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a b s t r a c t

Climate variability accounts for distinct seasonal differences in electricity demand and streamflow
potential, which power systems rely on to assess available hydropower and to cool thermal power
plants. Understanding the interactions between reservoir and power networks under varying climate
conditions requires an integrated analysis of both systems. In this study, we develop Co-Optimization
of Reservoir and Electricity Generation Systems (COREGS), a generalized, open-source, modeling
framework that optimizes both systems with respect to reducing power generation costs using a
multireservoir model (GRAPS) and an electricity system model (TEMOA). Three optimization schemes
of varying degrees of model integration are applied to Tennessee Valley Authority’s reservoir and
electricity systems for the summer and winters from 2003 to 2015. We find that co-optimization
of the systems results in more efficient water allocation decisions than separate optimization. Co-
optimization solutions reduce reservoir spill and allocate water for hydropower only when and where
it is beneficial to the power system as compared to stand-alone water system optimization. As the
penetration of solar and wind power continues to increase, power systems will be more reliant on
flexible reliable generating services such as reservoir systems and co-optimization of both systems
will become more essential for efficient seasonal planning and operation.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Despite the growth in solar and wind energy over the last
ecade, hydroelectric power still dominates the renewable en-
rgy landscape accounting 48% of installed capacity across the
lobe (International Renewable Energy Agency, 2021). In the
nited States, hydropower electricity production was the second
argest renewable source in 2020 accounting 37% of renewable
eneration, surpassed only by wind power (US Energy Informa-
ion Administration, 2021). While hydropower is an important
ink between power systems and water supply systems, reser-
oirs also provide large quantities of water for cooling to thermal
ower plants thus requiring effective operation of these two
ystems during drought conditions (IPCC, 2021). Seasonal cli-
ate variability further complicates this water–energy nexus as
easons with high electricity (i.e., winter/summer) demand may
requently overlap with recurrent drought patterns (IPCC, 2021;
elfer et al., 2012; Zerrahn and Schill, 2017). Efficient reservoir
peration in wet years can result in reduced reservoir spillage
nd additional hydropower without increasing downstream flood
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risk (Zhou et al., 2018). In addition to seasonal climate vari-
ability, long-term climate change has impacted the operation of
both reservoir and power systems (Bartos and Chester, 2015).
Droughts also reduce the available water supply thus limiting the
flexibility of reservoir operations and potentially decreasing the
available capacity of thermal plants. In 2021, the International
Panel on Climate Change reported with high confidence that the
increase in the frequency of concurrent heatwaves and droughts
since the 1950s has been driven, at least in some part, by an-
thropogenic influences (IPCC, 2021). Heatwaves cause increased
power demand levels, which in turn increase cooling loads while
simultaneously increasing evaporation from reservoirs, thereby
further constraining the water supply (Helfer et al., 2012).

As electricity grids becomes more reliant on variable renew-
able energy (VRE) sources such as solar and wind, hydropower
plays an important role in decarbonizing electricity generation
by providing additional power system reliability. For instance, in
addition to being a zero-carbon generation source, hydropower
can provide large quantities of immediately dispatchable reliable
energy storage to the electricity grid. Several studies have found
that the penetration of VRE sources is limited without access to
substantial amounts of energy storage (Zerrahn and Schill, 2017;
de Sisternes et al., 2016; Denholm et al., 2011) and that the
value of renewable energy is increased substantially when it is
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Indices

r Reservoir index
t Time index for GRAPS
t, s, d Time period, season, and time of day index for

Temoa
u Index for upstream reservoirs
i Iteration number for ICORPS solution method

Sets and subsets

R Set of all reservoirs
T Set of all time periods for GRAPS
Ur Set of all reservoirs directly upstream of

reservoir r

Variables

S ir,t Storage for reservoir r at time t (for iteration i
if included) [1000 ac-ft (SI: 1.233 million m3)]

Di
r,t Hydropower discharge for reservoir r at

time t (for iteration i if included) [1000
ac-ft/month]

Oi
r,t Total outflow from reservoir r at time t in

iteration i [1000 ac-ft/month]
I ir,t Total inflow from reservoir r at time t in

iteration i [1000 ac-ft/month]
TW i

r,t Tailwater for reservoir r at time t (for
iteration i if included) [ft]

HP i
r,t Hydropower generation for reservoir r

at time t (for iteration i if included)
[MWh/month]

URi
r,t Total release from reservoirs directly up-

stream of reservoir r at time t in iteration i
[1000 ac-ft/month]

F i
u,t Contributing release fraction to URi

r,t from
reservoir u at time t in iteration i

SP i
r,t Spill for reservoir r at time t in iteration i

[1000 ac-ft/month]
DEF i

r,t Deficit for reservoir r at time t in iteration i
[1000 ac-ft/month]

π i
r,t Dual variable (shadow price) for maximum

hydropower constraint in Temoa for reservoir
r at time t in iteration i [$/MWh]

Obji Objective function value at iteration i [$]
N Total number of iterations
δ Efficiency measure used to determine which

method provided the most objective function
improvement per unit of additional release

deployed alongside energy storage capacity (Sodano et al., 2021).
These interdependencies stress the importance of understanding
the dynamics and uncertainties between reservoir and power
systems to facilitate planning and operation at seasonal time
scales.

Most studies have focused on the co-optimization of these
wo systems at hourly-to-daily time scales to address opera-
ional issues such as system reliability and outages (Mandal et al.,
008; Swain et al., 2011; Norouzi et al., 2014). Given that large
eservoir systems typically guarantee the required power demand
t hourly-to-weekly time scales, inflow variability during slowly
volving droughts could constrain the available storage for power
8062
Parameters

βr,1, βr,2, βr,3 Storage-elevation curve parameters for
reservoir r

DEMt Electricity demand for time-period t [MWh]
DSD(t),s,d Demand specific distribution for time of day

d in season s (in time-period t)
demt,s,d Electricity demand for time of day d in season

s in time-period t [MWh]
LCr,t Lower storage rule curve for reservoir r at

time t [1000 ac-ft]
UCr,t Upper storage rule curve for reservoir r at

time t [1000 ac-ft]
Smax
r Maximum storage for reservoir r [1000 ac-ft]
Smin
r Minimum storage for reservoir r [1000 ac-ft]

ηr Generator efficiency for reservoir r
λ Fractional value used to increase the release

at a reservoir if the dual variable is non-zero
and the original release is zero

α Tuning parameter to control step size in
ICORPS. The larger the value, the smaller the
step size.

ε Tolerance that determines how similar the
objective function values must be between
iterations to be considered equivalent

K Minimum number of times the percent
change in the objective function between it-
erations must be less than ε for ICORPS to
converge

Constants

γ Specific weight of water [62.4 lb/ft 3, (SI: 9.81
kN/m3)]

Functions

Γ (i) Returns a 1 if the percent change in objective
function values between iteration i and i − 1
is less than ε, otherwise returns 0

generation at seasonal time scales (Oludhe et al., 2013). Further,
given the increasing penetration of renewable energy and varying
reservoir storage availability throughout the year, jointly oper-
ating water and power systems over sub-annual time periods
(seasonal and beyond) may result in efficiency gains for both
systems as well as reduced operational cost for the power system.
Though there has been a recent push to study these systems for
sub-annual time horizons, much of the existent literature (Oludhe
et al., 2013; Li et al., 2015; Liu et al., 2015; Hunt et al., 2017; Mu
et al., 2020; de Queiroz et al., 2019) focuses on modeling and op-
timization techniques of water and power systems independently
rather than together.

The utility of seasonal streamflow forecasts for optimizing
reservoir operations is demonstrated in Oludhe et al. (2013) and
Hunt et al. (2017) explores the potential benefits of seasonal
pumped storage systems with respect to the multi-reservoir sys-
tem in Brazil. In Liu et al. (2015), the seasonally varying flood
storage requirement for the Three Gorges Reservoir is optimized
with respect to flood risk, hydropower generation and relia-
bility, navigability, and end-of-horizon water levels. de Queiroz
et al. (2019) modifies an energy systems optimization model for
seasonal electricity planning and operations. Mu et al. (2020)
explores the seasonal risk of the water–electricity nexus during
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ry periods but only by considering the water consumption for
hermal electricity generation rather power and water system
perations. Thus, a detailed modeling of water and power systems
t seasonal time scales is not yet fully developed and analyzed
howing the benefits of co-optimization of the two systems.
Studies that optimize both systems often simplify one sys-

em rather than fully resolving both. Turgeon (1980) and Pereira
nd Pinto (1985) use the equivalent reservoir method of Ar-
anitidis and Rosing (1970a) to simplify multireservoir systems
hile Zambon et al. (2012) models each individual reservoir
ut aggregates the power system into four regions. Baslis et al.
2009) models all reservoirs and thermal generators but sim-
lify hydropower calculations by removing the dependence on
eservoir head. The reliance on binary variables in Baslis et al.
2009) also make it poorly suited for seasonal analysis on larger
ater and power systems. The stochastic scheduling model in
ang et al. (2017) also resolves each reservoir and generator but
gnores critical operational constraints such as ramping rates and
inimum operating capacity of power plants. Stochastic Dual
ynamic Programming (SDDP) (Pereira, 1989) is often used when
he stochasticity of state variables for water and power systems is
f interest (Pereira and Pinto, 1991; Rougé and Tilmant, 2016; De
ueiroz, 2016a); however, SDDP is not guaranteed to converge
o a solution in practice and has limited ability to handle non-
onvexity in problems (Shapiro, 2011; De Matos et al., 2015; Ávila
t al., 2021).
While there have been efforts to model power and reservoir

ystems together, most have been limited by simplifications of
ne or both systems (Turgeon, 1980; Pereira and Pinto, 1985;
ambon et al., 2012; Baslis et al., 2009), narrow focus on a
pecific situation (Yang et al., 2017), short-term scheduling prob-
ems (Mandal et al., 2008; Swain et al., 2011; Norouzi et al.,
014), or applicability to only small-to-medium systems (Baslis
t al., 2009). Further, there is a clear gap in co-optimization
f water and power systems at seasonal to sub-annual time
cales. This work presents an integrated optimization frame-
ork that can be used to analyze water and power systems
ogether while fully resolving each reservoir and generator and
y considering operational constraints such as varying reservoir
torage rules, ramping and minimum operating rates of gen-
rators, and seasonally varying electricity demand profiles. In
articular, to support season hydro-thermal operations and plan-
ing, we link an open-source generalized multireservoir model
nd an open-source energy system model to create a framework
hat dynamically shares information between the models, so de-
isions made in one system are accounted for in the other. The
eneralized nature of each model allows this framework to be
pplied for any system and, because their source code is openly
vailable, they can be modified to suit the needs of a specific
ystem or problem.
In Section 2, a short summary of existing optimization meth-

ds for water and power systems separately and together is
resented. Section 3 discusses the water and power models used
n this work any modifications from their original formulation.
he way these models are integrated together and the methods
or finding solutions are also presented in Section 3. The frame-
ork is applied to the Tennessee Valley Authority’s reservoir and
ower system in Section 4. Following the study area description,
he framework and its solution methods are evaluated based on
eductions in cost to meet power demand, water use efficiency,
eservoir spill, and reservoir deficit in Section 5. Additionally,
he framework’s operational capabilities are evaluated using a
easonal rolling horizon setup. Finally, the findings are summa-
ized, and the benefits, limitations, potential uses, and future
mprovements are discussed in Section 6.
8063
2. Background on water and power systems optimization

2.1. Reservoir system modeling

Reservoir and multireservoir optimization have been exten-
sively researched over various spatial and temporal scales. While
Labadie (2004) and Ahmad et al. (2014) provide comprehensive
reviews of reservoir optimization techniques. Linear program-
ming (Belaineh et al., 1999; Needham et al., 2000) and non-
linear methods such as sequential quadratic programming (Fi-
nardi et al., 2005) are among the most popular for single reservoir
or small multireservoir systems. Various evolutionary algorithms,
such as genetic algorithms (Sharif and Wardlaw, 2000), particle
swarm optimization (PSO) (Al-Aqeeli and Mahmood Agha, 2020),
and the Monarch Butterfly Algorithm (Ehteram et al., 2017) have
been successfully used for multireservoir optimization for small
and large systems over a variety of time horizons ranging from
daily to yearly. Stochastic dynamic programming (SDP) is often
employed to optimize multireservoir networks under inflow un-
certainty (Alaya et al., 2003; Archibald et al., 2006; Li et al., 2014;
Liu et al., 2018); however, SDP is typically limited to a single
reservoir or small multireservoir systems due to the exponen-
tial growth in dimensionality in decision variables – reservoir
releases – as more reservoirs are added.

One approach to manage the curse of dimensionality is to
aggregate the reservoirs into an equivalent reservoir based on the
potential energy of impounded water. This approach was initially
developed by Arvanitidis and Rosing (1970a) and Arvanitidis and
Rosing (1970b) and has since been used several times to re-
duce the dimensionality of multireservoir optimization (Brandão,
2010; Guo et al., 2013; Mukhopadhyay et al., 2021). Studies that
compared equivalent reservoir models with the detailed cascade
modeling approach found that the former perform poorly com-
pared to the latter for reservoirs with smaller storage-to-demand
ratio (Mukhopadhyay et al., 2021). Simulation–optimization meth-
ods have also been used to reduce the dimensionality of large
multireservoir problems but have the benefit of maintaining
the cascading structure (Koutsoyiannis and Economou, 2003;
Sankarasubramanian et al., 2009). Xuan et al. (2020) present
a simulation–optimization scheme that leverages the Feasible
Sequential Quadratic Programming (FSQP) algorithm (Lawrence
and Tits, 2001) and accounts for inflow uncertainty using stream-
flow ensembles while fully resolving each reservoir in a cascade.
There is a wide array of optimization techniques for reservoir
and multireservoir systems, each with benefits and drawbacks;
however, very few of these techniques have been implemented
alongside power system optimization models.

2.2. Power system modeling

For power systems, Ringkjøb et al. (2018) provide a com-
prehensive review of available models. As noted in Ringkjøb
et al. (2018), the temporal resolution and horizon of interest for
power system modeling can range from sub-second to decadal
and beyond. Various mathematical programming techniques have
been used to optimize power systems over the entire range of
temporal resolutions and time horizons including linear, non-
linear, dynamic, and evolutionary programming methods. Most
frequently, short term (sub-weekly) power system optimization
is performed with unit commitment models (UCMs) that employ
a mixed-integer linear programming formulation. Alternatively,
long term (yearly to decadal) optimization focuses on planning
and generation capacity expansion and is generally performed
with energy system optimization models (ESOMs) that are pure
linear formulations without unit commitment (de Queiroz et al.,
2019; Ringkjøb et al., 2018; Hunter et al., 2013).
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UCMs and ESOMs have dominated the power systemmodeling
pace for many years but they are generally not well equipped to
andle seasonal time horizons (de Queiroz et al., 2019). To ef-
ectively capture seasonal power system dynamics, the temporal
esolution needs to be high enough to account for operational
omplexities such as ramping rates and the formulation should be
omputationally efficient enough to allow for uncertainty quan-
ification. As more variable renewable generation, such as wind
nd solar, is built, the need for seasonal power system planning
odels also increases [10,36 and references therein]. Though

here are few power system models built specifically for sea-
onal analysis (Ringkjøb et al., 2018), there have been efforts to
ncorporate operational details within ESOMs (de Queiroz et al.,
019; Collins et al., 2017). In addition, linking UCMs and ES-
Ms together was explored by Deane et al. (2012) by feeding
utputs from the TIMES energy system model into the PLEXOS
ower systems model to validate generation portfolios from ES-
Ms. de Queiroz et al. (2019) modified an open source ESOM,
emoa (Hunter et al., 2013), for applications related to seasonal
lanning and operations. These modifications include the addi-
ion of ramping constraints, altering the time indices to allow for
n hourly temporal resolution, and disallowing capacity additions
hus forcing demand to be met with current generation sources.
n important attribute of this work is the lack of integer variables
n the model formulation, allowing for solutions to be arrived
t via pure linear programming methods. However, these power
ystem models are not able to capture the dynamic interactions
nd dependencies between reservoir and power systems.

.3. Combined reservoir and power system modeling

Though there are numerous studies on reservoir system or
ower system modeling, limited studies have focused on co-
ptimization of both systems together in an integrated frame-
ork at the seasonal time scale. For example, Turgeon (1980)
resents an integrated reservoir-power system model that lever-
ges the equivalent reservoir method of Arvanitidis and Rosing
1970a) and dynamic programming to find the optimal reser-
oir discharges to minimize the cost of meeting power demand.
ereira and Pinto (1985) apply the equivalent reservoir method
o 37 reservoirs in the Brazilian system while also aggregat-
ng the regional thermal generating capacity into a single unit
nd using dynamic programming to find the optimal solution.
t has been shown that these aggregation methods can result in
imilar solutions to methods that account for each reservoir in-
ividually (Brandão, 2010; Mukhopadhyay et al., 2021); however,
quivalent reservoir models prevent reservoir specific constraints
rom being implemented, limits the ability to quantify water
ransfers and diversions, ignores travel time from one reservoir to
nother, and makes it difficult to incorporate forecasted inflow.
In studies where each reservoir in a cascade is fully resolved,

t is common for the thermal power system to be aggregated.
ambon et al. (2012) develop an integrated reservoir-power sys-
em model for the Brazilian system that models each reservoir
ndividually in the reservoir module, allowing for detailed, reser-
oir specific constraints to be implemented; however, the power
ystem module aggregates all hydro and thermal load within four
ubregions to improve computational efficiency of their deter-
inistic optimization model. However, as conventional thermal
enerators are replaced with variable renewable technologies
uch as wind and solar power, aggregated representations of
ower generation become less realistic as the resource quality is
ifferent in each region and the characteristics of the transmis-
ion system interconnecting these resources may play a bigger
ole in the decision-making process.

Baslis et al. (2009) propose a deterministic model for medium-
erm hydro-thermal scheduling that is applied to 29 thermal
8064
generators and 13 hydroelectric reservoirs in the Greek Power
system. The authors model each individual reservoir and thermal
plant; however, hydropower output is considered to be head
independent and only a function of release in order to facilitate a
linear model formulation. Additionally, the formulation in Baslis
et al. (2009) is reliant on binary variables, which may limit
the models applicability to very large systems due to extended
solution times associated with mixed integer programming meth-
ods. Yang et al. (2017) develop a stochastic scheduling model
for power systems that minimizes power generation costs while
accounting for flood risk within a reservoir network. Though the
authors account for individual reservoirs and thermal plants, their
power system model does not consider important constraints
such as ramping conditions and minimum operating require-
ments or variable renewable generators. Further, the focus on
flood protection can limit the formulations applicability during
drought conditions as there is little incentive to hold water,
though that is when optimal hydrothermal scheduling may be
most beneficial (O’Connell and Macknick, 2019).

Dynamic programming, specifically Stochastic Dynamic Pro-
gramming (SDP) (Dias et al., 2010; Brandi et al., 2015) and
Stochastic Dual Dynamic Programming (SDDP) (Pereira, 1989;
Pereira and Pinto, 1991), is a frequently used method for solving
hydrothermal scheduling problems (Rougé and Tilmant, 2016; De
Queiroz, 2016b). These methods can reliably provide solutions
while accounting for the stochasticity in future inflows, power
demand, and fuel prices. SDP is plagued by the curse of dimen-
sionality due to discretization of the state space, thus limiting the
temporal and spatial extents of problems SDP can solve. Though
SDDP avoids the discretization of state variables that lead to the
curse of dimensionality in SDP, SDDP is poorly suited to non-
convex problems and is not guaranteed to converge in a practical
amount of time (De Matos et al., 2015; Ávila et al., 2021). Further,
Rougé and Tilmant (2016) find that SDDP solutions can exhibit
large variations for very small variations in input data. These
variations are found to be especially prevalent when there are
multiple near-optimal solutions, which is likely to occur in power
and water system optimization due to large decision spaces.

3. COREGS methodology

To investigate the potential benefits of incorporating elec-
tric power system information in reservoir operation decisions,
the Co-Optimization of Reservoir and Electricity Generation Sys-
tems (COREGS) modeling framework is developed. COREGS in-
corporates the Generalized Reservoir Analysis using Probabilistic
Streamflow (GRAPS) model (Mukhopadhyay et al., 2021, and
https://github.com/lcford2/GRAPS) to represent reservoir
networks and the Tools for Energy Model Optimization and Anal-
ysis (Temoa) model (de Queiroz et al., 2019; Hunter et al., 2013)
to optimize electric power systems operations. Both models are
modified as below to facilitate co-optimization.

3.1. Reservoir system modeling–GRAPS

GRAPS is an open-source generalized multireservoir simulation
optimization model written in Fortran. It represents reservoir
networks as directed graphs with reservoirs, users, watersheds,
junctions, and sinks represented by nodes and water pathways as
edges. With GRAPS, all mass balance and hydropower variables
are resolved at a given time step for each reservoir. GRAPS
also handles various constraints including operational rules and
storage and release bounds for each reservoir. This allows for a
detailed and realistic representation of the reservoir cascade. For
the full modeling details of GRAPS, see (Mukhopadhyay et al.,
2021, and https://github.com/lcford2/GRAPS).

https://github.com/lcford2/GRAPS
https://github.com/lcford2/GRAPS
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To better represent seasonal reservoir operation patterns, the
RAPS formulation described in Xuan et al. (2020) is enhanced
o allow for time varying operational rules for each reservoir.
he new method for determining reservoir storage bounds is
resented in Eq. (1).

ax
(
LCr,t , Smin

r

)
≤ Sr,t ≤ min

(
UCr,t , Smax

r

)
(1)

Where Sr,t , LCr,t , and UCr,t are the end-of-time-step storage,
lower, and upper rule curves, respectively, for reservoir r and
ime step t. This ensures that the reservoir storages are always
ound by the tighter constraint between the physical storage
imits and the operational rules. In cases where the storage for
reservoir is greater than its upper bound, GRAPS increases the
elease to bring the storage down. If the reservoir is releasing
he maximum allowable amount and the storage is still above
he upper bound, the reservoir is forced to spill the difference
etween the simulated storage and the upper bound. When a
eservoir’s storage level is below the minimum allowable storage
or a given month, GRAPS attempts to mitigate this deficit by
educing the release for that reservoir and month. If the reservoir
s not releasing any water but still is violating the lower storage
ound, the deficit at that reservoir will be the difference between
he current storage and the lower storage bound. This is most
ikely to occur at reservoirs receiving only natural flow during
rier periods. Depending on the optimization technique used for
he reservoir network, the spill and deficit is handled slightly
ifferent with the overall goal of having zero spill and deficit
cross the network.

.2. Power systems modeling–Temoa

Temoa is an open source generalized energy system optimiza-
ion model (ESOM) written in Python. It was initially developed
y Hunter et al. (2013) and modified for seasonal power gener-
tion planning in de Queiroz et al. (2019) by disabling capacity
xpansion, remapping time indices so the finest resolution is
ourly, adding ramping up and down constraints, and incorporat-
ng startup costs. The seasonal planning model of de Queiroz et al.
2019) is modified here to facilitate its integration with GRAPS.
emoa minimizes the cost of meeting electricity demand by op-
imally dispatching generation units with respect to constraints
uch as thermal plant ramping and bounds on unit capacity
nd activity. The mathematical formulation of Temoa can be
escribed as a directed network graph with energy commodities
fuel, electricity, water, and others) moving between and being
ransformed by processes (thermal power plants, hydropower
lants, fuel refinement, and others).
Temoa traditionally represents time with three indices: time-

eriods (t), seasons (s), and times of day (d). Each time-period is
ubdivided into seasons and each season is subdivided into times
f day. Electricity demand (DEM) is specified for each time-period
nd a Demand Specific Distribution (DSD) is used to determine
he demand that must be met for each time of day within each
eason (dem) (Eq. (2)). The sum of the DSD must equal one to
nsure all the specified demand is met.

emt,s,d = DEMt × DSDs,d (2)

One limitation of this approach is that the DSD is the same
or all time-periods. This is not an issue if your time-periods
epresent long time intervals like a year, but for a seasonal op-
rational planning model, the time-periods represent months. In
his case, it is desirable to have different DSD’s for different time-
eriods because electricity demand profiles change from month

o month. To capture this monthly variation, the indexes of DSD
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re extended to include time-periods. Eq. (3) represents the use
f DSD for each time-period.

emt,s,d = DEMt × DSDt,s,d (3)

The objective function of Temoa is explicitly defined by
Eqs. (14)–(17) in Hunter et al. (2013); however, as this study
focused on seasonal operation of the power system, only the
variable costs are of interest and future costs are not discounted.
Therefore, Temoa’s objective function simplifies to the sum of
generator variable costs times the amount generated for each
generator and time slice.

Two of the co-optimization methods described rely on the
availability of dual variables (shadow prices) for hydropower con-
straints in Temoa. Dual variables are a measure of the marginal
effect of relaxing a constraint on the objective function and thus
can be used to estimate the value of additional hydropower
availability to a power system that has been optimized. Many
linear programming solvers such as the GNU Linear Programming
Kit (GLPK) (Makhorin, 2012), Gurobi (LLC Gurobi Optimization,
2020), and CPLEX (International Business Machines Corporation,
2019) provide dual variables for the optimal solution. For the
purpose of this work we use Gurobi Optimizer (LLC Gurobi Op-
timization, 2020) to solve the Temoa optimization models; how-
ever, any mathematical optimization solver that calculates and
provides dual variables for constraints can be used to solve the
optimization models.

3.3. GRAPS and Temoa modeling framework

COREGS expects a specific configuration of GRAPS and Temoa
to ensure that the exchange of information between them does
not cause inaccuracies. The most important characteristic is that
the lowest resolution time index in Temoa, time-periods (t), are
the same temporal resolution as the time-steps in GRAPS and that
each model have the same time horizon.

In this study, the reservoir network is modeled with a seasonal
(three-month) time horizon with monthly time-steps; therefore,
the time-periods in Temoa must be a set of three months. From
there, time in Temoa is further subdivided into daily and hourly
resolution where each month has thirty days, and each day has
twenty-four hours. Thus, electricity generation in Temoa is allo-
cated for every hour over a three-month window and is indexed
for every hour of every day of every month for every generation
technology.

With this configuration, total electricity demand must be spec-
ified at the monthly level. Temoa then disaggregates that monthly
demand into an hourly demand time series using the Demand
Specific Distribution (DSD). For each modeled hour, the genera-
tion activity (the sum of all the available generation) is required
to equal the demand for that hour. Activity for each generator is
bound at the hourly and monthly level to prevent unachievable
peak power and unreasonable monthly utilization.

GRAPS only uses one time-index, as a result all variables,
calculations, and constraints are with respect to a monthly time-
step. Because the reservoir network is modeled at the monthly
level, travel time for water released from one reservoir to reach
another reservoir is neglected. As described in Xuan et al. (2020),
if a finer time resolution is required, GRAPS provides the ability
to account for travel time between reservoirs by lagging return
flows.

3.4. Model formulations for the co-optimization of water and power
systems

Three co-optimization methods are considered with differing

levels of coupling between GRAPS and Temoa. In each method,
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ydropower generated from GRAPS for reservoir r and time-step
becomes the upper bound on hydropower activity in Temoa

or reservoir r and time-period t where it can be optimally dis-
atched along with other generation units with a mathematical
ptimization solver. This creates a one-way path for sharing in-
ormation from GRAPS with Temoa. Each co-optimization method
ptimizes the reservoir system and communicates with Temoa
ifferently. These techniques are discussed below in order of
ncreasing level of coupling between GRAPS and Temoa.

Briefly, the Maximize Hydropower method (MHP) maximizes
he total amount of hydropower generation from the reservoir
ystem using FSQP and then optimizes the energy system us-
ng that hydropower generation. Maximize Hydropower Benefits
MHB) takes this one step further by incorporating the spatio-
emporal benefit of hydropower generation to the power system
n the GRAPS objective function for optimizing the reservoir net-
ork using the FSQP. Iterative Co-Optimization of Reservoir and
ower Systems (ICORPS) iterates between GRAPS and Temoa
sing heuristics to increase hydropower generation where it is
ost beneficial to the power system.

aximize Hydropower (MHP)
Maximizing hydropower (MHP) attempts to reduce the cost

o meet power demand by generating the most hydropower
vailable within a season from the reservoir network. This is
he baseline implementation that the other two methods will be
ompared against and optimizes the reservoirs system separately
rom the power system. MHP optimizes hydropower production
n GRAPS with the Feasible Sequential Quadratic Programming
FSQP) solver (Lawrence and Tits, 2001) and then provides that
ydropower to Temoa to use as upper bounds on monthly hy-
ropower activity. As the objective function and all constraints
re either linear or quadratic and mostly smooth, FSQP is a rea-
onable solver for this problem. The decision variables for FSQP
re the discharge D for each reservoir r and time-step t. The
eservoir network objective function is described by Eq. (4) where
P is hydropower in megawatt hours (MWh/month). Eq. (5)
escribes how hydropower is calculated where η is the genera-
or/turbine efficiency, γ is the specific weight of water in pounds
er cubic foot (lb/ft3), βr,1, βr,2, and βr,3 are the fitted stage-
torage coefficients, TW is the tail water elevation in feet (ft), and
is the hydropower discharge in thousand acre feet per month

1000 ac-ft/month). The constant 0.0164 is included to resolve
nits between the left and right sides of Eq. (5).∑

r∈R

∑
t∈T

HPr,t (4)

Pr,t = (0.0164)ηrγ
((

βr,1S2r,t + βr,2Sr,t + βr,3
)
− TWr,t

)
Dr,t (5)

All the physical constraints on the reservoir network are han-
led directly by GRAPS. The only constraints FSQP is responsible
or meeting are minimum and maximum release bounds and
nsuring that there is no spill or deficit across the cascade. Due to
he spill and deficit constraints, there can be feasibility issues that
o not let FSQP proceed with the optimization. For example, it
ould be impossible to eliminate a deficit for a reservoir if its ini-
ial storage is below the desired operational rule and there is very
ittle inflow. These feasibility issues are addressed by relaxing the
torage constraints that are causing the infeasibility just enough
o achieve feasibility. Eq. (6) describes how the storage constraint
s relaxed when FSQP cannot eliminate the spill at reservoir r
uring time-step t while Eq. (7) does the same for occurrences
f unmitigable deficit.

r,t ≤ min
(
UCr,t , Smax

r

)
+ SPr,t + 1 (6)

r,t ≥ max
(
LCr,t , Smin

r

)
− DEFr,t − 1 (7)

This method assumes any additional hydropower from any

eservoir at any point in time is worth the same amount and is
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baseline comparison that provides the monthly maximum hy-
ropower for Temoa to utilize as needed. Due to the low marginal
ost of hydropower compared to thermal power generation, this
ssumption is reasonable for a baseline case. GRAPS still manages
he complexities of the reservoir cascade, but the only constraints
imiting hydropower are physical and operational constraints on
he reservoir network (i.e., there is no information from the
ower system being used to inform water allocation decisions).
hus, in this case, GRAPS is run independently from Temoa once
o maximize the monthly hydropower (Eq. (4)), which is then
tilized by Temoa to minimize the cost of power generation
onsidering all the generation units.

aximize Hydropower Benefits (MHB)
Maximizing Hydropower Benefits (MHB) is similar to MHP but

ith a different objective function and with GRAPS and Temoa
unning twice instead of once. To setup MHB, GRAPS simulates
he reservoir network given the initial releases provided by the
ser. The simulated hydropower is then passed to Temoa, which
s then optimized. The dual variables (shadow prices) (πr,t)on
the hydropower activity constraints are retrieved from Temoa
and their absolute values become the benefits for hydropower
generation in FSQP (Eq. (8)). The dual variable for each reservoir
in a given month can be obtained after the TEMOA optimization
model is solved as they represent the shadow prices associ-
ated with hydropower activity constraints (Bradley et al., 1977).
Gurobi, the mathematical engine used in this work, provides the
dual variables needed for COREGS.

max
∑

r∈R

∑
t∈T

(⏐⏐πr,t
⏐⏐HPr,t) (8)

In this instance, dual variables on hydropower generation can
be thought of as the value of water (Fernández-Blanco et al.,
2017) as they represent the expected objective improvement
that could be realized if a given reservoir is allowed to release
more water (generate more power) in a given month. While the
strict definition of a dual variable only allows for interpretation
given a specific state of the decision variables, this method still
provides information to FSQP on when and where water is the
most valuable to the power system. Though this is a subtle
improvement over MHP on the co-optimization between the two
systems, it has potential to have a large impact on the solutions
provided. The utility of this method is critical as it explicitly con-
siders the temporal variability in power demand in maximizing
hydropower generation. Since generation units are dispatched in
order of increasing marginal cost, it is cost effective to hold water
in low demand months to generate more hydropower in high
demand months. Release and storage constraints on the reservoir
network that limit this style of operation, but that is the utility
of using a fully specified multireservoir model such as GRAPS to
model the reservoir network. With the MHB method, the flow of
information between GRAPS and Temoa is improved by using the
initial optimal state of the electricity system to inform decisions
in the reservoir system. However, the sharing of information is
static and does not account for the dynamically changing value
of hydropower to the power system as more hydropower is
available.

Iterative Co-Optimization of Reservoir and Power Systems (ICORPS)
To address the issue of static hydropower benefits in the MHB

method, the Iterative Co-Optimization of Reservoir and Power
System (ICORPS) method is developed. ICORPS builds on the logic
defined for the MHB method but iterates between GRAPS and
Temoa until a solution is found while implementing heuristic
rules for improving hydropower rather than relying on FSQP.
The first iteration (iteration 0) in ICORPS begins the same as
in MHB: GRAPS is simulated with an initial solution and then

ICORPS obtains the release decisions and hydropower output. The
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Fig. 1. High-level flowchart for Iterative Co-Optimization of Reservoir and Electric Power Systems (ICORPS) with each parallelogram, rectangle, and diamond
representing data, model processes, and key decisions, respectively. Blue (orange) boxes indicate processes that only happen in the MHB (MHP) method. Solid
orange lines are transitions between the two processes that occur twice for MHP. (For interpretation of the references to color in this figure legend, the reader is
referred to the Iterative Co-Optimization of Reservior and Power Systems (ICORPS) section.)
d

hydropower is provided to Temoa, which is then optimized, then
ICORPS obtains the dual variables associated with the maximum
hydropower activity constraints. At this point ICORPS and MHB
diverge as ICORPS now uses the releases from GRAPS and the
dual variables from Temoa to increase release from the reser-
voirs where it is most beneficial. These new releases are passed
back to GRAPS to simulate the reservoir network again and the
process repeats. ICORPS continues to iterate between GRAPS and
Temoa, constantly improving the releases based on changes in the
value of hydropower to the power system. The iterative use of
these dual variables is described via the release update procedure
described below and in Fig. 1. Fig. 1 also depicts the MHB and
MHP processes in blue and orange, respectively. Any box that is
not outlined in black indicates a step that is only taken by the
algorithm indicated by its color. Additionally, as the MHP method
will repeat two steps (hydropower bound setting in Temoa and
Temoa optimization), the transitions between those two steps are
indicated in a solid orange line rather than a dashed line.

Before using the dual variables to update the release for
ydropower, ICORPS checks and attempts to mitigate spill and
eficit from the reservoir network. Contrary to the MHP and MHB
ethods, ICORPS does not use FSQP to eliminate spill and deficit

rom the network. As GRAPS ensures that spill or deficit only
ccurs if there is no flexibility in the mass-balance variables at
single reservoir (refer to Section 2.1), ICORPS alleviates the spill
nd deficit by modifying the release of upstream reservoirs. Spill
nd deficit mitigation begins by calculating the sum of the con-
rolled release into the reservoir ( i ) that is violating (Eq. (9)),
URr,t
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where i is the iteration number and Ur is the set of all reservoirs
directly upstream of reservoir r. This upstream inflow is used to
etermine modifying fractions (F i

u,t ) for each reservoir upstream
of reservoir r using Eq. (10). These fractions are then directly used
to decrease the release for reservoirs immediately upstream of
a spilling reservoir r via Equation (11). For a spilling reservoir,
the modifying fractions represent the amount of controlled inflow
into reservoir r coming from reservoir u. This results in reducing
release from reservoirs that contribute the most to a spilling
reservoir.

URi
r,t =

∑
u∈Ur

Di
u,t (9)

F i
u,t =

⎧⎪⎪⎨⎪⎪⎩
1 if Ur = 1

Di
u,t

URir,t
∀ u ∈ Ur if SP i

r,t > 0(
1

|Ur |−1

)
URir,t−Di

u,t
URir,t

∀u ∈ Ur if DEF i
r,t > 0

(10)

Di
u,t =

{
Di
u,t − SP i

r,t × F i
u,t

Di
u,t + DEF i

r,t × F i
u,t

if
if

SP i
r,t > 0

DEF i
r,t > 0 (11)

For a reservoir in deficit, release should be increased at reser-
voirs that are releasing the least. To accomplish this, discharge,
Di
u,t , from an upstream reservoir u is subtracted from the total

controlled inflow, URi
r,t , into reservoir r, which is then divided by

the total controlled inflow into reservoir r to get a fraction, F i
u,t ,

that represents the amount of inflow into reservoir r if reservoir
u released nothing. These intermediate fractions will increase as
the amount of release from reservoir u decreases. Finally, to arrive
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t a set of modifying fractions whose sum is equal to 1, so all
he deficit is mitigated, the intermediate fractions are divided by
heir sum. In Eq. (10), the sum of intermediate fractions has been
lgebraically simplified to the number of upstream reservoirs
|Ur |) minus 1.

One limiting case in distributing the spill and deficit based
on Eqs. (9)–(11) is when a reservoir has no upstream reservoir
(i.e. the only inflow it receives is natural). If there are no upstream
reservoirs, spill or deficit cannot be eliminated unless the opera-
tional rules are modified. Rather than modifying the rules, ICORPS
continues with the iteration with the understanding that there
will be violations of the operational rules in the final solution.
Using this method, nearly all spill and deficit is mitigated except
for a few cases. It could be argued that this procedure should be
recursive and move up the cascade until the violating reservoir is
not spilling or in deficit; however, during testing, all but a single
violation came from situations where there is little operation
flexibility to mitigate spill and deficit therefore it was determined
that recursion was not required.

If reservoir r is not spilling in time-step t, the release is
increased using Eq. (12), which ensures that the reservoirs and
time-steps that have the most benefit to the power system in-
crease their water allocation for hydropower the most. The case
when the current release is zero but there is some benefit for
hydropower is handled by setting the release equal to a fraction
(λ) of the maximum allowable release. The default value for λ is
5% but can be tuned to increase convergence speed (increasing)
or find more exact solutions (decreasing). When π i

r,t is zero,
indicating that hydropower reservoir r and time-step t is being
onstrained by something else in the power system, the release
s not changed.

i+1
r,t =

⎧⎨⎩ Di
r,t ×

(
1 +

π i
r,t

α×π i
max

)
if Di

r,t > 0

λ × Dr,max if Di
r,t = 0 and

⏐⏐π i
r,t

⏐⏐ > 0

(12)

Eq. (12) also has a tuning parameter, α, that controls how
arge of an increase in release is allowed and π i

max is the dual
ariable with the largest magnitude for iteration i. By default,
= 2, limiting the maximum step to a 50% increase in release for

he reservoir and time-step that has the maximum dual variable.
ncreasing α results in smaller steps, which could produce a
etter solution but would take longer to reach that solution.
educing α decreases the solution time at the increased risk of
vershooting the optimal decision variable values. The final step
efore passing the releases back to GRAPS is to ensure that the
pdated releases are not violating their release bounds by setting
he releases equal to the bound they are violating. Finally, the
pdated release values are passed back to GRAPS for simulation
nd the process starts over again.
This process is repeated until ICORPS has converged to a so-

ution. Convergence occurs when the percent change in Temoa’s
bjective function between iterations lies between zero and a
ser specified tolerance (ε) a user specified number of times (K ).
his criterion is described in Eqs. (13) to (15) where N is the
otal number of iterations performed. The default values for K
nd ε are 5 and 0.01%, respectively. Similar to α, relaxing the
alues of these parameters can result in a shorter solution time
nd tightening them can result in a better solution. Requiring the
ercent change to be between zero and ε multiple times increases
he confidence that the reported solution is near optimal.

ICORPS converges when
N∑

γ (i) = K (13)

i=0

8068
Γ (i) =

{
1 if 0 < %∆Obji < ε

0 if otherwise (14)

%∆Obji =
Obji−1 − Obji

Obji−1
× 100% (15)

After the convergence criteria has been met, spill and deficit
are checked similarly to the description above (Eqs. (13)–(15)).
The difference is that when spill or deficit has been addressed at
a reservoir, GRAPS is then ran again with the new releases rather
than addressing spill at all reservoirs and then running GRAPS.
This ensures that changes to the decision variables are accounted
for when the next violating reservoir is addressed. This does
not add significant time to the total run-time of ICORPS because
GRAPS is just being simulated. After spill and deficit has been
mitigated, and thereby GRAPS has been simulated with the op-
timal releases, Temoa is solved once more to provide the optimal
solution for the electric power system generation scheduling.

ICORPS provides a solution to the static benefits that may hin-
der the MHB method, but it trades a proven mathematical solver
like FSQP for a heuristic-based optimization-simulation approach
over the reservoir network. It is technically feasible to adapt
ICORPS to iteratively optimize Eq. (15) with FSQP or other solvers
and then communicate with Temoa, effectively combining MHB
and ICORPS; however, due to the long solution times required
by FSQP this becomes impractical since it must be iteratively
called. The MHB method and ICORPS are compared against the
MHP method to analyze the potential benefits of incorporating
power system benefits into reservoir releases for improving their
operations during wetter and drier conditions. In addition to
operational metrics such as hydropower generated, change in
reservoir storage, and the cost to meet power demand, the ratio
of the change in Temoa’s objective function to the change in
total system release between the optimal and initial solutions
(Eq. (16)) is also considered. In Eq. (16), ObjN and Obj1 are the
optimal value of Temoa’s objective function for the final iteration
and the initial iteration, respectively.

δ =
ObjN − Obj1∑

r∈R
∑

t∈T D
N
r,t −

∑
r∈R

∑
t∈T D

1
r,t

(16)

his δ is interpreted as the water allocation efficiency and pro-
vides insight into how each method generates optimal solutions.
We consider this as an additional metric apart from the differ-
ences in the releases, spills from the reservoirs and operating
costs from different optimal solutions.

4. COREGS Application to the Tennessee Valley Authority
system

To evaluate the value of co-optimization of water and power
systems, the COREGS framework is applied to the reservoir and
power systems owned and operated by the Tennessee Valley
Authority (TVA). TVA operates all the major dams on the Ten-
nessee River while also supplying electricity to over nine million
people (US Senate, 2015). COREGS is applied to winter (December,
January, and February) and summer (July, August, and September)
seasons starting in December of 2003 to September of 2015 as
well as a rolling horizon analysis for 2004, 2007 and 2010. TVA’s
power and water systems are modeled as they were configured in
2008 (US Energy Information Administration, 2004, 2020a) (Fig. 2,
Table 1).

4.1. TVA electricity system configuration

The configuration of the generation network is static through
time, meaning that the decommissioning, construction, or mod-
ification of generation units is not considered in this study. TVA
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Fig. 2. Tennessee Valley Authority (TVA) generation units and control area (US Energy Information Administration, 2004; US Department of Homeland Security,
017) with the Tennessee River Basin (US Geological Survey, 1994). Reservoirs have been grouped into three regions, North East (NE), South East (SE), and main
tem (MAIN). NE reservoirs include Watts Bar and all reservoir upstream of it. SE reservoir include reservoirs Ocoee 1 and Apalachia and all reservoirs upstream of
hem. MAIN reservoirs include all reservoirs after the confluence of the NE and SE stems as well as Tims Ford.
Table 1
Tennessee Valley Authority (TVA) generation portfolio in 2008 (US Energy
Information Administration, 2004).
Generator type Number of

plants
Nameplate
capacity [MW]

Nuclear 3 7200
Natural gas combustion turbine 9 6295
Natural gas combined cycle 3 2605
Coal 11 17407
Conventional hydropower 27 3627
Pumped storage hydropower 1 1530

Note: Though this table shows aggregated capacity for different generation types,
Temoa resolves generation for each individual plant.

delivers power to seven states: Alabama, Georgia, Kentucky, Mis-
sissippi, North Carolina, Tennessee, and Virginia. Electricity sales
from Form EIA-861M (US Energy Information Administration,
2020a) and plant level net-generation from Schedules 3 A and 5 A
of Form EIA-923 (US Energy Information Administration, 2020b)
(formerly 906 and 920) for 2003 to 2015 are used to develop
a monthly time series of demand for each state. Additionally,
variable costs for thermal generators are developed using fuel
receipts from Schedule 2 of Form EIA-923 (US Energy Information
Administration, 2020b).

4.2. TVA reservoir system configuration

The reservoir network is configured based on information
eceived directly from TVA (Tennessee Valley Authority, 2012).
his information includes physical descriptions of each dam and
eservoir such as storage and discharge bounds and information
eeded to fit storage-area curves. Daily time series of storage,
8069
headwater, tailwater, discharge through turbines, and total dis-
charge were also provided by TVA. Net uncontrolled inflow for
each reservoir is calculated by accounting for the controlled re-
lease of upstream reservoirs in the mass balance and solving for
natural inflow and not explicitly calculating evaporation. This is
described by Eq. (17), where I is the net uncontrolled inflow, O
is the total outflow, S is the storage, and UR is the release from
upstream reservoirs. This process is done for each reservoir r and
data point t in the time series.

Ir,t = Sr,t + Sr,t−1 − URr,t + Or,t (17)

The storage-area curves are not fit because the model is forced
with net inflow, which accounts for evaporation. GRAPS can cal-
culate evaporation volume given the coefficients for a storage-
area curve and evaporation depths, but because the inflow time
series is calculated from other mass balance variables, it does not
need to be calculated here.

The upper and lower rule curves supplied to GRAPS are de-
rived from the observed storage series provided by TVA. Though
TVA provided operational rules for each reservoir, they only de-
fine guidelines for operation, not upper and lower bounds. Addi-
tionally, when those rules are compared with the observed data
it is evident that it is common for the reservoirs to store water
outside of those rules for flood control purposes. Rather than ad-
hering strictly to the operational rules provided, quantiles on the
monthly storage for each reservoir are used to define minimum
and maximum storage bounds for simulation. The lower curve is
defined as the 10th percentile of storage and the upper curve is
defined as the 90th percentile of storage for each month. This
results in operational storage bounds for every reservoir that is
indexed by the month of the year but is constant throughout the
years. Though there is storage data from as early as the 1940’s
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Fig. 3. Total seasonal hydropower generation and the cost to meet the seasonal power demand for each scenario modeled. Winter seasons start with December,
January, February of 2003 and summer seasons start with July, August, September of 2004.
v
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for some reservoirs, the period used to generate the rule curves is
limited to 1975 to 2015. The operation of reservoirs changes over
time as other reservoirs are built or new constraints are imposed
and limiting the span of data used to define the operation ensures
that the rules are representative of current operation.

4.3. Co-optimization scenario definitions

To evaluate the three co-optimization methods described
bove, 24 scenarios are developed that are defined by the season
winter or summer) and year in which they occur. Every winter
nd summer from December of 2003 to September of 2015 is
odeled as separate scenarios with different power demand,
atural inflow, and initial reservoir storage. Each three-month
cenario is provided the observations for these three variables,
nd they vary for every month throughout the modeled period.
he initial storage for every reservoir is defined as the storage
t midnight of the last day of the preceding month (e.g., scenar-
os that start in December (winter scenarios) would start with
he observed reservoir storage at midnight on November 30th).
dditionally, the rule curves, demand specific distribution, and
enerator capacity vary between summer and winter scenarios
ut are constant from year to year.

. Results

.1. Performance comparison of co-optimizations methods

Each co-optimization method (MHP, MHB, and ICORPS) is
pplied to the scenarios defined in Section 4.3. We compare the
erformance of these methods for each scenario using two met-
ics: total hydropower generated from the system and the cost to
eet the power demand. For a given scenario, each method be-
ins with the same initial reservoir storages and is driven with the
ame monthly inflow and power demand; therefore, differences
n hydropower generation and objective function values can be
ttributed to differences in the optimization method applied.
ig. 3 presents these values for each scenario in chronological
rder, separated for each season.
With respect to total hydropower generation, MHP provides

he highest average seasonal generation compared to the other
wo methods in 16 of the 24 scenarios. MHB hydropower gen-
ration is similar to MHP for summer scenarios but generally
8070
trails behind in winter scenarios. Hydropower generation peaks
in the winter for TVA as more water is released to maintain
available flood storage. This seasonal pattern results in additional
hydropower being worth less in the winter versus the summer,
which MHB then accounts for while MHP cannot. For every sce-
nario ICORPS generates less hydropower than each of the other
two methods. As ICORPS is the only method that continuously
exchanges information between GRAPS and Temoa this could
indicate that generation from some reservoirs becomes less valu-
able as more hydropower is generated, leading to Temoa to stop
requesting additional availability.

Further supporting this is the minimal differences in the cost
to meet power demand across all scenarios. On average, MHP
meets power demand at 249.8 million dollars per season where
MHB and ICORPS average 250.7 million dollars per season and
252.7 million dollars per season, respectively. ICORPS solutions
cost as much or more than MHP solutions in all scenarios and as
much or more than MHB solutions in all but 5 winter scenarios
and 2 summer scenarios. MHB meets power demand at less cost
than MHP in 2 winter and 2 summer scenarios. Overall, though
there are distinct differences in seasonal hydropower from each
method, the objective function differences are minimal, indicat-
ing that MHB and MHP may be generating more hydropower than
is necessary. This is primarily due to the ramping constraints and
minimum operating requirements of other generation types that
limit hydropower allocation to its fullest potential. We provide
additional details regarding this by considering a wet season and
dry season and analyze how ICORPS allocates power generation.

5.2. Evaluation of ICORPS solution pathway

Because ICORPS is a new heuristic algorithm, it is important
to evaluate its performance and evolution. A series of evaluation
scenarios (July, August, September of 2004 and 2007; December,
January, February of 2004–05 and 2007–08) are chosen to test
how the algorithm performs under different seasons with wet
and dry inflow conditions. In 2004, a wet year, TVA reservoirs
received approximately 60 million acre-feet of natural inflow
(∼20% exceedance probability) while in 2007, a dry year, reser-
oirs only received approximately 20 million acre-feet (∼95%
xceedance probability). To evaluate ICORPS for these scenarios,
he relationships of hydropower (Fig. 4a) and storage (Fig. 4b)
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Fig. 4. Regional and monthly hydropower (a) and storage (b) as a function of the objective function for the winters of 2003–04 and 2007–08 and the summers of
2004 and 2007. M1, M2, and M3 refer to the first, second, and third month of the seasonal scenario, respectively, for each plot (e.g., M1 is July for and M2 is August
for summer scenarios).
versus Temoa’s objective function (the cost to meet power de-
mand) are analyzed. Hydropower and storage are summed over
all the reservoirs in each region. The x-axis for each of the plots is
eversed so the objective function is decreasing from left to right.
his provides a sense for the evolution of ICORPS because the
bjective function should decrease with each successive iteration.
Main stem reservoirs (MAIN) consistently generate more hy-

ropower than the NE and SE reservoirs. In 2007, the change in
bjective function is much larger for both seasons than in 2004
ndicating that there could possibly be more room for improve-
ent in drier years than in wetter years. Additionally, the reduced
8071
inflow in 2007 is apparent in the reduced hydropower generation
for NE and SE reservoirs. Due to additional controlled release
from upstream reservoirs, main stem reservoir storages are less
affected by the reduced inflow during dry years as evidenced by
the lack of trend between main stem storages and the cost to
meet power demand.

The relationships between monthly hydropower and the ob-
jective function provide insights into how the value of hydropower
evolves. For example, hydropower from main stem reservoirs in
the summer of 2007 initially seems to be equally valuable across
all months as they increase at similar rates. As the objective
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Fig. 5. ICORPS and MHB percent difference with MHP for below normal, normal, and above normal inflow scenarios for winter and summer seasons.
function nears the optimal value (the right most points on the
plot), September hydropower seems to become more valuable
as it increases dramatically faster than the other two months.
This could be because additional hydropower for a specific month
becomes less valuable (i.e., flattening of generation curve due
to a combination of thermal/nuclear unit minimum loads, hy-
dropower generator capacity, and reservoir operational rules) as
more hydropower is generated.

The initial iterations produce large improvements in the ob-
ective function (3.7–7.3%), which is expected since the system
hould have the most flexibility initially as hydropower genera-
ion have very few binding constraints. As the systems evolve, the
eductions in the objective function become smaller, even though
ore hydropower is generated. This suggests that for a more
onservative operation, ICORPS could be stopped sooner than the
efault stopping criterion. Due to the specified operating rules,
he storages across each region change marginally compared to
ydropower production. This is primarily because the storage
apacity of a reservoir is typically much larger than the maximum
llowable release.

.3. Benefits of incorporating power system information in reservoir
ecisions

As previously mentioned, one of the main research objectives
f this study is elucidating the possible benefits of dynamic shar-
ng of information between reservoir and power systems. This
s done by treating MHP, where the only information shared is
ydropower availability, as a baseline for comparison with MHB
static hydropower benefits) and ICORPS (dynamic hydropower
enefits). Analyzing the solution space produced by each method
equires consideration of several variables including the cost to
eet power demand, total system release, spill, and deficit. Over
2 summer scenarios (July, August, September from 2004 to
015), the average cost to meet power demand was 0.43% greater
or MHB when compared to MHP. Similarly, ICORPS met power
emand with an average cost that was 1.3% greater than MHP. For
2 winter scenarios (December, January, February from 2003 to
014), MHB and ICORPS provided solutions that were 0.35% and
.97% more expensive on average, respectively, than MHP. Fig. 5
reaks down the percent difference for ICORPS and MHB com-
ared with MHP for the four below-normal inflow, four normal
nflow, and four above-normal inflow scenarios in each season.

ICORPS and MHB meet power demand at a higher cost rela-
ive to MHP regardless of the inflow scenario, between the two,

HB meets power demand at the lower cost. As the scenarios
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Table 2
Average objective function-release relationships (δ [$/1000 acre-
ft/season]) for each season and optimization method.
Season ICORPS MHB MHP

Summer −925.9 −663.4 −658.4
Winter −848.9 −596.5 −527.3

receive more inflow, ICORPS solutions improve but there is no
distinct trend for MHB solutions. TVA operates with less storage
in the winter months for flood control purposes, leading to a
winter peak in hydropower generation and observed operations.
An example of this is the winter of 2004–05 (Fig. 4) where
there is very little change in hydropower production over ICORPS
evolution. This operational pattern may increase the benefit of
power system information as water allocation decisions can be
made more efficiently, even if the total generation for the season
does not change significantly.

While providing the best objective function value is a crucial
component in evaluating an optimization framework, it is also
important to understand the operational changes that reduce
the objective function. Though simply maximizing hydropower
seems to result in slightly lower costs for the power system, it
is likely that including power system information in reservoir
operations will result in more efficient water usage. Considering
the metric defined in Eq. (16), δ, the efficiency of water allocation
can be compared across each method.

The term δ is calculated for each scenario and then averaged
over each season and reported in Table 2. The more negative δ is,
the more the cost is reduced per unit increase in release (i.e., a
more efficient use of water). A δ value of −1 would indicate that
the objective function is reduced by $1 for every 1000 acre-feet
increase in release over a season. In the summer and winter there
is a clear relationship between the level of integration between
Temoa and GRAPS and δ. ICORPS allocates water more efficiently
than MHB and MHB is more efficient than MHP in both seasons,
suggesting that integrating power system information into water
allocation decisions increases the water use efficiency. ICORPS
is more than 35% more efficient than both other methods in
the summer and more than 42% more efficient in the winter.
While ICORPS and MHB tend to provide solutions that are more
expensive than MHP, they both reduce the objective function
more per unit water released indicating a more efficient water
allocation.

While the δ values above provide a sense of the economic

efficiency of the water allocation provided by each optimization
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Table 3
Average seasonal spill and deficit [1000 acre-ft/season] and the number of spill
occurrences for each season and solution method [spill (occurrences)]. A single
reservoir spilling in a single month is considered an ‘‘occurrence’’.

Season ICORPS MHB MHP

Spill Winter 156.0 (35) 7963 (303) 11970 (367)
Summer 106.5 (35) 8709 (358) 12050 (346)

Deficit Winter 1.92 (1) 156.3 (5) 348.2 (6)
Summer 92.8 (4) 92.8 (4) 92.8 (4)

method, the operational efficiency of multireservoir networks can
also be understood by examining the spill and deficit the system
experiences. In COREGS, every method initially constrains spill
and deficit to be zero for all reservoirs and time steps. However,
cases can arise where spill and deficit cannot be mitigated, and
these situations are summarized in Table 3. In the summer, all
deficit occurs in the first modeled month and each method pro-
vides the exact same amount of deficit, indicating there is nothing
that can be done short of changing the rule curves to eliminate
that deficit. In the winter, deficit occurs 7 times in the first
month and 5 times in the second month across all methods and
scenarios. Only two reservoirs are in deficit more than once for
any method: Fort Patrick is in deficit in for the first two months
of the winter of 2014 in both MHB and MHP and Melton Hill is
in deficit in December of 2005 and 2007 for MHB and MHP as
well as January of 2008 (in the winter of 2007 scenario) for MHP.
Four reservoirs (Douglas, Nottely, South Holston, and Tims Ford)
experience deficit of the exact same amount across each method
in the summer and Blue Ridge is the only reservoir that is the
same across all methods in the winter. All these reservoirs receive
all, or nearly all, natural inflow; therefore, if they are below the
rule curve it may not be possible to decrease release enough to
mitigate that deficit. Additionally, all deficit occurs during the
driest 4 years modeled, further indicating that, short of modifying
the reservoir rule curves, there is little operational capacity to
bring the storage up enough to not have any deficit. With ICORPS,
there is very little winter deficit in contrast to MHB and MHP,
which have more winter deficit than summer deficit; therefore,
MHB and MHP are leveraging deficit that could be mitigated to
provide more hydropower.

ICORPS consistently produces solutions with much less spill
han the other two methods (Table 3). As mentioned in Sec-
ion 3.4, when FSQP cannot find a feasible solution to start the
ptimization process, the constraints that are causing infeasibility
re relaxed just enough to provide a feasible solution and FSQP is
an again to achieve solutions that are comparable to ICORPS. For
xample, if a reservoir is spilling by 200,000 acre-ft/month, the
pper bound on spill for that reservoir and time step becomes
lightly greater than 200,000 acre-ft/month. This contrasts with
CORPS, which constantly tries to mitigate the spill but will not
top searching for a solution because there is spill in the system.
ue to the different handling of infeasible solutions, ICORPS is
echnically more constrained than MHB or MHP for scenarios
hat have feasibility issues. Given that ICORPS solutions spill less
han 2% of the spill from MHB or MHP and the cost to meet
ower demand is only around 1% greater, it seems both systems
an be operated more efficiently when information is shared
etween them. Additionally, since MHB and MHP handle spill and
eficit in the exact same manner, the reduction in spill from MHB
ompared to MHP is indicative of this increase in efficiency when
ower system information is integrated into reservoir system
ecisions.
8073
5.4. Examining benefits of dynamic information sharing

In addition to studying the benefits of sharing information
between reservoir and power systems, understanding the dif-
ferences between static and dynamic hydropower benefits is
also of interest. Comparing the total release (including spill) and
objective function differences between ICORPS and MHB can pro-
vide insight into how the solutions from these two methods
differ. Additionally, incorporating the amount of inflow the reser-
voirs receive into the analysis provides a sense of how each
method performs given certain climatic conditions. Fig. 6 depicts
these metrics in terms of percentage differences. The stream flow
anomaly for each point is calculated based on the average natural
stream flow into the reservoirs for the months in the respective
seasons, allowing similar colors to represent similar streamflow
conditions regardless of the season.

ICORPS always releases between 5% and 33% less water than
MHB with the largest differences occurring during winter scenar-
ios. Six of the seven ICORPS solutions that have a lower objective
function value than MHB (those that are below the horizon-
tal line at 0 in Fig. 6) receive above-normal inflow with an
average streamflow anomaly of 3.0 million acre-ft per season,
while most solutions where MHB outperforms ICORPS are below-
normal inflow season with an average streamflow anomaly of
−1.9 million acre-ft per season. This suggests that during periods
of high inflow, up to date information regarding when and where
hydropower should be generated could reduce operational costs
of power systems. The large difference in total system release
along with the smaller differences in optimal objective function
values speak again to the more efficient use of water in ICORPS
solutions compared to MHB solutions. The largest deviation in
objective function and release differences occurs for the winter
of 2010 where the solution from ICORPS is 2.7% more expensive
and releases 32.9% less water than MHB. The winter of 2010
also receives 7.3 million acre-feet less inflow than an average
winter. This higher cost from ICORPS suggest that FSQP may
provide solutions with reduced power system operating costs,
compared to ICORPS, during periods of extremely low inflow.
However, ICORPS conserves much more water during a severe
drought but provides a solution that is costlier than MHB. There
are many circumstances where operators will emphasize water
conservation and efficient use over reducing power system costs,
and long-term droughts highlight these decisions. Under these
conditions, our analysis shows relying on one metric is not the
right approach, instead a comprehensive assessment on down-
stream ecological and water supply impacts during droughts also
need to be considered.

5.5. Rolling horizon simulations

Though there can be significant operational improvements due
to seasonal water and power system planning, optimizing over a
seasonal window could lead to the over allocation of water and
decrease the reliability and flexibility of the reservoir network
in the following months. The lower rule curve constraints in
GRAPS help ensure decisions made in one season are not substan-
tially impacting subsequent seasons. For operational models, a
common method for including future consequences for decisions
made in the current time step is a rolling horizon analysis. To
study how COREGS performs over an extended period, in this case
a full calendar year, rolling horizon functionality is included in the
modeling framework.

The rolling horizon in COREGS considers three-month win-
dows where the decisions made in the first month of optimization
are carried forward to the next three-month window. For exam-
ple, for a rolling horizon analysis of 2004, the first scenario would
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Fig. 6. Percentage difference between the operational cost of ICORPS and MHB and the corresponding percentage difference in system releases. Shading indicates
seasonal streamflow variability expressed as anomalies compared to the 25-year seasonal means. Values from MHB solutions are subtracted from ICORPS solutions
therefore negative percent differences along either axis indicate MHB values are greater than ICORPS values.
Fig. 7. Rolling horizon hydropower and storage results for 2004 (wet), 2007 (dry), and 2010 (normal). Dotted lines represent observed generation and storage levels.
ydropower and storage are summed over the three regions plotted here (Main, NE, and SE).
e January, February, and March of 2004. Water allocation and
nergy dispatch decisions made in January of that scenario are
ecorded and the storage at the end of January becomes the initial
torage for the next scenario, which would be February, March,
nd April of 2004. This is repeated for every month of the year
ith the last scenario being December of 2004 and January and
ebruary of 2005. Thus, any success/error from ICORPS decisions
i.e., optimal solutions) in each month is carried forward to the
ubsequent three months. A rolling horizon approach such as this
imulates how COREGS can be used for seasonal planning and
peration of water and power systems.
We consider three representative years for the rolling horizon

nalysis with ICORPS: 2004 (above-normal streamflow), 2007
8074
(below-normal streamflow), and 2010 (normal streamflow). The
resulting hydropower and storage are shown in Fig. 7 along
with the observed hydropower and storage. The rolling horizon
analysis is not performed with MHB or MHP as the focus of this
study is towards the benefits of continuous interaction between
water and power systems. Hydropower generation is consistently
greater than or equal to observed generation, indicating that
decisions made by ICORPS do not reduce hydropower availability
as compared to observed generation. An additional benefit of
the rolling horizon approach can be seen in the hydropower
generation for 2007. The year 2007 is a severe drought, one
of the worst droughts over the Southeast US, which decreases
the availability of hydropower over the entire year. The dip in
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Table 4
Regional and monthly hydropower differences between the rolling analysis and the single season analysis for October,
November, and December of 2004, 2007, and 2010. All values reported in gigawatt-hours.
Year Main NE SE Oct. Nov. Dec. Total

2004 −436 −258.9 −13.8 −124.5 −279.9 −304.3 −708.8
2007 −813.7 19.4 38.7 89.7 −180.1 −665.3 −755.7
2010 −249.3 −284.5 48.2 −69.2 −161.0 −255.5 −485.6
hydropower generation from February to May suggests that the
rolling horizon captures the effects of limited water availability
and holds water for future months when the power demand, and
thus the value of hydropower, is higher. This effect can also be
seen for April of 2004 as April is typically a month of low power
demand due to moderate temperatures in TVA’s control area.

The storage plots indicate that there is very little storage
radeoff to achieve the increase in hydropower generation. It is
ommon for storage in the Main stem reservoirs to be higher than
he observations, though still not in the flood control pool. This
s the impact that the increase in upstream release has on the
ownstream reservoirs. Northeast reservoirs tend to exhibit a de-
rease in total storage, which is expected because they have more
eservoirs receiving only natural inflow. Southeast reservoirs op-
rate near their observed storage levels. Because these reservoirs
re smaller than other reservoirs in the system, they tend to have
ighter rule curves and less flexibility, which results in the limited
eviations from observations seen. Across these three years, the
verage final storage is 9.3% greater than observed for the Main
tem and 12.9% and 8.0% less than observed for the NE and SE
tem, respectively. The final total system storage from ICORPS
s 0.1%, 2.9%, and 1.7% less than the observed storage for 2004,
007, and 2010, respectively. The total system storage is not
ery different from observed for any of the years but where that
torage is in the system can alter the risk associated with different
limatic events. Main stem storage increases may be concerning
ecause they seem to indicate an increase in flood risk, but the
ndividual reservoirs do not store water in the flood control pool
o the increase in flood risk is not substantial. Reductions in
pstream storages could increase the risk of water shortages
uring droughts, though the reservoirs are still maintained within
heir normal operating limits.

Though Fig. 7 shows that optimal hydropower generation
an meet or exceed observed generation given a rolling hori-
on, it is unclear if decisions made throughout the year reduce
ydropower availability at the end of the year. This can be under-
tood by comparing the optimal solutions from scenarios where
he observed initial storage is provided (OBS) and where the
nitial storage is set as the final storage from a rolling horizon
nalysis (ROH). Performing this analysis on the last three months
f the calendar year (October, November, and December) can help
etermine the impact of all the decisions made prior to October
n the decisions that are made at the end of the year. For 2004,
007, and 2010 the hydropower differences between ROH scenar-
os and OBS scenarios are reported in Table 4 in gigawatt-hours.
he total column is representative of both sections of results and
egative values indicate instances when the ROH scenario using
CORPS generated less hydropower than the corresponding OBS
cenario.
All ROH scenarios considered generate less total hydropower

han their corresponding scenario seeded with observed storages.
007 exhibits the largest difference between ROH and OBS sce-
arios and this can be attributed to the below-normal inflow
eceived during that year. For 2004 and 2010, most of the dif-
erence between ROH and OBS solutions is a result in differences
n generation from NE reservoirs. This coincides with ICORPS
educing the storage in NE reservoirs more than other regions,

hus limiting their ability to generate hydropower at the end
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of the year. This is further confirmed by the similar generation
amounts from ROH and OBS in the NE reservoirs in 2007 as the
initial storage in that region is nearly identical (Fig. 7).

Main stem reservoirs generating less in ROH scenarios than
OBS scenarios, as occurs in every year, is unexpected as they
should benefit from increased storages due to increased con-
trolled flow from upstream reservoirs. This could be due to
ROH scenarios considering the future impacts of releasing water
whereas the OBS scenarios only consider the impacts within the
current season. There is evidence that water allocations provided
by ICORPS can compromise the ability to generate hydropower
in the future with the largest difference, in 2007, being 11.3%
less hydropower than in the ROH scenario than the OBS scenario.
However, the hydropower discrepancies get larger from October
to December, indicating that at least part of this reduction is due
to the ROH scenarios considering the future worth of water.

6. Discussion

COREGS is evaluated for the reservoir and power systems
owned and operated by the Tennessee Valley Authority over
twelve summer and winters from 2003 to 2015. Additionally,
three years (2004, 2007, and 2010) are modeled using a rolling
horizon approach with seasonal windows to study the COREGS’
effectiveness over multiple seasons given deterministic inflows
and demand. Evaluation of COREGS is done with respect to the
total cost to meet electricity demand in a season, reservoir spill
and deficit, water allocation efficiency in terms of objective func-
tion improvement per increase in release, and relationships be-
tween total inflow into the system and allocation efficiency and
objective function improvement.

Overall, there is limited reduction in power system operating
cost by incorporating power system information in water allo-
cation decisions. Neither of the methods that use power system
information for reservoir allocations (ICORPS, MHB) produce ob-
jective function values that are consistently lower than MHP;
however, all solutions from ICORPS and MHB are within 1.5% of
MHP. This is partly because the share of hydropower in TVA’s
generation portfolio is only around 14%. Our analysis indicates
that information on where and when additional hydropower is
most beneficial can improve the water use efficiency of a reser-
voir system from the power system management perspective.
ICORPS and MHB decreased the cost to meet power demand
more per unit of additional release than MHP, which indicates
ICORPS and MHB are more efficient in allocating hydropower
spatio-temporally (which reservoir and what time) compared to
bulk increase in release for hydropower. Between ICORPS and
MHB, ICORPS provides the most efficient water use, indicating
that dynamically sharing information and jointly operating the
systems can provide solutions that use water much more effi-
ciently while only being slightly more expensive. Further, ICORPS
and MHB solutions have less spill and deficit than MHP solu-
tions for winter and summer seasons. Though spill and deficit
constraints are handled slightly differently between ICORPS and
MHB, ICORPS violates these constraints much less frequently
than MHB and at smaller overall values. Therefore, dynamically
sharing information based on the dual prices of each reservoir

from the power system can produce reservoir operation solutions
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i.e., releases) that result in less total spill and deficit across the
eservoir network, allocates water more efficiently in terms of
ower system costs, and provides operating costs that are, on
verage, 1.14% more expensive than MHP and 1% more expensive
han MHB.

There are seven scenarios when ICORPS provides an objective
unction value less than MHB (five winters and two summers).
n average, these seven scenarios receive more inflow than a
ormal winter or summer and the opposite is true for the re-
aining eighteen scenarios where MHB meets power demand
heaper than ICORPS. Additionally, the scenario with the largest
nflow anomaly (the winter of 2007) coincides with the largest
bjective function and release deviations between ICORPS and
HB. Taken together, these results indicate that ICORPS provides
etter solutions under above-normal inflow conditions and MHB
olutions are better during below average inflow. This is because
xcess water availability during above-normal inflow season can
e used more effectively with the dynamically varying dual prices
n ICORPS. However, both MHB and MHP are limited by the lack
f information on varying dual prices on hydropower availability.
urther, ICORPS conserves much more water than MHB (between
and 33% less water is released) regardless of the inflow scenario.
uring the winter of 2010, a season that received substantially
ess inflow than normal conditions, MHB released 32.9% more
ater than ICORPS for a 2.7% objective function improvement.
uring drought conditions there is likely to be a focus on water
onservation and solutions that are less costly but conserve much
ore water are going to be favored over less efficient solutions.
The rolling horizon assessment demonstrates COREGS abil-

ty to improve hydropower production without increasing flood
nd drought risks in subsequent months. Main stem reservoirs
ave increased storage at the end of December than observed
torage, while storage in NE and SE reservoirs is lesser than
bserved storage. The overall system storage decreases by ap-
roximately 3.5% on average but large portions of the storage is
edistributed from upstream reservoirs to downstream reservoirs.
his may increase the reservoir flood risk, though storage at
ll reservoirs is maintained below the flood control pool and
ower storage in upstream reservoirs can provide an additional
uffer for unexpectedly high inflows, thus increases in flood
isk is not expected to be significant. During extended periods
f drought, lower storage in upstream reservoirs may compro-
ise the ability to meet demand from ecological, water supply,
r thermal generation uses. Additionally, operational decisions
ade by ICORPS may limit the ability to generate hydropower in

he future if downstream flow requirements are not considered
n detail. Further, all the increased storage in main stem and
educed storage in upstream reservoirs are within the normal
perating rule curves without storing water in the flood control
pace or below the conservation pool, thus any modification in
he release scenarios suggested by ICORPS are within the realm
f rebounding to increase/decrease storage as we roll forward
hich is indicated precisely by the rolling horizon analysis. Thus,
he proposed ICORPS that shares dynamically varying information
n hydropower value, expressed as dual prices from the power
ystem model, with the reservoir system could provide efficient
trategies for the co-optimization of water and power systems.

. Concluding remarks

This work presents a new optimization framework,
o-Optimization of Reservoir and Electricity Generation Systems
COREGS) that can jointly operate linked reservoir and electric-
ty systems. COREGS is built on two open-source, generalized
odels (GRAPS and Temoa) that allow water and power systems
f any size to be modeled over any time horizon. Reservoirs
8076
and electric generators are resolved at the plant level which
allows plant specific constraints – minimum operating levels
and ramping rates – to be enforced, reservoir operating rules
to vary across time and space, and potential transmission bot-
tlenecks to be explicitly incorporated into COREGS to support
seasonal water and power systems planning. COREGS provides
solution methods that are built around the Feasible Sequential
Quadratic Programming (FSQP) algorithm (Lawrence and Tits,
2001) as well as a new, purpose-built, heuristic optimization
algorithm, Iterative Co-Optimization of Reservoir and Power Sys-
tems (ICORPS), that continuously shares relevant information
between GRAPS and Temoa. Due to the open-source nature of the
models used in COREGS and COREGS itself, the framework can
be extended to problems with differing objectives, constraints,
and research goals associated with co-optimization of water and
power systems.

Though this work represents a step forward in the joint mod-
eling of reservoir and power systems, it is not without limitations.
Though GRAPS and Temoa provide the ability to handle stochas-
tic streamflow and electricity demand, albeit in different ways,
the current state of COREGS does not provide a mechanism for
incorporating stochasticity while continuing to share informa-
tion between the systems. Without including this uncertainty,
the solutions provided by COREGS are deterministic in nature
and do not provide uncertainty information for the outputs. The
framework can still be evaluated with deterministic forecasts
(mean/median) to quantify the forecasted/expected water and
hydropower availability. Additionally, reservoirs in the Tennessee
River Basin are primarily used for flood control, hydropower,
and recreation; therefore, the results presented here may not
translate to basins that have high levels of agriculture or water
supply withdrawals. Including stochastic streamflow and power
demand and testing COREGS for basins with more diverse water
demands will help us to evaluate COREGS performance more
rigorously.

Though Temoa can accurately model the electrical network
constraints including capacities and transmission constraints, they
are not rigorously explored in this work. As there is a lack
of open data sets for modeling the intra-regional transmission
network for the TVA area, we do not have detailed network
and transmission data for the study region thus preventing their
inclusion in the model. However, previous research by de Queiroz
et al. (2019) shows that the network congestion and transmission
details are not critical in seasonal power system planning and
operation.

MHP and MHB rely on the FSQP optimization engine which has
proven convergence properties for quadratic problems; however,
the convergence properties of ICORPS have not been thoroughly
evaluated. ICORPS convergence was achieved for all scenarios
considered in this study, but the convergence properties should
be explored further in future studies. Though there is room for
improvement and further testing, the results presented here sug-
gest reservoir systems with significant hydropower demand can
be operated more efficiently using dynamic information that
specify when and which hydroelectric plant will be most ben-
eficial to a power system. Additionally, the COREGS framework
provides a platform for the evaluation of integrated water and
power systems with the ability to customize critically important
aspects of both systems in order to support seasonal planning or
specific research goals.

CRediT authorship contribution statement

Lucas Ford: Conceptualization, Methodology, Software, In-
vestigation, Data curation, Writing, Visualization. Anderson de
Queiroz: Conceptualization, Methodology, Software, Writing –



L. Ford, A. de Queiroz, J. DeCarolis et al. Energy Reports 8 (2022) 8061–8078

r
o
s
&

D

c
t

D

l
t
5

A

S
C

A

o

R

A

A

A

A

A

A

Á

B

B

B

B
B

B

C

eview & editing. Joseph DeCarolis: Conceptualization, Methodol-
gy, Writing – review & editing, Funding acquisition. A. Sankara-
ubramanian: Conceptualization, Methodology, Writing – review
editing, Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The COREGS source code is available at https://github.com/
cford2/coregs/releases/tag/v1.0.0. The input data and results for
his work is available at https://zenodo.org/record/6315941#.Yh
tKhtOlhE.

cknowledgments

This material is based upon work supported by the National
cience Foundation, United States of America under Grants No.
yberSEES-1442909 and CBET-1805293.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.egyr.2022.06.017.

eferences

hmad, A., El-Shafie, A., Mohd Razali, S.F., Mohamad, Z.S., 2014. Reservoir opti-
mization in water resources: A review. Water Resour. Manag. 28, 3391–3405.
http://dx.doi.org/10.1007/s11269-014-0700-5.

l-Aqeeli, Y.H., Mahmood Agha, O.M.A., 2020. Optimal operation of multi-
reservoir system for hydropower production using particle swarm optimiza-
tion algorithm. Water Resour. Manag. 34, 3099–3112. http://dx.doi.org/10.
1007/s11269-020-02583-8.

laya, A., Souissi, A., Tarhouni, J., Ncib, K., 2003. Optimization of nebhana reser-
voir water allocation by stochastic dynamic programming. Water Resour.
Manag. 17, 259–272. http://dx.doi.org/10.1023/A:1024721507339.

rchibald, T.W., McKinnon, K.I.M., Thomas, L.C., 2006. Modeling the operation
of multireservoir systems using decomposition and stochastic dynamic
programming. Nav. Res. Logist. 53, 217–225. http://dx.doi.org/10.1002/nav.
20134.

rvanitidis, N.V., Rosing, J., 1970a. Composite representation of a multireser-
voir hydroelectric power system. IEEE Trans. Power Appar. Syst. PAS- 89,
319–326.

rvanitidis, N.V., Rosing, J., 1970b. Optimal operation of multireservoir systems
using a composite representation. IEEE Trans. Power Appar. Syst. PAS 89,
327–335. http://dx.doi.org/10.1109/TPAS.1970.292596.

vila, D., Papavasiliou, A., Löhndorf, N., 2021. Parallel and distributed computing
for stochastic dual dynamic programming. Comput. Manag. Sci. http://dx.doi.
org/10.1007/s10287-021-00411-x.

artos, M.D., Chester, M.V., 2015. Impacts of climate change on electric power
supply in the Western United States. Nat. Clim. Change 5, 748–752. http:
//dx.doi.org/10.1038/nclimate2648.

aslis, C.G., Papadakis, S.E., Bakirtzis, A.G., 2009. Simulation of optimal medium-
term hydro-thermal system operation by grid computing. IEEE Trans. Power
Syst. 24, 1208–1217. http://dx.doi.org/10.1109/TPWRS.2009.2023261.

elaineh, G., Peralta, R., Hughes, T., 1999. Simulation/optimization modeling for
water resources management. Water Resour. Plan. Manag. 125, 154–161.

radley, S.P., Hax, A.C., Magnanti, T.L., 1977. Applied Mathematical Programming.
randão, J.L.B., 2010. Performance of the equivalent reservoir modelling tech-

nique for multi-reservoir hydropower systems. Water Resour. Manag. 24,
3101–3114. http://dx.doi.org/10.1007/s11269-010-9597-9.

randi, R.B.S., Ramos, T.P., Dias, B.H., Marcato, A.L.M., Da Silva Junior, I.C.,
2015. Improving stochastic dynamic programming on hydrothermal systems
through an iterative process. Electr. Power Syst. Res. 123, 147–153. http:
//dx.doi.org/10.1016/j.epsr.2015.02.011.

ollins, S., Deane, J.P., Poncelet, K., Panos, E., Pietzcker, R.C., Delarue, E., Gal-
lachóir, B.P.Ó., 2017. Integrating short term variations of the power system
into integrated energy system models: A methodological review. Renew.
Sustain. Energy Rev. 76, 839–856. http://dx.doi.org/10.1016/j.rser.2017.03.
090.
8077
De Matos, V.L., Philpott, A.B., Finardi, E.C., 2015. Improving the performance of
stochastic dual dynamic programming. J. Comput. Appl. Math. 290, 196–208.
http://dx.doi.org/10.1016/j.cam.2015.04.048.

De Queiroz, A.R., 2016a. Stochastic hydro-thermal scheduling optimization: An
overview. Renew. Sustain. Energy Rev. 62, 382–395. http://dx.doi.org/10.
1016/j.rser.2016.04.065.

De Queiroz, A.R., 2016b. Stochastic hydro-thermal scheduling optimization: An
overview. Renew. Sustain. Energy Rev. 62, 382–395. http://dx.doi.org/10.
1016/j.rser.2016.04.065.

de Queiroz, A.R., Mulcahy, D., Sankarasubramanian, A., Deane, J.P., Mahinthaku-
mar, G., Lu, N., DeCarolis, J.F., 2019. Repurposing an energy system
optimization model for seasonal power generation planning. Energy 181,
1321–1330. http://dx.doi.org/10.1016/j.energy.2019.05.126.

de Sisternes, F.J., Jenkins, J.D., Botterud, A., 2016. The value of energy storage
in decarbonizing the electricity sector. Appl. Energy. 175, 368–379. http:
//dx.doi.org/10.1016/j.apenergy.2016.05.014.

Deane, J.P., Chiodi, A., Gargiulo, M., Gallachóir, B.P.Ó., 2012. Soft-linking of a
power systems model to an energy systems model. Energy 42, 303–312.
http://dx.doi.org/10.1016/j.energy.2012.03.052.

Denholm, P., Ela, E., Kirby, B., Milligan, M., 2011. The role of energy storage with
renewable electricity generation. Energy Storage Issues Appl. 1–58.

Dias, B.H., Marcato, A.L.M., Souza, R.C., Soares, M.P., Silva Junior, I.C.,
Oliveira, E.J.D., Brandi, R.B.S., Ramos, T.P., 2010. Stochastic dynamic program-
ming applied to hydrothermal power systems operation planning based on
the convex hull algorithm. Math. Probl. Eng. 2010, http://dx.doi.org/10.1155/
2010/390940.

Ehteram, M., Karami, H., Mousavi, S.F., Farzin, S., Kisi, O., 2017. Optimization of
energy management and conversion in the multi-reservoir systems based on
evolutionary algorithms. J. Clean. Prod. 168, 1132–1142. http://dx.doi.org/10.
1016/j.jclepro.2017.09.099.

Fernández-Blanco, R., Kavvadias, K., Hidalgo González, I., 2017. Quantifying
the water-power linkage on hydrothermal power systems: A greek case
study. Appl. Energy. 203, 240–253. http://dx.doi.org/10.1016/j.apenergy.2017.
06.013.

Finardi, E.C., Da Silva, E.L., Sagastizábal, C., 2005. Solving the unit commitment
problem of hydropower plants via lagrangian relaxation and sequential
quadratic programming. J. Comput. Appl. Math. 24, 317–341. http://dx.doi.
org/10.1590/S0101-82052005000300001.

Guo, X., Hu, T., Wu, C., Zhang, T., Lv, Y., 2013. Multi-objective optimization of
the proposed multi-reservoir operating policy using improved NSPSO. Water
Resour. Manag. 27, 2137–2153. http://dx.doi.org/10.1007/s11269-013-0280-
9.

Helfer, F., Lemckert, C., Zhang, H., 2012. Impacts of climate change on temper-
ature and evaporation from a large reservoir in Australia. J. Hydrol. 475,
365–378. http://dx.doi.org/10.1016/j.jhydrol.2012.10.008.

Hunt, J.D., de Freitas, M.A.V., Pereira Junior, A.O., 2017. A review of seasonal
pumped-storage combined with dams in cascade in Brazil. Renew. Sustain.
Energy Rev. 70, 385–398. http://dx.doi.org/10.1016/j.rser.2016.11.255.

Hunter, K., Sreepathi, S., DeCarolis, J.F., 2013. Modeling for insight using tools for
energy model optimization and analysis (Temoa). Energy Econ. 40, 339–349.
http://dx.doi.org/10.1016/j.eneco.2013.07.014.

International Business Machines Corporation, 2019. ILOG CPLEX optimizer.
International Renewable Energy Agency, 2021. Renewable energy statistics, 2021.
IPCC, 2021. Assessment report 6 climate change 2021: The physical science basis.

https://www.ipcc.ch/report/ar6/wg1/.
Koutsoyiannis, D., Economou, A., 2003. Evaluation of the parameterization-

simulation–optimization approach for the control of reservoir systems. Water
Resour. Res. 39, 1170. http://dx.doi.org/10.1029/2003WR002148.

Labadie, J., 2004. Optimal operation of multireservoir systems: State-of-the-art
review. Water Resour. Plan. Manag. 130, 93–111. http://dx.doi.org/10.1061/
(ASCE)0733-9496(2004)130.

Lawrence, C.T., Tits, A.L., 2001. A computationally efficient feasible sequential
quadratic programming algorithm. SIAM J. Optim. 11, 1092–1118. http:
//dx.doi.org/10.1137/S1052623498344562.

Li, F.F., Shoemaker, C.A., Qiu, J., Wei, J.H., 2015. Hierarchical multi-reservoir
optimization modeling for real-world complexity with application to the
three gorges system. Environ. Model. Softw. 69, 319–329. http://dx.doi.org/
10.1016/j.envsoft.2014.11.030.

Li, X., Wei, J., Li, T., Wang, G., Yeh, W.W.G., 2014. A parallel dynamic program-
ming algorithm for multi-reservoir system optimization. Adv. Water Resour.
67, 1–15. http://dx.doi.org/10.1016/j.advwatres.2014.01.002.

Liu, B., Cheng, C., Wang, S., Liao, S., Chau, K.W., Wu, X., Li, W., 2018. Parallel
chance-constrained dynamic programming for cascade hydropower system
operation. Energy 165, 752–767. http://dx.doi.org/10.1016/j.energy.2018.09.
140.

Liu, P., Li, L., Guo, S., Xiong, L., Zhang, W., Zhang, J., Xu, C.Y., 2015. Optimal design
of seasonal flood limited water levels and its application for the three gorges
reservoir. J. Hydrol. 527, 1045–1053. http://dx.doi.org/10.1016/j.jhydrol.2015.
05.055.

LLC Gurobi Optimization, 2020. Gurobi optimizer reference manual. http://www.
gurobi.com.

https://github.com/lcford2/coregs/releases/tag/v1.0.0
https://github.com/lcford2/coregs/releases/tag/v1.0.0
https://github.com/lcford2/coregs/releases/tag/v1.0.0
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://zenodo.org/record/6315941#.Yh5tKhtOlhE
https://doi.org/10.1016/j.egyr.2022.06.017
http://dx.doi.org/10.1007/s11269-014-0700-5
http://dx.doi.org/10.1007/s11269-020-02583-8
http://dx.doi.org/10.1007/s11269-020-02583-8
http://dx.doi.org/10.1007/s11269-020-02583-8
http://dx.doi.org/10.1023/A:1024721507339
http://dx.doi.org/10.1002/nav.20134
http://dx.doi.org/10.1002/nav.20134
http://dx.doi.org/10.1002/nav.20134
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb5
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb5
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb5
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb5
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb5
http://dx.doi.org/10.1109/TPAS.1970.292596
http://dx.doi.org/10.1007/s10287-021-00411-x
http://dx.doi.org/10.1007/s10287-021-00411-x
http://dx.doi.org/10.1007/s10287-021-00411-x
http://dx.doi.org/10.1038/nclimate2648
http://dx.doi.org/10.1038/nclimate2648
http://dx.doi.org/10.1038/nclimate2648
http://dx.doi.org/10.1109/TPWRS.2009.2023261
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb10
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb10
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb10
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb11
http://dx.doi.org/10.1007/s11269-010-9597-9
http://dx.doi.org/10.1016/j.epsr.2015.02.011
http://dx.doi.org/10.1016/j.epsr.2015.02.011
http://dx.doi.org/10.1016/j.epsr.2015.02.011
http://dx.doi.org/10.1016/j.rser.2017.03.090
http://dx.doi.org/10.1016/j.rser.2017.03.090
http://dx.doi.org/10.1016/j.rser.2017.03.090
http://dx.doi.org/10.1016/j.cam.2015.04.048
http://dx.doi.org/10.1016/j.rser.2016.04.065
http://dx.doi.org/10.1016/j.rser.2016.04.065
http://dx.doi.org/10.1016/j.rser.2016.04.065
http://dx.doi.org/10.1016/j.rser.2016.04.065
http://dx.doi.org/10.1016/j.rser.2016.04.065
http://dx.doi.org/10.1016/j.rser.2016.04.065
http://dx.doi.org/10.1016/j.energy.2019.05.126
http://dx.doi.org/10.1016/j.apenergy.2016.05.014
http://dx.doi.org/10.1016/j.apenergy.2016.05.014
http://dx.doi.org/10.1016/j.apenergy.2016.05.014
http://dx.doi.org/10.1016/j.energy.2012.03.052
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb21
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb21
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb21
http://dx.doi.org/10.1155/2010/390940
http://dx.doi.org/10.1155/2010/390940
http://dx.doi.org/10.1155/2010/390940
http://dx.doi.org/10.1016/j.jclepro.2017.09.099
http://dx.doi.org/10.1016/j.jclepro.2017.09.099
http://dx.doi.org/10.1016/j.jclepro.2017.09.099
http://dx.doi.org/10.1016/j.apenergy.2017.06.013
http://dx.doi.org/10.1016/j.apenergy.2017.06.013
http://dx.doi.org/10.1016/j.apenergy.2017.06.013
http://dx.doi.org/10.1590/S0101-82052005000300001
http://dx.doi.org/10.1590/S0101-82052005000300001
http://dx.doi.org/10.1590/S0101-82052005000300001
http://dx.doi.org/10.1007/s11269-013-0280-9
http://dx.doi.org/10.1007/s11269-013-0280-9
http://dx.doi.org/10.1007/s11269-013-0280-9
http://dx.doi.org/10.1016/j.jhydrol.2012.10.008
http://dx.doi.org/10.1016/j.rser.2016.11.255
http://dx.doi.org/10.1016/j.eneco.2013.07.014
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb30
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb31
https://www.ipcc.ch/report/ar6/wg1/
http://dx.doi.org/10.1029/2003WR002148
http://dx.doi.org/10.1061/(ASCE)0733-9496(2004)130
http://dx.doi.org/10.1061/(ASCE)0733-9496(2004)130
http://dx.doi.org/10.1061/(ASCE)0733-9496(2004)130
http://dx.doi.org/10.1137/S1052623498344562
http://dx.doi.org/10.1137/S1052623498344562
http://dx.doi.org/10.1137/S1052623498344562
http://dx.doi.org/10.1016/j.envsoft.2014.11.030
http://dx.doi.org/10.1016/j.envsoft.2014.11.030
http://dx.doi.org/10.1016/j.envsoft.2014.11.030
http://dx.doi.org/10.1016/j.advwatres.2014.01.002
http://dx.doi.org/10.1016/j.energy.2018.09.140
http://dx.doi.org/10.1016/j.energy.2018.09.140
http://dx.doi.org/10.1016/j.energy.2018.09.140
http://dx.doi.org/10.1016/j.jhydrol.2015.05.055
http://dx.doi.org/10.1016/j.jhydrol.2015.05.055
http://dx.doi.org/10.1016/j.jhydrol.2015.05.055
http://www.gurobi.com
http://www.gurobi.com
http://www.gurobi.com


L. Ford, A. de Queiroz, J. DeCarolis et al. Energy Reports 8 (2022) 8061–8078

M

M

M

M

N

N

O

O

P

P

P

R

R

S

S

akhorin, A., 2012. GNU Linear programming kit (GLPK). https://www.gnu.org/
software/glpk/.

andal, K.K., Basu, M., Chakraborty, N., 2008. Particle swarm optimization
technique based short-term hydrothermal scheduling. Appl. Soft Comput. J.
8, 1392–1399. http://dx.doi.org/10.1016/j.asoc.2007.10.006.

u, M., Zhang, Z., Cai, X., Tang, Q., 2020. Seasonal risk assessment of
water-electricity nexus systems under water consumption policy con-
straint. Environ. Sci. Technol. 54, 3793–3802. http://dx.doi.org/10.1021/acs.
est.0c00171.

ukhopadhyay, S., Sankarasubramanian, A., de Queiroz, A.R., 2021. Performance
comparison of equivalent reservoir and multireservoir models in forecasting
hydropower potential for linking water and power systems. J. Water Resour.
Plan. Manag. 147, 04021005. http://dx.doi.org/10.1061/(asce)wr.1943-5452.
0001343.

eedham, J.T., Watkins, Jr., D.W., Lund, J.R., Nanda, S.K., 2000. Linear program-
ming for flood control in the iowa and des moines rivers. J. Water Resour.
Plan. Manag. 126, 118–127.

orouzi, M.R., Ahmadi, A., Sharaf, A.M., Esmaeel Nezhad, A., 2014. Short-term
environmental/economic hydrothermal scheduling. Electr. Power Syst. Res.
116, 117–127. http://dx.doi.org/10.1016/j.epsr.2014.05.020.

’Connell, N. Voisin, Macknick, Fu, 2019. Sensitivity of western U.S. power
system dynamics to droughts compounded with fuel price variability. Appl.
Energy 247, 745–754. http://dx.doi.org/10.1016/j.apenergy.2019.01.156.

ludhe, C., Sankarasubramanian, A., Sinha, T., Devineni, N., Lall, U., 2013. The role
of multimodel climate forecasts in improving water and energy management
over the Tana river basin, Kenya. J. Appl. Meteorol. Climatol. 52, 2460–2475.
http://dx.doi.org/10.1175/JAMC-D-12-0300.1.

ereira, M.V.F., 1989. Optimal stochastic operations scheduling of large hy-
droelectric systems. Int. J. Electr. Power Energy Syst. 11, 161–169. http:
//dx.doi.org/10.1016/0142-0615(89)90025-2.

ereira, M.V.F., Pinto, L.M.V.G., 1985. Stochastic optimization of a multireservoir
hydroelectric system: A decomposition approach. Water Resour. Res. 21,
779–792. http://dx.doi.org/10.1029/WR021i006p00779.

ereira, M.V.F., Pinto, L.M.V.G., 1991. Multi-stage stochastic optimization applied
to energy planning. Math. Program. 52, 359–375. http://dx.doi.org/10.1007/
BF01582895.

ingkjøb, H.K., Haugan, P.M., Solbrekke, I.M., 2018. A review of modelling tools
for energy and electricity systems with large shares of variable renewables.
Renew. Sustain. Energy Rev. 96, 440–459. http://dx.doi.org/10.1016/j.rser.
2018.08.002.

ougé, C., Tilmant, A., 2016. Using stochastic dual dynamic programming in
problems with multiple near-optimal solutions. Water Resour. Res. 52,
4151–4163. http://dx.doi.org/10.1002/2016WR018608.

ankarasubramanian, A., Lall, U., Souza Filho, F.A., Sharma, A., 2009. Improved
water allocation utilizing probabilistic climate forecasts: Short-term water
contracts in a risk management framework. Water Resour. Res. 45, 1–18.
http://dx.doi.org/10.1029/2009WR007821.

hapiro, A., 2011. Analysis of stochastic dual dynamic programming method.
European J. Oper. Res. 209, 63–72. http://dx.doi.org/10.1016/j.ejor.2010.08.
007.
8078
Sharif, M., Wardlaw, R., 2000. Multireservoir systems optimization using genetic
algorithms: Case study. J. Comput. Civ. Eng. 14, 255–263.

Sodano, D., DeCarolis, J., Rodrigo de Queiroz, A., Johnson, J.X., 2021. The sym-
biotic relationship of solar power and energy storage in providing capacity
value. Renew. Energy. 177, 823–832. http://dx.doi.org/10.1016/j.renene.2021.
05.122.

Swain, R.K., Barisal, A.K., Hota, P.K., Chakrabarti, R., 2011. Short-term hydrother-
mal scheduling using clonal selection algorithm. Int. J. Electr. Power Energy
Syst. 33, 647–656. http://dx.doi.org/10.1016/j.ijepes.2010.11.016.

Tennessee Valley Authority, 2012. TVA river operations & renewables data
repository.

Turgeon, A., 1980. Optimal operation of multireservoir power systems with
stochastic inflows. Water Resour. Res. 16, 275–283. http://dx.doi.org/10.
1007/BF00941072.

US Department of Homeland Security, 2017. Homeland infrastructure
foundation-level data (HIFLD). https://hifld-geoplatform.opendata.arcgis.
com/datasets/control-areas.

US Energy Information Administration, 2004. Form EIA-860: Annual electric
generator report. http://www.eia.gov/electricity/data/eia860/.

US Energy Information Administration, 2020a. Form EIA-861m: Monthly Electric
Power Industry Report.

US Energy Information Administration, 2020b. Form EIA-923: Power Plant
operations report. https://www.eia.gov/electricity/data/eia923/.

US Energy Information Administration, 2021. What is the U.S. electricity gener-
ation by energy source?. https://www.eia.gov/tools/faqs/faq.php?id=427&t=
3.

US Geological Survey, 1994. 1:250, 000-scale hydrologic units of the United
States. https://water.usgs.gov/GIS/metadata/usgswrd/XML/huc250k.xml.

US Senate, 2015. Tennessee valley authority: Full consideration of energy
efficiency and better capital expenditures planning are needed. pp. 1–88,
Tennessee Val. Auth. Priv. Resour. Plan. Financ. Issues..

Xuan, L., Ford, L., Mahinthakumar, G., Souza Filho, F.A., Lall, U., Arumugam, S.,
2020. GRAPS: Generalized multi-reservoir analyses using probabilistic
streamflow. Environ. Model. Softw. 133, 104802. http://dx.doi.org/10.1016/
j.envsoft.2020.104802.

Yang, H., Zhang, L., Meng, K., Xu, J., Lai, M., Dong, Z.Y., 2017. Optimal scheduling
of hydro-thermal power systems considering the flood risk of cascade
reservoirs. Eng. Optim. 49, 1299–1316. http://dx.doi.org/10.1080/0305215X.
2016.1245537.

Zambon, R.C.M, Barros, T.L., Lopes, J.E.G, Barbosa, P.S.F, Francato, A.L.,
Yeh, W.W.G, 2012. Optimization of large-scale hydrothermal system oper-
ation. Water Resour. Plan. Manag. 138, 135–143. http://dx.doi.org/10.1061/
(ASCE)WR.1943-5452.0000149.

Zerrahn, A., Schill, W.P., 2017. Long-run power storage requirements for high
shares of renewables: Review and a new model. Renew. Sustain. Energy
Rev. 79, 1518–1534. http://dx.doi.org/10.1016/j.rser.2016.11.098.

Zhou, Y., Guo, S., Chang, F.J., Liu, P., Chen, A.B., 2018. Methodology that improves
water utilization and hydropower generation without increasing flood risk
in mega cascade reservoirs. Energy 143, 785–796. http://dx.doi.org/10.1016/
j.energy.2017.11.035.

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://dx.doi.org/10.1016/j.asoc.2007.10.006
http://dx.doi.org/10.1021/acs.est.0c00171
http://dx.doi.org/10.1021/acs.est.0c00171
http://dx.doi.org/10.1021/acs.est.0c00171
http://dx.doi.org/10.1061/(asce)wr.1943-5452.0001343
http://dx.doi.org/10.1061/(asce)wr.1943-5452.0001343
http://dx.doi.org/10.1061/(asce)wr.1943-5452.0001343
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb45
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb45
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb45
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb45
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb45
http://dx.doi.org/10.1016/j.epsr.2014.05.020
http://dx.doi.org/10.1016/j.apenergy.2019.01.156
http://dx.doi.org/10.1175/JAMC-D-12-0300.1
http://dx.doi.org/10.1016/0142-0615(89)90025-2
http://dx.doi.org/10.1016/0142-0615(89)90025-2
http://dx.doi.org/10.1016/0142-0615(89)90025-2
http://dx.doi.org/10.1029/WR021i006p00779
http://dx.doi.org/10.1007/BF01582895
http://dx.doi.org/10.1007/BF01582895
http://dx.doi.org/10.1007/BF01582895
http://dx.doi.org/10.1016/j.rser.2018.08.002
http://dx.doi.org/10.1016/j.rser.2018.08.002
http://dx.doi.org/10.1016/j.rser.2018.08.002
http://dx.doi.org/10.1002/2016WR018608
http://dx.doi.org/10.1029/2009WR007821
http://dx.doi.org/10.1016/j.ejor.2010.08.007
http://dx.doi.org/10.1016/j.ejor.2010.08.007
http://dx.doi.org/10.1016/j.ejor.2010.08.007
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb56
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb56
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb56
http://dx.doi.org/10.1016/j.renene.2021.05.122
http://dx.doi.org/10.1016/j.renene.2021.05.122
http://dx.doi.org/10.1016/j.renene.2021.05.122
http://dx.doi.org/10.1016/j.ijepes.2010.11.016
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb59
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb59
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb59
http://dx.doi.org/10.1007/BF00941072
http://dx.doi.org/10.1007/BF00941072
http://dx.doi.org/10.1007/BF00941072
https://hifld-geoplatform.opendata.arcgis.com/datasets/control-areas
https://hifld-geoplatform.opendata.arcgis.com/datasets/control-areas
https://hifld-geoplatform.opendata.arcgis.com/datasets/control-areas
http://www.eia.gov/electricity/data/eia860/
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb63
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb63
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb63
https://www.eia.gov/electricity/data/eia923/
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
https://water.usgs.gov/GIS/metadata/usgswrd/XML/huc250k.xml
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb67
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb67
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb67
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb67
http://refhub.elsevier.com/S2352-4847(22)01157-X/sb67
http://dx.doi.org/10.1016/j.envsoft.2020.104802
http://dx.doi.org/10.1016/j.envsoft.2020.104802
http://dx.doi.org/10.1016/j.envsoft.2020.104802
http://dx.doi.org/10.1080/0305215X.2016.1245537
http://dx.doi.org/10.1080/0305215X.2016.1245537
http://dx.doi.org/10.1080/0305215X.2016.1245537
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000149
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000149
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000149
http://dx.doi.org/10.1016/j.rser.2016.11.098
http://dx.doi.org/10.1016/j.energy.2017.11.035
http://dx.doi.org/10.1016/j.energy.2017.11.035
http://dx.doi.org/10.1016/j.energy.2017.11.035

	Co-Optimization of Reservoir and Power Systems (COREGS) for seasonal planning and operation
	Introduction
	Background on water and power systems optimization
	Reservoir system modeling 
	Power system modeling
	Combined reservoir and power system modeling 

	COREGS methodology
	Reservoir system modeling–GRAPS 
	Power systems modeling–Temoa 
	GRAPS and Temoa modeling framework 
	Model formulations for the co-optimization of water and power systems 

	COREGS Application to the Tennessee Valley Authoritysystem
	TVA electricity system configuration 
	TVA reservoir system configuration 
	Co-optimization scenario definitions

	Results
	Performance comparison of co-optimizations methods 
	Evaluation of ICORPS solution pathway 
	Benefits of incorporating power system information in reservoir decisions 
	Examining benefits of dynamic information sharing 
	Rolling horizon simulations 

	Discussion
	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


