing
both hydro and thermal plants. In the former system, thermal
plants are usually dispatched in a least cost fashion to meet system
demand. In the latter system, thermal plants are dispatched to
complement electricity production from hydro plants. By

comparing both operational costs it is possible to estimate the
value of hydro generation to the system.

2.1. Hydro generation power plants

Hydro power plants play one of the main roles in HTSPs. In the
simplest model of a generation-demand system that contains only
thermal plants, the demand is met by the least cost approach, i.e.,

Nomenclature

Indices

i; j electrical region indexes
ω stochastic water inflow scenario index
h hydropower plant index
k thermal power plant index
t time period index
m upstream hydro plant index

Sets and subsets

I set of electrical regions of the power system
In set of regions pairs that can exchange energy
Ω set of stochastic water inflows
H set of hydro plants
G set of thermal plants
T set of time periods
Hi subset of hydro plants inside region i
Mh subset of hydro plants immediately upstream of plant

h
Gi subset of thermal plants inside region i

Parameters

ctk operational cost of thermal plant k, at stage t [$/MW-
period]

ρt load curtailment cost, at stage t [$/MW-period]
δh hydro plant h productivity [MW-period/hm3]
bh;t water inflow at hydro plant h, at stage t [hm3]
bωtþ1 vector that represents stochastic water inflows, and

deterministic electricity demand, at stage tþ1 at sce-
nario ω

dti electricity demand in region i, at stage t [MW-period]
vth maximum turbine outflow at hydro plant h, at stage t

[hm3]
vt
h minimum turbine outflow at hydro plant h, at stage t

[hm3]
ytk maximum thermal generation of plant k, at stage t

[MW-period]
yt
k

minimum thermal generation of plant k, at stage t
[MW-period]

xth maximum water storage at plant h, at stage t [hm3]
xth minimum water storage at plant h, at stage t [hm3]

Decision variables

ytk thermal generation at plant k, at stage t [MW-period]
xth water volume storage in hydro plant h reservoir,

available at the end of stage t [hm3]
ut load curtailment at stage t [MW-period]
xt decision vector of hydro plants reservoir water storage

available at the end of stage t

vth turbined water outflow at hydro plant h, at stage t
[hm3]

sth water volume spilled from plant h, at stage t [hm3]
pti;j energy transfers from region i to region j, at stage t

[MW-period]

Functions

htþ1ð∙Þ recursive function that represents a model like (7)–
(14) where t is shifted by 1. It depends on decisions
made at stage t, and random parameters that are
revealed at the beginning of stage tþ1

Ebt þ 1 jbt htþ1ð∙Þ expected future cost function

Additional Nomenclature for (15)-(22)

Parameters

b0i;t energy inflow at ARR i, at stage t [MW-period]
b0ωtþ1 vector that represents stochastic energy inflows, and

deterministic electricity demand, at stage tþ1 and
scenario ω

v0ti maximum hydro generation at ARR i, at stage t [MW-
period]

v 0t
i minimum hydro generation at ARR i, at stage t [MW-

period]
x0ti maximum energy storage at ARR i, at stage t [MW-

period]
x 0ti minimum energy storage at ARR i, at stage t [MW-

period]

Decision variables

x0ti energy storage in ARR i, at stage t [MW-period]
x0t decision vector of ARR energy storage available at the

end of stage t
v0ti hydro generation at ARR i, at stage t [MW-period]
s0ti energy spilled from ARR i, at stage [MW-period]

Functions

f 1ðb
0
i;tÞ represents the controllable portion of the energy

inflows (minus energy losses such as evaporation and
water detour), this portion can be stored in the ARR i at
time stage t

f 2ðb
0
i;tÞ represents the uncontrollable portion of the energy

inflows (minus energy losses), this portion cannot be
stored in the ARR i at time stage t

htþ1ð∙Þ recursive function used to represent a model like (15)–
(22) where t is shifted by one unit. It depends on
decisions made at stage t, and random parameters that
are revealed at the beginning of stage tþ1
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thermal plants are dispatched in ascending order of costs until
demand is satisfied. In a system with hydro plants, it is possible to
produce electricity with water, at no cost, and reduce the opera-
tional expenses. However, electricity production at hydro plants
depends on the system storage and on the water inflow volumes
that becomes available (influenced by the different seasons of the
year and by other climate conditions).

There are three main types of hydro plants considered in
HTSPs, they are: hydro plants with large reservoirs (HRs), run-of-
river hydro plants (RRHs), and small hydro plants (SHs). It is
possible to store water is HRs and the available water volume may
be used to produce electricity whenever it is required. A mean-
ingful share of hydropower comes from HRs, where the potential
energy of dammed water driving a water turbine and a generator
is transformed into electricity. The amount of electricity generated
is proportional to the difference in height between the top of the
reservoir and the water discharge level, which is called the
reservoir's head.

RRHs also have reservoirs, but their capacities are small com-
pared to other hydro plants. In a RRH, it is essentially impossible to
store water, and hence the flow of water either generates elec-
tricity or is spilled depending on the plant's generation capacity. In
a typical RRH, the water is captured at the intake structure and
goes through a buried penstock to the powerhouse. In this scheme
if the water is not captured at the intake it will continue its normal
flow in the river. The dam is required to ensure enough water goes
to the penstock. The penstock carries the water from an upper
elevation and delivers it to a lower elevation where the water
turbine is located. The difference in height characterizes the head
of a run-of-river hydro plant and is responsible for the potential
energy that is transformed into electricity by the hydro plant
generator.

SHs vary in power output. Most commonly installed capacities
range from 1 to 30 MW, but there are also plants that have power
output less than 1 MW. These hydro plants are similar to RRHs,
with little or no reservoir capacity. That said, SHs are usually dis-
tinguished from RRHs because there are specific equipment to
simultaneously meet the requirements of sufficiently high power
output, environmental restrictions and reliability. SHs do not cre-
ate serious environmental impacts. This scheme of power plant
does not require large flooding areas and can be installed to pro-
duce electricity in remote regions. To a greater degree than RRHs, a
drawback of this scheme is that the power output of these plants is
highly dependent on the natural flow of the river, making them
susceptible to seasonal variations.

Generally, when an optimization model is designed for a HTSP
there are three sets of decision variables that have to be con-
sidered for hydro: turbined water used for generation, storage and
spillage. Depending on the horizon that one aims to solve HTSP
models, hydro generation expansion may be considered in math-
ematical models by changing hydro plants parameters over the

model time stages. The hydro generation expansion may also
affect other hydro plants operational decisions in a cascade system
and that also can be handled by mathematical models.

2.2. Thermal generation power plants

In contrast to hydro plants, which must be constructed on river
basins, we have the flexibility to locate thermal plants near the
load centers what reduce electricity transmission losses and net-
work investment costs. A thermal plant uses fuel to transform
energy from heat into electricity. The most common fuel types
used by thermal plants are natural gas, coal, oil and uranium for
nuclear power plants. There is a cost associated with electricity
production from thermal plants, with one portion being propor-
tional to fuel costs and the other to operational and maintenance
costs. Each thermal plant has its own function that relates power
output and cost. Usually these cost functions are nonlinear, but in
order to simplify HTSP models one usually assumes that thermal
costs are linear functions of the power output [13–16].

There are specific thermal plants that have to maintain a cer-
tain minimal power output at all times. These generators cannot
be turned on and off instantly, some of them take hours or even
days to start operating at normal conditions. So if we fail to satisfy
these requirements we cannot count with this thermal plant
during peak hours for example. Later on this paper we present
mathematical model formulations for the HTSP where we consider
the generation of each thermal plant as a decision variable that is
restricted by the generator minimum and maximum power pro-
duction capacity at each time period. Thermal generation expan-
sion also should be considered, but different from hydro expansion
this process does not affect other power plant operational deci-
sions. Besides the addition of new thermal plants, turbines/gen-
erators parameters can be modified during the planning horizon,
which may imply in fluctuations of the available thermal genera-
tion at different time periods.

2.3. Electricity demand

The electricity demand is characterized by the amount of
electricity being consumed by the load during a time period. The
modeling step of the power system demand is important to HTSPs.
The time horizon in a HTSP usually assumes the following possible
discretization: monthly, weekly, daily, or hourly. In problems with
monthly discretization the electricity demand is represented by
the energy amount required by the load during one month.
Therefore, the unit for electricity demand considered in that case
is [MW month]. Note that the electricity demand is dynamic,
continuously changing in time, but instead of representing these
variations several models use an average of the monthly demand
curve as the demand representation.

Different load levels can be considered in order to represent
different periods of the day. With different levels it is possible to
have more details about the power system operation during peak
and off peak hours for example. In this context, it is possible to
learn about many things in the system such as: transmission
system bottlenecks, thermal generation contributions, costs to
produce electricity during a specific daytime and possibilities of
load curtailments. By modeling different load levels it is natural to
consider different durations and demand values for each level.
Also, it is important to notice that decision variables related to
hydro and thermal plants will suffer alterations in order to match
different load levels, when that is the case.

Fig. 1. Decision process for the hydro-thermal scheduling problem.
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2.4. Energy exchanges in the system

Transmission lines allow regions with excess of supply to ship
electricity to regions with energy deficits. Using the available
hydro generation and the transmission system it is possible to
meet demand at regions far away from the river basins. Trans-
mission capacities between regions are limited and these restric-
tions play an important role in the locational marginal prices [17]
and consequently in the operational costs of each region. Lack of
transmission capacity may lead to dispatch of expensive power
plants located closer to the load or even to load curtailment.

Fig. 2 represents a small system with four regions and one
virtual region. It is possible to exchange energy between regions
that have direct connections. For example, we can exchange
energy between regions 1 and 2 directly, but in order to transfer
energy between regions 2 and 3 it is necessary that the energy
pass through region 1 first. The virtual region 5 is a point where
transmission lines have a connection. In this case, to transfer
energy from region 3–4 the amount has to pass through the virtual
region 5 first. A virtual region has no demand, so the energy that
comes in must be equal the energy that comes out of that region.
Inside other regions the sum of electricity production, load cur-
tailment and energy transfers (“$” signal if going out from the
region and “þ” signal if going into the region) has to be equal to
demand. Also, it is possible to represent energy exchanges in a
finer-grain resolution when we consider a power system that
contains several load and generation buses with transmission lines
linking these buses.

3. Hydro-thermal scheduling problem: characteristics and
model formulations

3.1. Problem characteristics

The available hydro generation capacity at a particular time
period depends on the amount of water stored in the hydro plant's
reservoir. If this hydro plant is part of a cascade system (there are
generators upstream and/or downstream in the same river) the
amount of stored water is influenced by the operational decisions
applied to the generators upstream. This couples the problem
in space.

Natural water inflows are responsible for a large part of the
future water supply that will be available to generate electricity.
These future water inflows and their stochastic nature complicate

the resulting HTSP mathematical models. The HTSP is dynamic
because present decisions affect the future. Fig. 1 presents the
intuition behind this idea. On the one hand, if the ISO decides to
use a large quantity of water to produce electricity today and in
the future a drought occurs it may be necessary to dispatch more
expensive thermal generation (e.g., diesel generators) in order to
supply demand or even to curtail some load. This procedure would
generate unnecessary expenses to the system. On the other hand,
if the ISO decides to store water at present time for future use and
a scenario of large water inflows realizes, it may be possible that
the operator will have to make decisions to spill water volumes
from hydro reservoirs. This implies a waste of potential energy and
hence money. These characteristics couple the HTSP in time.

In this problem, there are multiple interconnected hydro
reservoirs in the system that need to be scheduled over many time
periods. This combined with stochastic inflows means that the
problem may be represented by a multi-stage stochastic program
[18–20]. The objective in HTSPs is to determine the optimal
amount of electricity to be produced by hydro and thermal plants
at each time period satisfying the problem constraints such that
the expected operating costs related to the system are minimized.

3.2. HTSP Model with individual hydro plants

In formulating a HTSP model with individual hydro plants one
is interested in determining generation targets for each hydro and
thermal plant over multiple time periods (months, weeks, days or
hours) with the objective of minimizing the total operational costs.
In this setting, the parameters related to water inflows, turbine
water outflows, water spillage and water storage are represented
by water volumes. In general, such model would capture char-
acteristics of an interconnected cascade system so that decisions at
each generator may affect the whole cascade. Depending on the
HTSP model's horizon and time discretization, water volumes that
are used to produce electricity and water volumes that are spilled
from upstream reservoirs are available at the same time period at
the next downstream reservoir and these volumes can be used to
produce electricity once again. So, besides the water inflows, the
water volume available at each reservoir in a particular time stage
depends on operational decisions upstream.

A hydro plant cascade system is depicted in Fig. 3. The triangles
represent HRs and the circles represent RRHs. In this setting,
operational decisions of generators 1 through 5 have influence on
the water available for generators 6 and 7, decisions of generator
6 also influence operating conditions in 7, and so on.

Fig. 2. Transmission lines interconnecting electrical regions.
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A power system representation with 4 different regions is
shown in Fig. 4. Each region has its own electricity demand and its
own set of power generators (hydro and thermal). The hydro
plants within a region are coupled by a cascade scheme, and the
thermal plants are independent of each other. Fig. 4 also shows
transmission links that interconnect the power system, transfer-
ring power between regions. With transmission links in a hydro-
thermal power system, the ISO can take advantage of the hydro-
logical diversity between regions in order to operate the system in
the best possible way.

Thermal power plants play an important role in the system
robustness. During periods with unfavorable hydrological condi-
tions, thermal plants can be dispatched to complement hydro and
satisfy demand. This allows decisions to store water in the hydro
reservoirs in order to secure electricity supply for the future time
periods as necessary. Thus, one of the main purposes of the ther-
mal plants and transmission links is to optimize the utilization of
system resources (water and fuel).

3.2.1. General problem formulation
As mentioned earlier, the HTSP can be modeled as a multi-stage

stochastic optimization problem. In this setting one of the most
relevant information is the natural inflow of water that becomes
available at each hydro plant at the beginning of each time period.
This parameter may be considered stochastic because it depends
on the random nature of the rainfall. In the literature it is common
to assume that there exists a stochastic process (SP) that governs
the realization of such parameters. A T-stage stochastic linear
program (SLP-T) with recourse, to represent the HTSP, may be
formulated as follows:

min 
x1

c1x1þEb2 jb1h2 x1; b2ð Þ ð1Þ

s:t: A1x1 ¼ B1x0þb1 : π1 ð2Þ

x1Z0 ð3Þ

where for t ¼ 2; :::; T ,

ht xt$1; btð Þ ¼min
xt

 ctxtþEbt þ 1jbt htþ1 xt ; btþ1ð Þ ð4Þ

s:t: Atxt ¼ Btxt$1þbt : πt ð5Þ

xtZ0 ð6Þ

The decision variables of a particular stage t are represented by
the vector xt , which includes hydro generation, thermal genera-
tion, water storage at the hydro plant reservoirs, and spilled water.
The parameter vector bt represents deterministic electricity
demand and a specific realization of the stochastic water inflows
at stage t. Eqs. (1) and (4) represent the objective functions of the
problems at the first and t-th stage, respectively. The objective is to
minimize present cost plus the expected value of the future cost.
Eqs. (2) and (5) represent the model’s structural constraints, which
include water balance and electricity demand satisfaction
requirements as well as limits on hydro and thermal generation,
and on energy transfer between regions. Associated with struc-
tural constraints the model has dual variables, denoted πt .
Eqs. (3) and (6) are simple bounds on decision variables. The term
Eb2jb1h2 x1; b2ð Þ represents the expected cost function of stage
2 given decisions x1, defined in stage 1, and the random parameter
b2 realization that affects the conditions of the system at stage 2.
The term Ebt þ 1 jbt htþ1 xt ; btþ1ð Þ represents the expected cost func-
tion of stage tþ1 given decisions xt , defined in stage t, and the
random parameter btþ1 realization that affects the condition of
the system at stage tþ1.

3.2.2. Stage-t HTSP model formulation
A detailed formulation of the problem at a particular stage t can

be stated as:

z¼min
X

iA I

X

kAGi

ctky
t
kþρtut

2

4

3

5þEbt þ 1jbt htþ1 xt ; bωtþ1
! "

ð7Þ

s:t: xth ¼ xt$1
h þbh;t$vth$sthþ ∑

m∈Mh

vtmþstm
! "

∀h∈H ð8Þ

X

hϵHi

δhvthþ
X

kAGi

ytkþ
X

j:ði;jÞA In
pti;j$

X

j: i;jð ÞA In
ptj;iþut ¼ dti 8 iA I ð9Þ

Fig. 3. Hydro plants cascade representation.

Fig. 4. Power system representation with individual hydro plants.
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X

i: i;jð ÞA In
ðpti;j$ptj;iÞ ¼ 0 8 jA In ð10Þ

vt
hrvthrvth 8hAH ð11Þ

yt
k
rytkrytk 8kAG ð12Þ

xthrxthrxth 8hAH ð13Þ

sthZ0 ∀h∈H; ptijZ0 ∀ i; jð Þ∈In ð14Þ

Eq. (7) represents the objective function that minimizes the
sum of present and future expected operational costs. Model
(7)–(14) has three different sets of structural constraints at each
stage and simple bounds on decision variables. Eq. (8) represents
the water balance constraint for each hydro plant in the system.
The purpose of this constraint is to balance the reservoirs’ storage
levels. This constraint ensures that the storage level at the end of
stage t is equal its storage level in stage t–1 plus the water volume
that comes into that hydro plant reservoir subtracted of the water
volume that leaves that reservoir in stage t. Eq. (9) represents the
set of demand satisfaction constraints, which in this particular
model. is represented for each electric power system region. The
demand satisfaction constraint ensures that, for each region i, the
amount of electricity generated by power plants plus the unmet
demand has to be equal to that region electricity demand. Eq. (10)
ensures that energy exchanges from region i to region j is equal to
exchanges from region j to region i, but with opposite signs.
Eqs. (11)–(14) represents simple bounds on the decision variables.

3.3. HTSP Model with aggregate reservoir representation

The main goal in formulating a HTSP model with an aggregate
reservoir representation (ARR) is the same as that with individual
hydro plants, minimize present and expected future operational
costs subjected to a set of constraints. The main difference is that
in a model with ARR, the optimization model deals with all vari-
ables and parameters related to hydro in units of energy instead of
water. Random water inflows and water reservoir volumes are
transformed into energy inflows and energy storage for an ARR
using hydro plants turbine/generator productivities along the
cascade. Now instead of a solution yielding individual targets for

hydro plants, a solution yields generation targets for each ARR in a
specific planning horizon.

Hydro plants inside a region are aggregated into a single
reservoir that has both controllable and uncontrollable energy that
can be used to produce electricity. Fig. 5 depicts a region of the
power system earlier introduced with all its hydro plants aggre-
gated into a single ARR. Fig. 5 also shows some of the parameters
used to represent an ARR. Note that thermal plants are repre-
sented individually. Energy inflows are divided into controllable
and uncontrollable inflows. Both the controllable and the
uncontrollable inflows may be used to generate electricity
immediately but only the controllable inflows can be stored in the
ARR for future use. We have energy losses at the ARR due to
evaporation, diversion of water (e.g., for agricultural use) and
water spillage.

Pierre Mass first mentioned the ARR, also known as the
equivalent reservoir representation, in the mid-1940s [21]. One of
the first ARR model implementation with application to the multi-
reservoir hydroelectric power system is presented in [22,23] and
applied to the Pacific Northwest hydropower system. The ARR is
an aggregation technique used to reduce the size of the model by
aggregating multiple reservoirs inside a specific region into a
single aggregate reservoir. The use of ARR consequently reduces
the computational effort required to solve a HTSP model. This type
of representation models the total hydro generation of a power
system or even of a specific region inside that system.

The ARR has been used since the 1970s decade in Brazil to model
the hydroelectric power system. First the ARR was coupled with a
stochastic dynamic programming approach to solve HTSPs [24]. Since
the mid-1990s the same ARRmodel started to be used with stochastic
dual dynamic programming to solve HTSPs for the Brazilian inter-
connected system [25–27]. We can construct an aggregate reservoir
to represent as many or as few hydro plants as we want. Generally an
ARR is designed for each power system region, or for a specific river
basin, where random water inflows characteristics tend to be similar
among hydro plants located there. In [28] it is presented a hybrid
application of ARR together with individual hydro plants, where the
goal is to model more precisely special hydro plants in the system. A
description of the long-term hydro-thermal planning problem for the
Brazilian system, along with a discussion of the required energy
inflow forecasting model and a comparison of the relative merits of

Fig. 5. Power system region represented with aggregated hydro plants.
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aggregating hydro reservoirs via electrical subsystem versus aggre-
gating them via hydrological cascade can be found in [29].

A detailed formulation at a particular stage t of the HTSP with
ARR representation can be stated as:

z¼min
X

iA I

X

kAGi

ctky
t
kþρtut

2

4

3

5þEb0 t þ 1jb
0
t
htþ1 x0t ; b0tþ1

ω! "
ð15Þ

s:t: x0ti ¼ x0t$1
i þ f 1 b0i;t

# $
$v0ti $s0ti ∀i ∈ I ð16Þ

v0ti þ f 2ðb
0
i;tÞþ ∑

k∈Gi

ytkþ ∑
j:ði;jÞ∈In

pti;j$ ∑
j: i;jð Þ∈In

ptj;iþut ¼ dti ∀i ∈ I ð17Þ

X

i: i;jð ÞA In
ðpti;j$ptj;iÞ ¼ 0 8 jA In ð18Þ

v 0t
i rv0ti rv0ti 8 iA I ð19Þ

yt
k
rytkrytk 8kAG ð20Þ

x 0ti rx0ti rx0ti 8 iA I ð21Þ

s0ti Z0 ∀i ∈ I; ptijZ0 ∀ i; jð Þ ∈ In ð22Þ

Eq. (15) represents the objective function that minimizes the
sum of present and expected future operational costs. Model
(15)–(22) has three different sets of structural constraints at each
stage and simple bounds on decision variables. Eq. (16) represents
the energy balance constraint for each ARR in the system. The
purpose of this constraint is to balance the ARR storage levels. This
constraint ensures that the storage level at the end of stage t is
equal its storage level in stage t–1 plus the energy that comes into
the ARR subtracted of the energy that leaves that ARR in stage t.
Eq. (17) represents the demand satisfaction constraints. Eq. (18)
ensures that energy exchanges from region i to region j is equal to
exchanges from region j to region i, but with opposite signs.
Eqs. (19)–(22) represent simple bounds on the decision variables.

Note that in the case of the HTSP model with ARR repre-
sentation the number of decision variables reduces significantly.
For example, if we have 50 hydro plants inside a region that we
want to model as an ARR, the number of decision variables that
were three for each hydro plant (xth; v

t
h and sth) at a particular stage,

and so 150 in total, reduces to three for each ARR (x0ti ; v
0t
i and s0ti ).

The same happens with the number of constraints, for example,
we had in Eq. (8) a total of jHj, i.e., one for each hydro plant, and
this number is reduced to one constraint Eq. (16) for each ARR. In
the previous example for 50 hydro plants we would have 50
constraints like Eq. (8) and for the HTSP with ARR only one con-
straint like Eq. (16) is necessary for each ARR. This reduces the
model size and speed-up the optimization algorithm convergence.
However the ARR scheme may affect the system operational
decisions with undesirable errors originated from this problem
approximation.

4. Optimization algorithms and stochastic processes used in
HTSP models

In the literature, there are two different problem structures
used to represent the HTSP stochastic version, one is based in a
modest number of scenarios and the other is based in a sampled
scenario tree (the original tree associated to this sampled tree is
usually too big to be represent in full size). Consequently, there are
two classes of optimization algorithms that are applied to these
different structures: scenario-based decomposition algorithms
and sampling-based decomposition algorithms. But before going
into more details about optimization algorithms we discuss the
stochastics that govern water (or energy) inflows. It is important to
notice that each node in a scenario tree, Fig. 6 – sub-figure 1,
represents an optimization problem where decisions have to be
taken. In order to be able to solve an optimization problem at each
node it is necessary to have the realization of the random para-
meters and the state of the system at that point. Note that, at each
particular time stage of the scenario tree, the state of the system
depends on the decisions taken at the previous stage, represented
in the classic HTSP case by the storage. In such problem, once all
the necessary information is available, commercial solvers can be
used to find the best solutions at each node. The challenge here is
that at each stage the model needs the best possible representa-
tion of the expected future cost function in order to make optimal
decisions. The expected future cost function is not available in the
majority of cases and has to be constructed. Therefore, special-
purpose algorithms, that we discuss further, are used to construct
approximations of these expected future cost functions.

Fig. 6. Optimization solution process via SBDA.
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4.1. Stochastic process governing random parameters

For the purpose of this work we consider a stochastic process
governing the water inflows, but we discuss randomness in other
parameters in Section 4.1.3. The stochastic process that governs the
water, and therefore the energy, inflows is one of the most important
characteristics of HTSP models. In this section we assume that the
stochastic model for bt , frommodel (1)–(6), is in the same units as that
of the constraints. That assumption is implicit in the Btxt$1þbt right-
hand-side (RHS) of Eq. (5). So, if our flow conservation constraint is in
units of water volume as in Eq. (8) then our forecasting for bt is also in
units of water. Or, if we have formulated the model using an ARR with
flow conservation in units of energy then our forecasting of bt is also in
units of energy as in Eq. (16). The reader is encouraged to look at the
work of [13,32] for other representations of the HTSP with water
inflows. In [25,29] other and more detailed HTSP models that uses
aggregate forecasts are presented, where bt is represented in units of
energy. In [20] and [40] the authors consider a variant methodology in
which inflow forecasting is in units of water volume but the for-
mulation of the stochastic program is designed in units of energy.

The multi-stage HTSP model with representation of the ran-
dom variables is designed to be solved in a scenario tree. In Fig. 6 –

sub-figure 1 it is presented a complete scenario tree for the pro-
blem. The first stage realization of bt is assumed to be known. For
the other stages we have probability distributions that govern the
random parameters. Each of the nodes in the scenario tree
represents a different realization of the random parameter asso-
ciated to that stage. In the real problem cases, there are continuous
probabilities density functions that represent the random inflows.
This indicates that there are an uncountable number of scenario
possibilities and consequently an infinite scenario tree. In practical
applications, for the sake of computational tractability, it is created
a sampled scenario tree from the complete scenario tree. The
sampled scenario tree, Fig. 6 – sub-figure 2, represents at each
stage a finite subset of possible scenario realization for the random
variables. The sampled scenario tree varies in size and scenarios in
this tree are constructed considering assumptions of indepen-
dence or dependence among stages for random variables.

4.1.1. Interstage independent case
The simplest way to represent the random variables related to

random inflows in a scenario tree is to assume that vectors bt ,
t ¼ 2;…; T , are interstage independent. When we assume inde-
pendence from one period to the next we mean that the realiza-
tion of the random variable at a future stage has no relationship
with the realization of random variables from previous stages.
That means that for each node in a particular stage the set of
descendant nodes in the scenario tree has to be the same, for more
details see [20].

4.1.2. Interstage dependent case
In the interstage dependent case, we assume the random

inflow vector satisfy Eq. (23), where ηt for t ¼ 2;…; T are inde-
pendent.

bt ¼ Rt$1bt$1þηt ; t ¼ 2;…; T ð23Þ

The matrices Rt
j ; j¼ 1;…; t$1; t ¼ 2;…; T , are assumed known,

presumably because they have been estimated using historical
data. Dependency model (23) generalizes the periodic auto-
regressive model (PAR) [33,34] in which Rt

j exhibits seasonality or
can be defined in the context of a dynamic linear model [36]. For
example, referring to [29], we can appropriately define the Rt

j
matrix and ηt random vectors to have: (i) 12 seasons in a model
with monthly time increments, (ii) the length of the lag depending
on the month (because some matrices satisfy Rt

j ¼ 0), (iii) the PAR
model use centered terms bj$Ebj in place of bj (because the

associated deterministic terms can be absorbed in ηt), and (iv) the
distribution of ηt can be that of a multivariate shifted lognormal.
Note that if we have a lag of a specific order (e.g., six monthly
periods) then we can alter Eq. (23) so that in the initial periods the
inflow vector depends on the “prehistory” of the optimization
model (e.g., the inflows in the six months predating the optimi-
zation model's first month).

In the general statement of the stage t$1 problem, i.e., a ver-
sion of Eq. (23) shifted by one stage, the expectation operator is
Ebt jb1 ;…;bt $ 1

. In light of the autoregressive-style dependency process
specified above, the first term on the RHS of Eq. (23) is determi-
nistic given that we condition on b1;…; bt$1. So, given these values
of the inflows in stages 1;…; t$1, the expectation amounts to
integrating with respect to the distribution of ηt . In other words,
under Eq. (23) we can rewrite the conditional future cost function
in model (4)–(6) as:

Ebtþ 1 jb1 ;…;bt htþ1 xt ; btþ1ð Þ ¼ Eηt þ 1htþ1 xt ; btþ1 b1;…;bt ; ηtþ1
! "! "

ð24Þ

4.1.3. Representation of other uncertainties in the problem
In terms of other uncertainties, most of the literature related to

HTSPs represents the stochasticity only in the water or energy
inflows. However other uncertainties can be incorporated. For
example, power system demand can be considered as uncertainty
and no modification is required in the model or in the solution
strategy, further discussed in this Section, except by creating a
scenario tree using this information. A realization of vector bωt ,
defined in model (7)–(14) or (15)$(22), would in this case
represent a realization of the demand and the water (or energy)
inflows at each location. Recently, increase in penetration of wind
farms and solar photovoltaic plants in power systems is changing
the representation of other uncertainties. In the HTSP a repre-
sentation of wind and solar resources uncertainties can be
implemented by altering bωt as well. In this configuration the
future scenarios represented in the scenario tree will take into
consideration specific realizations of water inflows, wind and solar
power. In such context, one possibility is to represent the power
system demand to be discounted by the wind power and/or the
solar power realizations. By representing uncertainties in this way
there is no need to increase the dimensions of the mathematical
model vectors and matrices. Another option is to increase the
dimension of the decision vector xt and the number of structural
constraint by changing the dimension of matrix At and the vector
bωt . In this alternative it is possible to represent wind and solar
resources with more details. The work presented in [35] shows a
representation of stochastic wind-HTSP following the last idea.

Other types of uncertainties related to thermal power plants
can be represented in HTSP models and handled by the further
discussed solution strategy. For example, different scenario reali-
zations for future fuel prices can be considered and embedded in
the scenario tree as proposed by [45]. Besides the representation
of the stochastic bωt vector it is also necessary to incorporate a
representation of uncertainty in the cost vector cωt . In terms of
power plants and transmission lines reliability, deterministic
parameters have been used to represent future maintenance of
such assets in HTSPs. However, every addition of new stochastic
variables also increases the future uncertainty related to the ori-
ginal problem and as a consequence solution time to solve such
modified models will also increase. It is necessary to have a sense
judgment to choose which uncertainties are the most important
ones to represent in the problem and drive decisions regarding to
the scheduling of power generators. This is not an easy task and it
depends on the problem’s horizon, problem’s discretization,
uncertainties variabilities, and on the share of each power gen-
eration source.
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4.2. Classical optimization methods

Until the mid-1980s, most research on HTSP under uncertainty
used the stochastic dynamic programming (SDP) technique as solu-
tion method for multi-stage stochastic programs. The work presented
in [30] shows a review of dynamic programming techniques applied
to water resources problems and in [31] the authors present the
application of SDP to hydro-thermal generation scheduling and its
comparison with its deterministic counterpart. The main drawback of
SDP is the “curse of dimensionality” of dynamic programming (DP)
that makes the problem intractable when the dimension of the state
vector is medium or large. DP algorithm constructs the future cost
function by discretizing the state variables at each stage into a set of
finite values. Then the algorithm proceeds backward in time using
Bellman's recursion; see [37,38]. Methods to overcome DP's “curse of
dimensionality” and solve real-size instances of this type of problem
were necessary. Benders' decomposition algorithms [39] lead the way.
Benders' decomposition algorithm is at the core of the solution
methods for multi-stage stochastic linear programs. The reader is
encouraged to look at [13] for a scenario-based decomposition algo-
rithm applied to a HTSPmodel and at [14,29,40,41,42] for applications
of sampling-based decomposition algorithms (SDBAs). Recently, new
enhancements of the SDP method combined with the convex hull
algorithm have being used as well for solving HTSPs [86].

4.2.1. Scenario-based decomposition methods
Scenario-based methods first select a modest number of sce-

narios to represent the probability distribution of the random
variable. The problem, after the scenarios are chosen, is considered
as a large deterministic linear program. The optimal solution
obtained for this problem is exact, but it is only an approximation
of the true original problem, assuming that the probability dis-
tribution was approximated. Two of the most well-known sce-
nario-based decomposition algorithms are the L-shaped method
of [43] for two-stage stochastic linear programs, and the nested
Benders' decomposition algorithm [44] for problems with more
than two stages. According to [45], one advantage of this method
is that more uncertainties can be modeled and represented at the
same time. In a HTSP, for example, one can consider randomness
not just on the water inflows, but also in other parameters such as
on electricity demand, fuel prices and other parameters, as long as
a modest number of overall scenarios are considered.

An important application of a Benders-style algorithm to a
HTSP is presented by [13]. Using a scenario-based method, the
authors attempt to solve three- and five-stage HTSP models with
two possible random realizations at each stage. The authors pre-
sent the dynamic dual programming (DDP) algorithm that later
was revised in [46] to be valid for problems with more than two
stages. In [47] the author presents enhancements to the nested
Benders' decomposition algorithm, and an application of this
algorithm to HTSP at Pacific Gas and Electric Company can be
found in [48].

4.2.2. Sampling-based decomposition methods
SBDAs for multi-stage stochastic linear programs are the state

of the art for solving stochastic HTSP models since the origin of the
first algorithm of the class. SBDA avoids the DP “curse of dimen-
sionality” by constructing an approximation of the future cost
function. The algorithm approximates the future cost function
with piecewise linear functions (Benders' cuts) that are iteratively
added as the algorithm proceeds. An SBDA differs from a scenario-
based decomposition algorithm in that it handles scenario trees
whose size is too large for a scenario-based algorithm. Sample
observations of the random variables are drawn, at each time
stage. An SBDA proceeds, pursuing convergence in some prob-
abilistic sense, until it finally reaches a stopping criterion [49].

The idea to introduce sampling methods into the nested
Benders' decomposition algorithm gave origin to SBDA. The first
SBDA to appear in the literature is called stochastic dual dynamic
programming (SDDP), presented in [14,41]. SDDP is one of the
most used and well-known SBDAs, and the motivation for its
development was the HTSP. Since the early 1990s SBDAs have
received considerable attention from the stochastic programming
community. SDDP-related algorithms such as abridged nested
decomposition (AND) by [50,51], the convergent cutting-plane and
partial-sampling (CUPPS) algorithm of [49] and the dynamic outer
approximation sampling algorithms (DOASAs) by [42,52] were
developed to improve SDDP's computational efficiency. In [51] the
authors present a different sampling scheme and computational
results for AND and SDDP applied to a dynamic vehicle allocation
problem with uncertain demand. The AND algorithm also was
applied to a HTSP in the Colombian Power System [53]. In [8] the
authors present computational studies for the long-term HTSP in
the Brazilian power system. A total of 10 simulation cases were
solved using an SDDP implementation and different time series
model considerations. The DOASA, first presented in [52] to deal
with a HTSP model, was also used to solve a production planning
problem for the dairy industry in New Zealand [54].

4.2.3. SBDA Optimization Process and Simulation Flow Chart
SBDAs use a master program, as the one defined in Eqs. (25)–(28),

at each stage of the problem. These master programs accumulate, at
each iteration of the algorithm, new cuts represented by Eq. (27) to
approximately represent the future cost function. During a typical
iteration of a SBDA, Benders cuts have been accumulated at each
stage. These represent a piecewise linear outer approximation of the
expected future cost function, i.e., Ebt þ 1jbt htþ1 xt ; btþ1ð Þ, at each time
stage. In the master program, the Benders' representation considers
θt for the future cost as a decision variable, which will change its
value as the algorithm proceeds, due to improvement in the repre-
sentation of the future cost functionwith the addition of new cuts. In
Eq. (27), G

!
t and g!t represents the cut gradient matrix and the cut

intercept vector that are obtained using the solution of the future
stage problems, and αt represent the dual variables associated with
the cuts, for more details see [19,20].

min
xt ;θt

ctxtþθt ð25Þ

s:t: Atxt ¼ Btxt$1þbt: πt ð26Þ

$G
!

txtþeθtZ g!t : αt ð27Þ

xtZ0 ð28Þ

It is depicted in Fig. 6 a visualization of how SBDAs work. It is
important to keep in mind that HTSP scenario tree sizes of interest
are much larger than the one presented in Fig. 6. For example, in
[29] a tree with 20 scenarios per stage with 120 stages and in [40]
trees with 24 stages with up to 2000 scenarios per stage are used
to represent the sampled problem.

Once a sampled scenario tree is available the SBDA starts by
sampling forward paths in this tree as depicted in Fig. 6 – sub-
figure 3. After the selection of paths the algorithm proceeds to the
forward pass phase (Fig. 6 – sub-figure 4). In the forward pass a
sequence of problems represented by Eqs. (25)–(27) at each time
stage along a single forward path is solved, the cuts that have been
accumulated so far are used to form decisions at each stage. In this
way, the sample mean of the costs incurred along all the forward
sampled paths through the tree form an estimator of the expected
cost we incur by following the policy specified by the current set of
cuts. Note that those sampled forward paths should be selected
independently at each SBDA iteration. At the end of the forward
pass we have an estimation of the total expected cost and a true
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lower bound for the sampled problem (solution from the first
stage problem) that we can compare, test a stopping criteria and
decide if the SBDA needs to run for another iteration or not.

If the algorithm does not stop at the end of the forward pass it
proceeds to the backward pass presented in Fig. 6 – sub-figure 5. In
the backward pass the algorithm add cuts to the collection defining
the current approximation of the expected future cost function at
each stage. We do this by solving the descendent nodes of each node
in the linear paths solved in the forward pass phase, except in the
final stage, T . In Fig. 6 – sub-figure 5 the black nodes correspond to
the nodes that were selected in this iteration's forward pass. The
white nodes are the additional nodes we solve as part of the back-
ward pass in order to construct Benders cuts. Fig. 6 also shows sets of
cuts corresponding to all the nodes on each stage when the scenario
tree is interstage independent. It is important to mention that not all
the forward paths selected before have to be solved in the backward
pass, the SBDA can select a subset of them depending on the algo-
rithm design. The number of paths selected to be solved at the
backward pass can speed-up or speed-down the SBDA convergence.
Once the backward pass is finished the SBDA go back to the forward
pass selection in order to choose other paths in the sampled scenario
tree and continue with the optimization process. Besides the SBDA
solution process it is important to have in mind a process flowchart
for the HTSP as the one presented in Fig. 7.

In order to construct the master programs, first it is necessary
to read from a database all the power system data and perform the
appropriate calculations to define de cost vector ct , the constraint
matrices At and Bt and the relationship between decision variables
in the objective function and constraints for each stage t. From the
water inflows database, the information of historical water inflows
available for hydro plants are used to construct an appropriate
time series model. The time series model is then to generate future
scenarios of random inflows that will be used in the sampled
scenario tree construction. The sampled scenario tree and the
master programs are used by the SBDA to solve the stochastic
problem. In Fig. 7 general steps of a SBDA-type are described, for a
formal description one can refer to [19,20,41].

4.2.4. SBDAs computational time and power
The computational time required for solving HTSP models using

SBDAs varies significantly depending on the test case. A solution can
be found in matter of minutes for very small instances to several days
for large size instances. The number of optimization problems in a

scenario tree as the one depicted in Fig. 6 – sub-figure 1 increases
exponentially with the number of stages and with the number of
scenarios (or branches) per stage. For example, if we want to enu-
merate the different optimization problems in a tree with 3 stages
and 2 scenarios per stage, except for the first stage which is deter-
ministically known and represented as a single scenario, the scenario
tree will have a total of 7 different optimization problems. If we
increase the number of stages from 3 to 4, the number of optimiza-
tion problems goes to 15; instead if we increase the number of sce-
narios to 3 and maintain the 3 stages the scenario tree will end up
with 13 different optimization problems. In general terms we have

n¼
PT

t ¼ 0
nst as the total number of optimization problems in a sce-

nario tree, where ns is the number of scenarios (or branches) per
stage and T is the total number of stages considered in the multi-
stage problem. For real practical size problems with T ranging from 12
to 120 and ns ranging from 20 to 2000 [29,40] the enumeration of all
optimization problems is practically impossible and as mentioned
earlier solution strategies such as SBDAs have to be used in order to
approximately solve such problems. However, as T and ns grows in
size the time for SBDAs to solve the problem also grows. In [40] more
discussion about computational time for HTSPs of different sizes using
SBDAs can be found.

Computational time to solve HTSPs also depends on the num-
ber of decision variables and constraints represented in each
optimization model. The number of decision variables and con-
straints depends on the modeling choices, and in some sense this
was earlier discussed in Section 3. Another aspect that affects the
computational time to obtain a solution with SBDAs is the repre-
sentation of the uncertainties in the model by the chosen sto-
chastic process (refer to Section 4.1 and [19] for more details). Also,
it is important to mention that efficient implementations of SBDAs
are constructed with parallel programing technologies in order to
exploit the problem structure as presented in [40,55,56] in high
end modern cluster computers, which can handle a large number
of processes at the same time. For example, it is possible to set the
number of parallel processes to be equal to the number of forward
paths selected in the scenario tree (Fig. 6 – sub-figure 3) [40].

4.2.5. Simulation, convergence properties and stopping criteria for
SBDAs

Since the appearance of the first SBDA, the SDDP, convergence
properties of these algorithms have been studied in the literature.

Fig. 7. Simulation flowchart for HTSP with stochastic water inflows and SBDA.
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Convergence analyses and statements are shown in [49,50,52,57].
A convergence proof was presented by [49] for the CUPPS algo-
rithm. Later, [57] extend the proof for SBDA related algorithms in
general. In [52] it is presented a simpler and robust convergence
proof for SBDA that holds in general, based on an idea of [50] that
states: “Finite convergence of this algorithm follows from the finite
convergence of the Nested Decomposition algorithm, since the sce-
narios from which the optimality cuts are generated are re-sampled
at each iteration”.

The work of [58] discusses statistical properties of the SDDP
algorithm. In his work, considering stage-wise independence, a
sample from the distribution of the original problem is taken to
create a finite sample average approximation (SAA) of the true
problem. SDDP is studied for this SAA problem and an extension
for the risk-averse case, using conditional value at risk [59] is
presented. The author states that the stopping criteria proposed by
[41] and used in [51], does not guarantee correct stopping or
reasonable solution quality for SBDA. He presents another stop-
ping criterion and argues that it is more meaningful from a sta-
tistical point of view.

Stopping criteria for SDDP were also studied by [60]. The
authors present the stopping criterion proposed in [41] as a
hypothesis test. They argue that the original stopping criterion
allows the algorithm to terminate sooner than it should,
depending on the sample size chosen, without achieving good
solutions. The authors then suggest a modification of the original
criterion to alleviate the premature stopping issue.

Monte Carlo methods usually define the sampling schemes for
SBDA [41,49,51,52]. In [60] the authors present two different
sampling schemes for SBDA, randomized quasi-Monte Carlo
(QMC) and the Latin hypercube sampling (LHS) schemes. The
authors apply SDDP with these alternative sampling schemes to a
three-year horizon HTSP and achieve more consistent operational
policies than with SDDP with traditional Monte Carlo methods.

4.3. Heuristic methods

In [61] it is presented a scheme based in fuzzy decision-making
methodology to decide the generation scheduling for a long-term
HTSP model that considers uncertainty in system production costs,
greenhouse emissions, system demand and water inflows. In [62]
the HTSP is modeled as a deterministic nonlinear optimization
problem, and artificial neural networks (ANN) are used in a cas-
cade hydropower system to perform scheduling decisions for each
hour of the day. A two-phase ANN optimization method is
employed to decompose and solve a nonlinear version of the HTSP
in [63]. An approach that combines Hopfield ANN and a heuristic
rule based search algorithm is proposed for the short-term HTSP is
presented in [64]. ANN is employed to solve other HTSP mathe-
matical models as the work of [65] and to other related problems
such as the hydro plant dispatch problem [66].

In [67] it is presented an algorithm based in a combination of
Tabu search and generalized Benders decomposition to solve a
HTSP that considers nonlinearities such as startup costs of thermal
plants. An improved quantum-behaved particle swarm optimiza-
tion (QBPSO) method was applied to solve a multi-objective short-
term HTSP in [68]. The authors tested the QBPSO efficacy com-
pared to other methods reported in the literature, such as differ-
ential evolution, with their HTSP model that considers active
power balance constraints in addition to water balance con-
straints. In [69] the hydroelectric generation scheduling is solved
by an ant colony system (ACS). The ACS is applied after a search
space is determined for the multi-stage problem, through a col-
lection of cooperative agents in order to obtain near optimal
solutions for their model. A comparison between the application
of genetic algorithm and particle swarm optimization to a fixed

head short-term hydro-thermal scheduling that considers trans-
mission losses can be found in [70].

4.4. Other topics related to the hydro-thermal scheduling problem

Research related to HTSP has produced over the years
remarkable models and methodologies that can be applied to
several types of problems.

4.4.1. Risk measures and optimization methods
One recent advance in the field related to HTSPs is the intro-

duction of risk measures within SBDAs. In [58], the author pro-
poses the addition of conditional value at risk (CVar) to multi-
stage stochastic optimization problems that employs SBDAs as
solution technique. The goal is to find a compromise solution
between minimizing the average cost and trying to control the
upper limit of the future cost functions every stage of the process.
The idea presented in [58] was applied in [42] together with the
DOASA to solve a HTSP model in the New Zealand power system
and in [72,73] with the SDDP to solve a HTSP model in the Bra-
zilian power system respectively. The goal of these papers is to test
different risk aversion levels and compare results obtained by risk
neutral policies.

One of the challenges regarding to the use of the risk-averse
formulation is related to the characterization of the upper bound
for the sampled problem, which is not well defined as discussed in
[74,75]. The authors in [74] propose a new approach based in
importance sampling in order to improve the poor performance of
the upper bound estimator; the methodology is tested for an asset
allocation problem. In [75] it is presented an approach that com-
bines CVar with SDDP in the context of long-term power genera-
tion planning problem for the Brazilian system. The goal to use
CVar in such framework is to avoid large amounts of load cur-
tailment in critical inflow scenarios. The authors present a case
study of the modeling/solution procedure application in order to
specify CVar parameters and obtain a reasonable trade-off
between system security and generation costs.

4.4.2. Other constraints and modeling developments
In [15] the author presents a linear programming approach to

consider multiple uses of the water in the short-term HTSP by
designing river stream level constraints and river-routing effects.
These constraints restrict the minimum and maximum values or
maximum hourly/daily variations in the level of the river at spe-
cific points. By using stream level constraints things such as ship
navigation, fishing, and other environmental concerns may be
represented in river courses. In the modeling part it is necessary to
include new variables to HTSP models such as river levels. Other
recent development related to the stochastic HTSP is the con-
sideration of CO2 emission constraints in [76] with a study case
considering Guatemala power system. The authors consider costs
related to CO2 emissions originated from the electricity production
of a thermal plant in the objective function to minimize these
contributions. Emission constraints were designed in order to
capture annual restrictions and therefore new decision variables
had to be created to represent a pseudo reservoir for emissions
(new state variable). This new formulation impacts the Benders
cuts formation from SBDAs because of this new state variable
existence. The work of [77] presents an addition of transmission
network constraints in HTSP modeling due to the distance of
several hydro plants in a power system from the load center. Their
work considers Lagrangian relaxation method to solve a model
with nonlinearities between hydro generation and tail racing
levels and between forebay level of reservoirs and hydro reservoirs
volumes. In [71,78] similar nonlinearities are considered in the
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HTSP and DC power flow formulation is used in the modeling
process.

The integration of other renewable sources such as wind and
solar in power systems also demand new developments in the
study of HTSP. The wind integration in hydro-thermal systems has
already been subject of several studies [77,79-81]. In the HTSP
literature, wind farms are considered to be similar to the run-of-
river hydro plants, with both encompassing variable generating
sources and thus being dependent on the availability of their
respective primary energy source [82]. In [35] the authors study
the wind-HTSP with stochastic water inflows and wind speed to
exploit the complementarity behavior of these two sources in the
scheduling of a small power system. It is proposed in [83] the
addition of a constraint related to wind power uncertainty in a
HTSP nonlinear model; the authors use a particle swarm optimi-
zation algorithm to solve such model.

There are only a few studies in the literature considering solar
generation together with HTSP. The power output from a photo-
voltaic solar plant is intermittent and depends on the randomness
of sunlight. Similar to wind farms generation, the generation from
solar plants present challenges to the operation of power systems
but also present benefits. It is presented in [84] the use of pumped
storage hydro to improve the reliability in a system with large
share of photovoltaic generation. The authors propose a coopera-
tive scheduling method for the pumped hydro, solar and thermal
power plants that make possible to improve both reliability and
cost minimization in a system. In [85] it is presented a stochastic
optimization model and Quasi-Monte Carlo simulation method to
represent scenarios for the variability of wind and solar in the
medium-term generation planning problem.

5. Conclusion

We have presented an overview about the hydro-thermal
scheduling problem. The HTSP is a challenging problem that is
often modeled in the literature as a large-scale multi-stage sto-
chastic program. Basically, there are two main representations of
such a problem; one representation of the HTSP is with the
modeling resolution of individual hydro plants and stochastic
inflows of water, the other approach uses an energy-based ARR
with stochastic inflows of energy. The representation with indi-
vidual hydro plants can be more precise since we can better
represent the relationship of the hydro plants in each river basin.
Also, this representation uses forecasting models that can exploit
local predictors to forecast the stochastic water inflows. But the
computational effort to solve such a model grows with the number
of hydro plants, the level of representation of the system details,
the number of stages and the branches in the scenario tree. On the
other hand, the representation of the problem using the aggregate
reservoir scheme is more appealing from the computational point
of view, since the number of decision variables and constraints
shrinks considerably for large systems. However applications of
the ARR are often tied to the forecasts of energy inflows that may
not represent well the behavior of the water inflows at each
hydro plant.

The class of sampling-based decomposition algorithms that are
used to solve HTSP in the literature was described in this work. We
presented the main ideas behind the iteration process of SBDA and
discussed specific characteristics of such class of algorithms that
still to the date the state of the art for solving multi-stage sto-
chastic optimization models. It was mentioned about the risk-
averse methodologies that recently became to be used together
with SBDAs. Several branches of current research related to HTSP
were pointed out such as: integration of other renewables, addi-
tion of CO2 emissions and multiple water uses.
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