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A B S T R A C T

US energy system development consistent with the Paris Agreement will depend in part on future fuel prices
and technology costs, which are highly uncertain. Energy system optimization models (ESOMs) represent a
critical tool to examine clean energy futures under different assumptions. While many approaches exist to
examine future sensitivity and uncertainty in such models, most assume that uncertainty is resolved prior to
the model run. Policy makers, however, must take action before uncertainty is resolved. Robust optimization
represents a method that explicitly considers future uncertainty within a single model run, yielding a near-term
hedging strategy that is robust to uncertainty. This work focuses on extending and applying robust optimization
methods to Temoa, an open source ESOM, to derive insights about low carbon pathways in the United States.
A robust strategy that explicitly considers future uncertainty has expected savings in total system cost of 12%
and an 8% reduction in the standard deviation of expected costs relative to a strategy that ignores uncertainty.
The robust technology deployment strategy also entails more diversified technology mixes across the energy
sectors modeled.
1. Introduction

While progress on US federal climate policy remains elusive, a
carbon neutral energy system represents the ultimate target [1]. Energy
technology deployments over the coming decades aimed at achieving
carbon neutrality are subject to considerable uncertainty that should
be analyzed when considering specific policy actions. Energy system
optimization models (ESOMs) provide a self-consistent framework for
such evaluation, allowing analysts to examine future technology and
fuel pathways under specific policy objectives. ESOMs employ mathe-
matical programming techniques to minimize the present cost of energy
supply or maximize welfare by optimizing the installation and utiliza-
tion of energy technologies over a user-defined time horizon. These
models link energy technologies together in a broad-based network
through the flow of energy commodities. Inputs to ESOMs include
existing technology capacity, capital costs, fixed and variable opera-
tional costs, conversion efficiencies, and emissions coefficients; outputs
include installed technology capacity, energy consumed and produced
by each technology, energy prices, and emissions. The insights ob-
tained from ESOMs are often used to inform policy decisions, and thus
energy models should account for uncertainty that can affect policy
outcomes [2–6]. While a variety of methods can be used to quantify
model sensitivity and the effects of future uncertainty [7], most of
these methods require the selection of uncertain values prior to the
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model run, and thus represent a learn-then-act approach [8]. However,
policy makers are confronted with decisions that must be made before
future uncertainty is resolved, which represents an act-then-learn ap-
proach [8]. When conducting model-based analysis to inform policy
strategy, ESOMs should explicitly account for future uncertainty within
the model formulation.

Developing a hedging strategy that provides one single best course
of action while accounting for future uncertainty can generally be
accomplished by two different methods: stochastic linear programming
(SLP) and robust optimization (RO) [9]. SLP requires the modeler to
develop a scenario tree, assign subjective probabilities and outcomes
to each branch in the tree, and then optimize the model over the
whole tree. A key limitation of SLP is the curse of dimensionality [10],
whereby the number of decision variables grow exponentially with the
number of uncertain parameters and model time periods. Given the
large parametric uncertainties in future energy systems, the curse of
dimensionality has been a key limiting factor in previous applications
of SLP to ESOMs (e.g., [4,11–14]).

A second approach, which does not suffer from the curse of dimen-
sionality, is RO. It combines the features of sensitivity analysis (SA),
multi-objective optimization, and stochastic linear programming (SLP)
to generate a series of solutions that are progressively less sensitive
to the realization of uncertainty associated with the inputs, thereby
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Nomenclature of parameters and variables

Sets

𝑖 ∈ 𝐼 Set of all technologies with investment cost
𝑓 ∈ 𝐹 Set of all fuels
𝑣, �̃� ∈ 𝑉𝑖 Vintages associated with technology 𝑖
𝑡, 𝑡 ∈ 𝑇𝑖∕𝑇𝑓 Time period associated with technology 𝑖 or fuel 𝑓
𝑇 All model time periods
𝜂 Feasible domain for the maximization problem

given in constraint (5)

Parameters

𝐼𝐶𝑖𝑣 Nominal investment cost of technology 𝑖 with
vintage 𝑣 [$ Million/GW]

𝐼𝐶∗
𝑖𝑣 Realization of investment cost of technology 𝑖 with

vintage 𝑣 [$ Million/GW]
𝛥𝐼𝐶𝑖𝑣 Maximum deviation in investment cost of technol-

ogy 𝑖 with vintage 𝑣 [$ Million/GW]
𝑂𝐶𝑖𝑣𝑡 Nominal operational cost of technology 𝑖 with

vintage 𝑣 at time period 𝑡 [$ Million/GWh]
𝐹𝐶𝑓𝑡 Nominal cost of fuel 𝑓 in time period 𝑡 [$

Million/GWh]
𝐹𝐶∗

𝑓𝑡 Realization of cost of fuel 𝑓 in time period 𝑡 [$
Million/GWh]

𝛥𝐹𝐶𝑓𝑡 Maximum deviation in cost of fuel 𝑓 in time period
𝑡 [$ Million/GWh]

𝛾𝑖𝑣𝑡 Conversion factor from capacity to activity [h]
𝐷𝑡 Demand at time period 𝑡 [GWh]
𝐵 Matrix of constraint coefficients
𝑏 Right-hand-side of constraints
𝛤 Number or percentage of uncertain parameters as-

suming worst-case values; also referred to as the
‘budget of uncertainty’

𝜖 Probability of more than 𝑛 uncertain parameters
assuming their worst-case value

𝑔𝐼𝐶�̃�𝑖𝑣 Maximum possible impact of 𝐼𝐶𝑖𝑣 on 𝐼𝐶𝑖�̃�
𝑔𝐹𝐶
𝑡𝑓𝑡 Maximum possible impact of 𝐹𝐶𝑓𝑡 on 𝐹𝐶𝑓𝑡
𝑋𝑚𝑎𝑥

𝑡 worst-case value of the random variable 𝐗𝑡
𝜎𝑡 Standard deviation of the random variable 𝐗𝑡
𝜌 Temporal correlation coefficient of a technology or

a fuel
𝜇𝑡 Mean of a random variable 𝐗𝑡
𝜇𝐗𝑡+𝛥|𝑡

Mean of a random variable 𝐗𝑡+𝛥|𝑡
𝛥 Distance between adjacent time periods or vintages

Variables

𝐂𝐀𝐏𝑖𝑣 Capacity of technology 𝑖 with vintage 𝑣 in [GW]
𝐀𝐂𝐓𝑖𝑣𝑡 Activity associated with technology 𝑖 with vintage

𝑣 at time period 𝑡 [GWh]
𝐂𝐎𝐍𝑓𝑡 Consumption of fuel 𝑓 in time period 𝑡 [GWh]
𝐱 Vector of decision variables in constraint (1c)
𝐖 Continuous variable used to convert objective

function into a constraint
𝜼𝐼𝐶�̃�𝑖𝑣, 𝜼

𝐹𝐶
𝑡𝑓𝑡 Independent and symmetrically distributed ran-

dom variable

providing solutions that are robust to the modeled uncertainties [15].
This method requires the modeler to choose a set of uncertain param-
eters, assign both baseline and worst-case values to those parameters,
2

𝐩,𝐪𝐼𝐶𝑖�̃� ,𝐪𝐹𝐶
𝑓𝑡 , 𝐲

𝐼𝐶
𝑖�̃� , 𝐲𝐹𝐶

𝑓𝑡 Dual variables associated with the feasible
space defined in (5)

𝐗𝑡 Random variable used to represent the
uncertain parameters

𝐗𝑡+𝛥|𝑡 = 𝐗𝑡+𝛥|𝐗𝑡 A random variable denoting a value of 𝐗𝑡+𝛥
given the value of 𝐗𝑡

𝐬𝐼𝐶𝑖𝑣 Scaled deviation of uncertain investment
cost 𝐼𝐶∗

𝑖𝑣
𝐬𝐹𝐶
𝑓𝑡 Scaled deviation of uncertain fuel cost 𝐹𝐶∗

𝑓𝑡
𝐩,𝐪𝐼𝐶𝑖𝑣 ,𝐪𝐹𝐶

𝑓𝑡 , 𝐫
𝐼𝐶
𝑖𝑣 , 𝐫𝐹𝐶

𝑓𝑡 Dual variables associated with the feasible
space defined in (A.6)

and then iteratively perform optimization runs, where each iteration
includes a given number of model input parameters assuming their
worst-case value. In contrast to SLP, RO is a more suitable approach
for developing a hedging strategy when considering a large number of
uncertain parameters.

The first implementation of RO by Soyster [16] provides a feasible
solution under any realization of uncertain parameters. However, this
early formulation has two drawbacks. First, the formulation is nonlin-
ear, which results in a high computational burden. Second, the resulting
solution is very conservative since the model remains feasible even
when the worst-case value is assumed for all uncertain parameters.
To improve his approach, subsequent developments were made to
explore the trade-off between the conservativeness of the solution and
optimality [17–21]. In particular, the approach proposed by Bertsimas
and Sim [19] is most relevant in an energy systems planning context,
as it lets the decision maker choose their risk tolerance by specifying
a parameter called the "budget of uncertainty’’. The budget of uncer-
tainty represents the number (or percentage) of uncertain model input
parameters that take on their worst-case value. When a model assumes
the highest budget of uncertainty such that all uncertain parameters
take on their worst-case values, the formulation proposed by Soyster
[16] becomes a special case of the formulation proposed by Bertsimas
and Sim [19]. One limitation of RO over SLP is that it only considers
the worst-case value of each parameter, rather than a probability
distribution. While [22–24] have developed methodologies to create
robust strategies, direct application of the RO methodology to energy
system optimization models is limited to [25–30]. We build on this
existing literature by introducing the RO formulation for correlated
uncertain parameters.

The purpose of this paper is to apply RO to develop insights about
robust future technology pathways that achieve an 80% reduction in
CO2 emissions below 2005 levels by 2050. The RO formulation is
implemented in an open source ESOM called Tools for Energy Model
Optimization and Analysis (Temoa), in conjunction with a US input
dataset to explore robust technology development pathways that result
in deep decarbonization. This paper also makes several methodological
contributions. First, we introduce a systematic methodology to form the
RO uncertainty set. Second, we provide a methodology to account for
the auto-correlation in Temoa’s input cost parameters. For example, the
range in solar photovoltaic (PV) capital cost in a given time period will
be correlated with the cost in the previous time period. This correlated
RO methodology (CR-ESOM) is applied to an ESOM for the first time.
Third, this paper is the first application of the RO methodology to a
large scale representation of the US energy system. The RO formulation
presented here is generalized for ESOMs, and can be applied to similar
models and datasets to examine a wide range of scenarios.

The remainder of the paper is organized as follows. Section 2
describes the specific RO methodology used in this paper, including
the formulation of the RO counterpart for ESOMs with temporal corre-
lation between uncertain data. A description of the US energy system

database is given in Section 3. Section 4 presents the methodology
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Fig. 1. Methodology for obtaining robust alternate policies for GHG emission mitigation under technology and fuel cost uncertainty.
to build the uncertainty set while Section 5 presents the results and
provides discussion. Section 6 presents conclusions from the analysis.
Appendix provides the RO formulation without temporal correlation

for completeness.

2. Methodology

Our approach involves building an input database for the US energy
system, implementing robust optimization within Temoa, character-
izing future parametric uncertainty, providing robust strategies for
greenhouse gas (GHG) emissions mitigation, and analyzing the quality
of the robust model solutions. Fig. 1 outlines the flow of information
through the paper. In the first part of the paper, denoted by Column 1
in Fig. 1, we compile data from public sources into a relational database
representing the US energy system as a single region (Section 3). We
feed the data to Temoa under a constraint on CO2 emissions that
achieves an 80% reduction below 2005 levels by 2050. The model so-
lution obtained from this step provides the optimal capacity expansion
plan that does not consider future uncertainty. Henceforth, this solution
is referred to as the ‘naïve’ solution.

In the second part of the paper, denoted by Column 2 in Fig. 1,
we estimate the worst-case values and auto-correlation for the input
fuel costs and capital costs (Section 4). We then formulate the RO
model in two steps. The first robust (R-ESOM) formulation does not
consider auto-correlation in uncertain parameters. We do not present
the results for R-ESOM; however, we provide the methodology in the
Appendix for completeness. Auto-correlation is important in capacity

expansion models because most input parameters are indexed by model
time period, but the RO procedure assumes that each parameter value
in each time period can be treated independently. As an example, in
this basic R-ESOM formulation, natural gas prices can take on their
worst-case value in 2030, but the prices remain unaffected in other
time periods. Building on this formulation, we construct a correlated
RO (CR-ESOM) formulation (Section 2.2). In this version, a parameter
3

taking on its worst-case value in a given time period will, in turn, affect
the parameter value in the other time periods through a correlation
parameter. The solution obtained by solving CR-ESOM represents the
‘robust’ solution.

The third part of the paper, denoted by Column 3 in Fig. 1, utilizes
the RO modeling framework developed under the first two parts of the
paper to rigorously examine the performance of the robust decision
making strategy relative to a naive strategy that ignores future uncer-
tainty. These questions focus on four objectives (1) the incremental cost
or savings of the robust planning strategy under different realizations
of uncertainty, (2) changes to low carbon technology pathways across
the energy system under different levels of risk tolerance, and (3) the
identification of the uncertain parameters that have the largest effect
on system costs, and therefore the robust strategy.

2.1. A simplified ESOM formulation

Since this paper is focused on energy system optimization models
(ESOMs), we provide a brief description of ESOMs before review-
ing previous applications of robust optimization. ESOMs can be de-
scribed algebraically as a network of linked processes that convert raw
energy commodities (e.g., coal, oil, biomass) into end-use demands
(e.g., lighting, transport, water heating) through a series of one or more
intermediate energy forms (e.g., electricity, gasoline, ethanol). Each
process is defined by a set of engineering, economic, and environmental
characteristics (e.g., capital, fixed and variable cost, efficiency, capacity
factor) associated with converting an energy commodity from one
form to another. Processes are linked together in a network via model
constraints representing the allowable flow of energy commodities.
The objective of ESOMs is to minimize the net present cost of en-
ergy supply by utilizing energy technologies and commodities over
a user-specified time horizon to meet a set of exogenously specified
end-use demands. ESOMs simultaneously make technology investment

and operating decisions while enforcing an energy balance between
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primary energy resources, secondary fuels, final energy consumption,
and end-use energy services. ESOMs are typically formulated as linear
programming models, where installed technology capacity is treated as
a continuous variable. An introduction to Temoa is available [31] and
an up-to-date mathematical formulation of the model can be found in
the online documentation [32].

When end-use demands are specified exogenously, a simplified form
of a general ESOM formulation with the objective to minimize total
system costs can be written as the following linear program:

min
∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐼𝐶𝑖𝑣𝐂𝐀𝐏𝑖𝑣 +

∑

𝑡∈𝑇𝑖

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝑂𝐶𝑖𝑣𝑡𝐀𝐂𝐓𝑖𝑣𝑡

+
∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝐹𝐶𝑓𝑡𝐂𝐎𝐍𝑓𝑡 (1a)

s.t.
∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐀𝐂𝐓𝑖𝑣𝑡 ≥ 𝐷𝑡 ∀𝑡 ∈ 𝑇 (1b)

∑

𝑉𝑖≤𝑇𝑖

𝛾𝑖𝑣𝑡𝐂𝐀𝐏𝑖𝑣 ≥ 𝐀𝐂𝐓𝑖𝑣𝑡 ∀𝑡 ∈ 𝑇𝑖, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼 (1c)

𝐵𝐱 ≥ 𝑏 (1d)

In the above model (1a)–(1d), 𝑉 , 𝐼 , 𝑇 and 𝐹 are the set of all vin-
tages, technologies model time periods and fuels, respectively. Vintage
𝑉 is a time period in which a technology is built, while time period 𝑇
represents the period in which technology or fuel is used. 𝐼𝐶𝑖𝑣, 𝑂𝐶𝑖𝑣𝑡
and 𝐹𝐶𝑓𝑡 are the investment cost, operations and maintenance cost
(O&M) and fuel costs, respectively. 𝐂𝐀𝐏𝑖𝑣 is the decision variable rep-
resenting available capacity of technology 𝑖 of vintage 𝑣. In the above
model formulation, the total commodity production from a process is
referred to as ‘‘activity’’. 𝐀𝐂𝐓𝑖𝑣𝑡 is the decision variable representing
activity (i.e., energy output) of technology 𝑖 of vintage 𝑣 in time period
𝑡. 𝐂𝐎𝐍𝑓𝑡 is the decision variable representing the consumption of fuel
𝑓 in time period 𝑡. Moreover, 𝛾𝑖𝑣𝑡 is the factor that converts avail-
able capacity into activity, taking into account the technology-specific
availability factor and conversion from capacity to activity units. 𝐷𝑡
is the demand in time period 𝑡. Furthermore, 𝐱 represents all other
variables in the ESOM, 𝐵 represents coefficient matrix of the constraints
involving those variables, and 𝑏 represents the right-hand side of the
constraints. Objective function (1a) expresses the total discounted cost
to be minimized, (1b) is the set of demand satisfaction constraints,
where the right-hand-side 𝐷𝑡 are the exogenous demands that need to
be satisfied, (1c) represents the relationship between available capacity
and activity and (1d) is the set of all other constraints such as flow
balance, resource availability, technology share, process balance, lower
and upper bounds on decision variables, limit on technology lifetime,
reserve margin and storage constraints. DeCarolis and Hunter [32]
provide a detailed formulation for the constraints included in (1d).

2.2. RO formulation for correlated parameters (CR-ESOM)

The first RO formulation proposed by Soyster [16] constructs a
solution that is feasible for any realization of uncertain data. As a
result, the solution is too conservative in the sense that we give up
too much of the optimality of the ‘naive’ solution in order to guarantee
robustness by focusing on the worst-case possibility that all uncertain
input parameters assume their worst-case value. Bertsimas and Sim
[19], on the contrary, formulate the RO model based on the stipulation
that nature will be restricted in its behavior. In other words, only a
subset of the uncertain parameters will realize their worst-case values
and adversely affect the system cost. This approach will produce robust
solutions that remain feasible under most circumstances. Furthermore,
the [19] formulation for uncorrelated uncertain parameters has already
been adopted in the energy modeling literature [26–28]. Even though
we use the correlated version of the RO formulation, we provide the
uncorrelated RO formulation in Appendix for completeness.

Since ESOMs usually deal with capacity expansion over decades,
addressing the uncertainty in fuel costs and technology investment
4

costs under different future scenarios is critical to developing robust
planning and investment strategies. The existing applications of RO in
ESOMs assume that the uncertain ESOM parameters are independently
random. In reality, the ESOM parameters are not independently ran-
dom, particularly for different vintages of the same technology through
time. For example, the investment cost of technology 𝑖 with vintage 𝑣𝑛,
𝐼𝐶𝑖𝑣𝑛 , might depend on 𝐼𝐶𝑖𝑣1 and vice versa, where 𝑣1,… , 𝑣𝑛,… , 𝑣

|𝑉𝑖| ∈
𝑉𝑖 and 𝑉𝑖 is the set of vintages of technology 𝑖. To model temporal
correlation for uncertain parameters, we assume that the investment
cost of a given technology vintage is positively correlated with the other
vintages of the same technology. In other words, an increase in 𝐼𝐶𝑖𝑣1
leads to an increase in 𝐼𝐶𝑖𝑣𝑛 , ∀𝑣𝑛 ∈ 𝑉𝑖 and a decrease in 𝐼𝐶𝑖𝑣1 leads to a
decrease in 𝐼𝐶𝑖𝑣𝑛 . The realization of uncertain investment and fuel cost
parameters, 𝐼𝐶∗

𝑖𝑣, 𝑖 ∈ 𝐼 and 𝐹𝐶∗
𝑓𝑡, 𝑓 ∈ 𝐹 , is modeled as:

𝐼𝐶∗
𝑖𝑣 = 𝐼𝐶𝑖𝑣 +

∑

�̃�∈𝑉𝑖

𝜼𝐼𝐶�̃�𝑖𝑣𝑔
𝐼𝐶
�̃�𝑖𝑣𝐼𝐶𝑖𝑣 ∀𝑖 ∈ 𝐼, 𝑣 ∈ 𝑉𝑖 (2)

𝐹𝐶∗
𝑓𝑡 = 𝐹𝐶𝑓𝑡 +

∑

𝑡∈𝑇𝑓

𝜼𝐹𝐶
𝑡𝑓𝑡 𝑔

𝐹𝐶
𝑡𝑓𝑡 𝐹𝐶𝑓𝑡 ∀𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇𝑓 (3)

where, 𝜼𝐼𝐶�̃�𝑖𝑣 and 𝜼𝐹𝐶
𝑡𝑓𝑡 are independent and symmetrically distributed

random variables that take on values in the domain [−1, 1]. 𝑔�̃�𝑖𝑣 is the
effect of 𝐼𝐶𝑖𝑣 on 𝐼𝐶𝑖�̃� for 𝑣, �̃� ∈ 𝑉𝑖 and 𝑔𝑡𝑓 𝑡 is the effect of 𝐹𝐶𝑓𝑡 on
𝐹𝐶𝑓𝑡 for 𝑡, 𝑡 ∈ 𝑇𝑓 . In other words, 𝜼𝐼𝐶�̃�𝑖𝑣 determines the impact of an
investment cost change of one vintage on the other and 𝑔�̃�𝑖𝑣 represents
the maximum possible impact of vintage 𝑣 on vintage �̃�, �̃� ∈ 𝑉𝑖. For
example, from the approach outline in Section 4, if we determine that
a change in 𝐼𝐶𝑖𝑣 may lead to a 20% increase in 𝐼𝐶𝑖�̃�, then 𝑔�̃�𝑖𝑣 = 0.2.
Note that under this model there are |𝐼|.|𝑉𝑖|+ |𝐹 |.|𝑇𝑓 | potential sources
of uncertainty.

Bertsimas and Sim [19] provide the RO formulation for uncertain
constraint parameters. To use this formulation, we introduce a dummy
variable 𝐖 to write the objective function in the form of a constraint.
The resulting CR-ESOM formulation can be given as (4a)–(4e).

min 𝐖 (4a)

s.t. 𝐖−
(

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐼𝐶𝑖𝑣𝐂𝐀𝐏𝑖𝑣 +

∑

𝑡∈𝑇𝑖

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝑂𝐶𝑖𝑣𝑡𝐀𝐂𝐓𝑖𝑣𝑡

+
∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝐹𝐶𝑓𝑡𝐂𝐎𝐍𝑓𝑡

)

− max
𝜂𝜂𝜂𝐼𝐶�̃�𝑖𝑣 ,𝜂𝜂𝜂

𝐹𝐶
𝑡𝑓𝑡 ∈𝜂

(

∑

�̃�∈𝑉𝑖

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝜂𝜂𝜂𝐼𝐶�̃�𝑖𝑣𝑔

𝐼𝐶
�̃�𝑖𝑣𝐼𝐶𝑖𝑣𝐶𝐴𝑃𝑖𝑣

+
∑

𝑡∈𝑇𝑓

∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝜂𝜂𝜂𝐹𝐶
𝑡𝑓𝑡 𝑔

𝐹𝐶
𝑡𝑓𝑡 𝐹𝐶𝑓𝑡𝐶𝑂𝑁𝑓𝑡

)

≥ 0

(4b)

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐀𝐂𝐓𝑖𝑣𝑡 ≥ 𝐷𝑡 ∀𝑡 ∈ 𝑇 (4c)

∑

𝑉𝑖≤𝑇𝑖

𝛾𝑖𝑣𝑡𝐂𝐀𝐏𝑖𝑣 ≥ 𝐀𝐂𝐓𝑖𝑣𝑡 ∀𝑡 ∈ 𝑇𝑖, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼 (4d)

𝐵𝐱 ≥ 𝑏 (4e)

𝜂 =
{

|𝜂𝜂𝜂𝐼𝐶�̃�𝑖𝑣| ≤ 1,∀𝑖 ∈ 𝐼, 𝑣, �̃� ∈ 𝑉𝑖; |𝜂𝜂𝜂𝐹𝐶
𝑡𝑓𝑡 | ≤ 1,∀𝑓 ∈ 𝐹 , 𝑡, 𝑡 ∈ 𝑇𝑓 ,

∑

�̃�∈𝑉𝑖

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
|𝜂𝜂𝜂𝐼𝐶�̃�𝑖𝑣| +

∑

𝑡∈𝑇𝑓

∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
|𝜂𝜂𝜂𝐹𝐶

𝑡𝑓𝑡 | ≤ 𝛤
} (5)

In the above model, (5) is a feasible domain for the maximization
problem given in (4b). In the case of this work, uncertainties are
represented in technology investment costs and fuel costs, which affect
the objective function of model (1a), and in the robust formulation
are present in the structural constraint (4b). However, for a given
𝛤 , the maximization problem in constraint (4b) provides a protection
against infeasibility by assuming that total system cost includes the
worst-case cost of 𝛤 uncertain parameters. We note that here we

refer to model infeasibility as the inability of the mathematical solver
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to produce an optimal solution to the mathematical model, i.e., the
mathematical model presents an empty feasible region. For the robust
model formulation such infeasibilities may arise due to extreme re-
alizations of uncertainty that may change the feasible region of the
model in such a way that no values for the decision variables will
be able to satisfy all the model constraints. Eq. (4b) maximizes the
protection for a given technology capacity (𝐶𝐴𝑃𝑖𝑣) and consumption of
fuel (𝐶𝑂𝑁𝑓𝑡) by varying the decision variables (𝜼𝐼𝐶�̃�𝑖𝑣 and 𝜼𝐹𝐶

𝑡𝑓𝑡 ) over the
feasible domain 𝜂. Note that 𝜼𝐼𝐶�̃�𝑖𝑣 and 𝜼𝐹𝐶

𝑡𝑓𝑡 are represented as random
variables in Eqs. (2) and (3), however, they act as decision variables
in the above formulation. The maximization model is formulated as
a linear programming problem, as we keep the 𝐶𝐴𝑃𝑖𝑣 and 𝐶𝑂𝑁𝑓𝑡
constant as defined by the minimization model. Problem (4a)–(4e) can
be solved by iteratively solving minimization and maximization models
to minimize 𝐖. To avoid the iterative method, we can simplify model
(4a)–(4e) through the application of strong duality, which says that at
the optimum, the objective function value of the dual problem is the
same as primal problem [33].

Similar to the methodology presented in Appendix for R-ESOM,
through the application of strong duality, (4a)–(4e) can be written as
the linear program represented by (6a)–(6j).

min 𝐖 (6a)

s.t. 𝐖−
(

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐼𝐶𝑖𝑣𝐂𝐀𝐏𝑖𝑣 +

∑

𝑡∈𝑇𝑖

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝑂𝐶𝑖𝑣𝑡𝐀𝐂𝐓𝑖𝑣𝑡

+
∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝐹𝐶𝑓𝑡𝐂𝐎𝐍𝑓𝑡

)

−
(

∑

�̃�∈𝑉𝑖

∑

𝑖∈𝐼
𝐪𝐼𝐶𝑖�̃� +

∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝐪𝐹𝐶
𝑓𝑡 + 𝛤𝐩

)

≥ 0

(6b)

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐀𝐂𝐓𝑖𝑣𝑡 ≥ 𝐷𝑡 ∀𝑡 ∈ 𝑇

(6c)
∑

𝑉𝑖≤𝑇𝑖

𝛾𝑖𝑣𝑡𝐂𝐀𝐏𝑖𝑣 ≥ 𝐀𝐂𝐓𝑖𝑣𝑡 ∀𝑡 ∈ 𝑇𝑖, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼

(6d)

𝐵𝐱 ≥ 𝑏 (6e)
𝐩 + 𝐪𝐼𝐶𝑖�̃� ≥ 𝐲𝐼𝐶𝑖�̃� ∀𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼

(6f)
𝐩 + 𝐪𝐹𝐶

𝑓𝑡 ≥ 𝐲𝐹𝐶
𝑓𝑡 ∀𝑡 ∈ 𝑇𝑓 , 𝑓 ∈ 𝐹

(6g)
− 𝐲𝐼𝐶𝑖�̃� ≤

∑

�̃�∈𝑉𝑖

𝑔𝐼𝐶�̃�𝑖𝑣𝐼𝐶𝑖𝑣𝐂𝐀𝐏𝑖𝑣 ≤ 𝐲𝐼𝐶𝑖�̃� ∀𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼

(6h)
− 𝐲𝐹𝐶

𝑓𝑡 ≤
∑

𝑡∈𝑇𝑓

𝑔𝐹𝐶
𝑡𝑓𝑡 𝐹𝐶𝑓𝑡𝐂𝐎𝐍𝑓𝑡 ≤ 𝐲𝐹𝐶

𝑓𝑡 ∀𝑡 ∈ 𝑇𝑓 , 𝑓 ∈ 𝐹

(6i)
𝐩,𝐪𝐼𝐶𝑖�̃� ,𝐪𝐹𝐶

𝑓𝑡 , 𝐲
𝐼𝐶
𝑖�̃� , 𝐲𝐹𝐶

𝑓𝑡 ≥ 0 ∀�̃� ∈ 𝑉𝑖, 𝑡 ∈ 𝑇𝑓 , 𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹

(6j)
In Constraint (6b), the last term represents the objective function of

the dual problem of the maximization problem given in Constraint (4b),
while Constraints (6f)–(6j) are the corresponding constraints of the
dual problem. To aid understanding of the dual formulation, consider
a case where the budget of uncertainty (𝛤 ) is 0. In this case, the
optimal value of the dual variable 𝐩 is equal to 𝑚𝑎𝑥(𝐲𝐼𝐶𝑖�̃� , 𝐲𝐹𝐶

𝑓𝑡 ) and
the other dual variables 𝐪𝐼𝐶𝑖�̃� ,𝐪𝐹𝐶

𝑓𝑡 = 0, making the third term in (6b)
irrelevant and thus reducing the formulation (6a)–(6j) to the least-
cost problem (1a)–(1d). For a budget of uncertainty 𝛤 > 0, the model
tries to diversify the selection of fuels and technologies to minimize
the combined worst-case outcome by optimizing the dual variables of
the maximization problem (𝐩,𝐪𝐼𝐶𝑖�̃� ,𝐪𝐹𝐶

𝑓𝑡 , 𝐲
𝐼𝐶
𝑖�̃� and 𝐲𝐹𝐶

𝑓𝑡 ), which are now
5

represented as decision variables in the model (6a)–(6j).
2.3. Evaluating the quality of the RO solution

In addition to the direct application of the CR-ESOM formulation
described above, we also examine the quality of the robust solution
relative to the naive baseline solution by employing Monte Carlo sim-
ulation. This approach has been widely used for analyzing the solution
quality in the context of SLPs [34–37], however, we are the first to
apply solution quality analysis to an ESOM employing RO. Our goal is
to compare the quality of the robust solution with the naïve solution
under potential future realizations of uncertain parameters.

To investigate the solution quality of the CR-ESOM, the model
analysis proceeds as follows. First, we solve the CR-ESOM formulation
twice under two budgets of uncertainty: 𝛤 = 0%, which represents the
naive scenario in which no uncertain parameters take on their worst
case value, and 𝛤 = 7%, which represents a robust scenario where 7%
of the uncertain parameters take on their worst-case value. We chose
this budget of uncertainty because the probability that more than 7%
of the uncertain parameters take on their worst-case value is negligible,
as shown in Fig. 4.

Second, the technology-specific capacity decisions from both the
naive and robust scenarios are passed to a standard, non-RO version
of the model, which is used within a Monte Carlo simulation in which
the values of the uncertain parameters are varied based on the Latin
Hypercube Sampling (LHS). The baseline and worst-case values are
used to form a uniform range for each parameter, which is used to make
the random draws during the Monte Carlo simulation. By drawing from
uniform distributions rather than simply assuming worst-case values,
we make the assumption that realized parameter values will likely fall
within the defined range instead of taking on only extreme values.
For each Monte Carlo iteration, the model must use the fixed capacity
values from the previous step and take recourse action by optimizing
the activity variables given the realized parameter values.

3. Case study

This paper applies the methodology described in Section 2 to a
representation of the US energy system. The US database draws data
from the US EPA MARKAL (USEPA9r) database [38], NREL [39], and
the EIA Annual Energy Outlook [40] and includes representation of the
residential, commercial, transportation, industrial, and electric sectors.
The model time horizon spans from 2017 to 2050, with 5-year time
periods beginning in 2020. To represent seasonal and diurnal variations
in energy supply and demand, the model must perform an energy
commodity balance across a set of time slices that represent differ-
ent combinations of seasons and times of day. In the input database
used in this analysis, we represent three seasons (summer, winter,
intermediate) and four times of day: morning (6AM–12PM), afternoon
(12PM–3PM), evening (3PM–9PM), and night (9PM–6AM).

The end-use sectors (residential, commercial, transportation, and
industrial) include demand technologies that convert secondary en-
ergy carriers (e.g., electricity, natural gas, liquid fuels) into useful
energy services (e.g., space heating, space cooling, vehicle miles trav-
eled). These energy service demands are specified exogenously and
are drawn from the USEPA9r database. For example, the residential
sector includes demands for space heating, space cooling, water heat-
ing, freezing, refrigeration, lighting, and miscellaneous electricity for
appliances.

Data on existing capacities of technologies in the residential, com-
mercial and transportation sectors as well as their techno-economic
parameters is drawn from the USEPA9r [38]. These parameters include
overnight investment costs, conversion efficiencies and technology life-
times. Existing capacity data on electric sector technologies is drawn
from [40]. We develop our own simplified representation of the indus-
trial sector, which explicitly represents process heat and combined heat
and power and handles the remaining industrial demand through fuel

share constraints. Finally, instead of modeling extraction and transport
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Table 1
Sectoral-level detail in the Temoa input database.

Sector Description

Fuel Supply Fuel costs are specified exogenously. Baseline projections are drawn from the [40].
There is no limit on fuel availability except for biofuel use in the transportation
sector [42]. In addition, the database includes a representation of power-to-X. Temoa
can use electricity to produce hydrogen, which can be used directly or converted to
methanol and synthetic natural gas. Cost and performance characteristics are drawn
from various sources which are detailed in [43].

Electric The electric sector includes 34 generating technologies. Air pollution control retrofits
for coal include low NOx burners, selective catalytic reduction, selective non-catalytic
reduction, and flue gas desulfurization. Costs and performance characteristics are
largely drawn from the NREL Annual Technology Baseline (ATB) report [39] and
EPA US MARKAL database [38]; existing capacity estimates are drawn from the [40].

Transportation The transportation sector is divided into four modes: road, rail, air, and water. Road
transport is modeled with greater detail by dividing it into three subsectors: light
duty transportation, heavy duty transportation, and off-highway transportation. The
light duty sector includes 6 size classes and 9 different vehicle technologies. Data is
largely drawn from USEPA9r [38].

Industrial Given the high degree of heterogeneity in the industrial sector, it is modeled with a
simplified representation. Process heat and CHP (combined heat and power) are
modeled explicitly while the other industrial end uses are modeled as a set of fuel
share constraints that are calibrated to the [40].

Commercial The commercial sector includes the following end-use demands: space heating, space
cooling, water heating, refrigeration, lighting, cooking, and ventilation. A total of 83
demand technologies are included to meet these end-use demands. Data is largely
drawn from USEPA9r [38].

Residential The residential sector includes the following end-use demands: space heating, space
cooling, water heating, freezing, refrigeration, lighting, cooking, and other
appliances. A total of 69 demand technologies are included to meet these end-use
demands. Data is largely drawn from USEPA9r [38].
of fossil fuels such as natural gas, coal and liquid fuels, fuel costs
are specified exogenously and are taken from [40]. A brief sectoral
description of the input dataset is provided in Table 1. The database
itself is publicly available for testing and verification on Zenodo [41].

We created an ‘embarrassingly parallel’ implementation of the CR-
ESOM framework to minimize the computational time [44]. In an
embarrassingly parallel implementation, multiple instances of a prob-
lem are solved simultaneously on separate computer cores, and the
instances have no co-dependency. We use the ‘‘joblib’’ library in python
to parallelize all the iterative runs of the model. We run the model using
a workstation containing two Multi-Core Intel Xeon E5-2600 series pro-
cessors, representing a total of 24 compute cores. The resulting linear
model is solved using CPLEX. The computational time to solve the
deterministic model is 8–9 min while solving the CR-ESOM formulation
takes 20–22 min for a given budget of uncertainty.

4. Building the uncertainty set

The CR-ESOM formulation requires bounds on the uncertain input
parameters and their auto-correlation. The existing literature applying
RO to ESOMs ignores this auto-correlation, which diminishes the effect
of fuel cost uncertainty by treating the realized fuel cost in each time
period as an independent quantity. Though beyond the scope of this
analysis, the same approach can be extended to include the correlation
between two different parameters; for example, between natural gas
and coal prices through time. For simplicity, we categorize the uncer-
tain parameters into two groups: fuel cost and investment cost. We then
determine the uncertainty bounds and the auto-correlation coefficients
for each group based on various sources of data. The following sections
detail the process for grouping the parameters and determining their
uncertainty bounds.

4.1. Grouping of the parameters

In total, the model has 6415 uncertain cost parameters, which
includes investment costs, fixed O&M, variable O&M, and fuel costs.
6

Eshraghi et al. [5] conducted a Monte Carlo analysis using the same
model and database and showed that investment cost and fuel cost
parameters have the highest impact on the total system cost. As a
result, uncertainty in the O&M costs are not considered in this analysis.
After excluding the fixed and variable O&M cost parameters, setting
bounds on the remaining 2252 uncertain parameters is still a time-
consuming task. As a trade-off between time and accuracy, we divide
the parameters into 20 subgroups based on similarities in the under-
lying technology, as shown in Table 2. For example, rooftop solar PV
and centralized solar PV, though distinct technologies, are placed in the
same subgroup. Similarly, the uncertainty in the cost of electric vehicles
arise from the uncertainty in battery technology. As a result, different
types of electric vehicles are grouped together to form one category
called ‘electric vehicles’.

4.2. Uncertainty characterization

Fig. 2 provides a general flowchart to quantify the range and
auto-correlation for the uncertain input parameters, and involves the
application of six criteria. Each criterion corresponds to a different
data source for quantifying the uncertainty range of the parameter. If
the uncertain parameter satisfies the given criterion, then the corre-
sponding data is collected for the computation of correlation coefficient
and uncertainty range. Then we calculate yearly standard deviation
and the correlation coefficient for each category considering a five-
year time lag. The highest value associated with each fuel cost and
capital cost is considered to be its worst-case value in each model time
period. Note that a correlation coefficient is applied to all technologies
within a category, however, the worst-case values are specific to each
technology represented in the model. For example, the correlation
coefficient for all petroleum-based fuels is the same for all fuels in
the ‘oil’ category, such as diesel, gasoline, and LPG. However, worst-
case values for each individual fuel type and sector combination are
obtained from the 2020 Annual Energy Outlook.

4.2.1. Criteria for investigating uncertainty
The six criteria shown in Fig. 2 are applied to each selected un-
certain parameter in the input database. To choose the criterion for an
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Fig. 2. Process to characterize the upper bound (worst-case) values and auto-correlation. The box on the right outlines the six criteria used to select uncertain parameter values
in the model. Each criterion corresponds to a different method for quantifying the parameter uncertainty and the correlation coefficient. Note that the baseline values along with
the upper bound values define the uniform ranges used in the Monte Carlo simulation.
uncertain parameter, we use an ‘if-else’ strategy. For example, if the C1
criterion is not satisfied, then we move to criteria C2. To characterize
the uncertainty associated with the investment cost of relatively new
technologies, we use criteria C1–C4. Criteria C2, C5 and C6 are used to
characterize the uncertainty in fuel cost. Details on the six criteria are
given below.

C1: Can we obtain the range from NREL Annual Technology Baseline
(ATB)? The ATB report provides the investment costs for elec-
tricity generators for three scenarios — low, medium and high.
We treat the ‘high’ scenario as the upper bound for the uncertain
investment cost parameters that fall in this category.

C2: Is the range proposed in the literature? In some cases, un-
certainty ranges for key parameters are provided in the lit-
erature. For example, [30] reports the uncertainty bound for
biomass supply. If the range in the literature is not for the United
States, then we look at the uncertainty ranges defined for other
countries.

C3: Can we obtain a range from Open Energy Information (EI) data?
OpenEI is a platform created and managed by NREL [45] that
collects energy-related data from various national labs, agencies,
journal papers, and experts. They are a reliable platform for
gathering power plant and transportation sector investment cost
data from various sources. We use the data published after 2010
since OpenEI has very few studies that provide data prior to
2010. Not all the studies provide data for all our model time
periods, which extend from 2017 to 2050. Hence, we collect
the worst-case values, i.e., the highest value of the parameter
7

projection given in the literature for 2020 and 2050. We assume
that the 2017 investment and fuel costs are certain since it is
a historic year. We linearly interpolate the upper bound for the
uncertain investment cost parameter from 2020 and 2050 values
for the remaining time periods.

C4: What if the data for the parameter is not readily available? In
this case, we divide these parameters into two groups: rapidly
advancing technologies and mature technologies. The majority
of the residential, commercial and industrial sector technologies
have been well developed over several decades. As a result, we
assume that all the technologies in these sectors fall under the
‘mature’ technology category. Technologies related to hydrogen
and biofuels are still largely in the research and development
phase. Therefore, they are categorized as ‘rapidly advancing’
technologies. To determine the worst-case value of the invest-
ment cost parameter for mature technologies, we follow the
methodology proposed in [30] by choosing a representative
technology based on data availability. The uncertainty bounds
for all the mature technologies are then set based on the un-
certainty bound of the representative technology. For the US
database, natural gas boiler technology is chosen as a representa-
tive technology in the mature category. From the available data
for natural gas boilers, we find that the worst-case value is 21.6%
higher than its nominal value. Hence, the upper bound for all
mature technologies is set at 21.6% above their nominal values.
We apply a similar methodology for the ‘rapidly advancing’
technology category, with solar PV used as the representative
technology.
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Table 2
Application of uncertainty characterization method to the input database. We divide
2252 parameters into 20 categories.

Category Criteria

C1 C2 C3 C4 C5 C6

Investment cost

Coal power plant ✓

Natural gas power plant ✓

Nuclear power plant ✓

Solar photovoltaic ✓

Onshore wind turbine ✓

Li-ion battery ✓

Bio-IGCC ✓

Electric vehicles ✓

Diesel vehicles ✓

Diesel hybrid vehicles ✓

Gasoline vehicles ✓

Gasoline hybrid vehicles ✓

Plug-in hybrid vehicles ✓

Rapidly advancing technologies ✓

Mature technologies ✓

Fuel cost

Natural gas ✓

Coal ✓

Oil ✓

Biomass ✓

Nuclear ✓

C5: Is the range available in the EIA Annual Energy Outlook (AEO)?
We use this category for determining the fuel cost uncertainty.
AEO (2020) provides the fuel costs for eight different scenarios.
The scenario that gives the highest price for a given fuel across
all time periods is used as the worst-case scenario. This scenario
provides the upper bound for future fuel costs.

C6: Can we determine the range from the historical data? If the
AEO does not provide the upper bound for fuel cost, then the
historical upper bound is set as the worst-case value of the fuel.
For the US database, only uranium falls in this category. The
upper bound for this fuel remains the same through the time
horizon.

The results obtained from the above analysis are summarized in
able 2.

.2.2. Correlation coefficient
After categorizing the uncertain fuel cost and investment cost pa-

ameters, we determine the correlation coefficient 𝜌 for each category.
irst, to compute the correlation coefficient for fuel costs, we use histor-
cal fuel cost data from [40] and compute auto-correlation with a 5-year
ag to match the length of future model time periods. Next, we consider
he uncertainty in investment cost. Similar to the correlation in fuel
osts, the investment cost of technology is also temporally correlated.
or example, the investment cost of solar PV has been decreasing for
he last decade. As a result, it will likely decrease for the next several
ears although not at the same rate. To compute the auto-correlation
oefficient for the technology investment cost, we use historical data
ollected by OpenEI [45]. However, for some technologies, the histor-
cal data collected by OpenEI is not sufficient to compute correlation.
onsequently, we also include future projection data through 2050 to
ompute the auto-correlation coefficients. For simplicity, we assume
hat the temporal correlation for mature technologies is 100%, such
hat when a mature technology takes on its worst-case value in a
articular time period, it retains that worst-case value for all preceding
nd subsequent time periods. Since auto-correlation for mature tech-
ologies is 100%, the parameter takes on the same value for all other
ime periods once uncertainty is resolved for one period. Note that as

relatively mature technology, the cost of diesel vehicles fluctuates
8

ver time depending on the share of different types and makes of
Table 3
Auto-correlation for the uncertain fuel cost and technology cost parameters.

Category Type Auto correlation
coefficient

Coal power plant combined cycle 0.334
combined cycle with CCS 0.547

Natural gas power plant combined cycle 0.135
combined cycle with CCS 0.644
combustion turbine 0.527

Nuclear power plant – 0.597
Solar Solar photovoltaic 0.534

Solar thermal 0.809
Onshore wind turbine – 0.309
Li-ion battery – 0.996
Bio-IGCC – 0.752
Electric vehicles – 0.691
Diesel vehicles – 0.174
Diesel hybrid vehicles – 0.606
Gasoline vehicles – 0.597
Gasoline hybrid vehicles – 0.108
Plug-in hybrid vehicles – 0.233
Rapidly advancing technologies – 0.534
Mature technologies – 1

Natural gas – 0.5798
Coal – 0.3857
Oil – 0.3015
Biomass – 0.5868
Nuclear – 0.6701

the vehicle technology. Data for the projections of the manufacturing
cost of new diesel vehicles demonstrate a lack of a clear upward or
downward trend, resulting in low auto-correlation of diesel vehicles.
In contrast, lithium-ion batteries have experienced a significant cost
decline over the last decade, resulting in very high auto-correlation.
Auto-correlation for the uncertain fuel cost and technology cost param-
eters is given in Table 3. For coal, natural gas and solar categories, the
coefficient is reported by technology type.

4.2.3. Determining the effects of correlation on the uncertainty bounds
Using the correlation coefficient and the bounds on uncertain pa-

rameters, in this section, we determine the impact of correlation on
the uncertainty bounds. We demonstrate the methodology for uncertain
fuel costs, and the same methodology is extended for uncertain invest-
ment cost parameters. To do so, we assume that the price of fuel 𝑓 is
a normally distributed random variable, 𝐗 with mean, 𝜇. We assume
that the mean value of fuel 𝑓 in time period 𝑡 is equal to the reference
case scenario given by the [40]. The AEO scenario with the highest fuel
cost is considered the worst-case scenario for each fuel cost parameter,
𝑋𝑚𝑎𝑥

𝑡 .
Due to the auto-correlation for fuel cost parameters, 𝐗𝑡 is correlated

with 𝐗𝑡+𝛥, where 𝛥 is a difference between adjacent time-periods. The
orrelation coefficient 𝜌 is given in Table 3. Assume that both 𝐗𝑡 and
𝐗𝑡+𝛥 are normally distributed random variables. As a result, 𝐗𝑡+𝛥|𝑡 =
𝑡+𝛥|𝐗𝑡 is also a normally distributed random variable. In this study,
e want to quantify the impact of worst-case fuel costs in time period 𝑡
n fuel costs in time period 𝑡+𝛥. Therefore, the mean of 𝐗𝑡+𝛥|𝑡, 𝜇𝐗𝑡+𝛥|𝑡

,
an represent the expected value of 𝐗𝑡+𝛥 given that 𝐗𝑡 assumes the
orst-case value, 𝑋𝑚𝑎𝑥

𝑡 . The mean of 𝐗𝑡+𝛥|𝑡 is then given by

𝐗𝑡+𝛥|𝑡
= 𝜇𝑡+𝛥 + 𝜌(𝐗𝑡 − 𝜇𝑡)𝜎𝑡+𝛥∕𝜎𝑡 (7)

here, 𝜎𝑡+𝛥∕𝜎𝑡 can be written as (𝑋𝑚𝑎𝑥
𝑡+𝛥 − 𝜇𝑡+𝛥)∕(𝑋𝑚𝑎𝑥 − 𝜇𝑡). Similarly,

the expected value of 𝐗𝑡+2𝛥 given the value of 𝐗𝑡 is given by Eq. (8).

𝜇𝐗𝑡+2𝛥|𝑡
= 𝜇𝑡+2𝛥 + 𝜌(𝜇𝐗𝑡+𝛥|𝑡

− 𝜇𝑡+𝛥)𝜎𝑡+2𝛥∕𝜎𝑡+𝛥 (8)

Note that 𝑡+𝛥 corresponds to the next time period and 𝑡+2𝛥 to the
time period after that. The mean of the random variable 𝐗𝑡+𝛥|𝑡 can be
given as (9).

𝜇𝐗 = 𝜇𝑡+𝛥 + 𝜌(𝑋𝑚𝑎𝑥 − 𝜇𝑡)
(𝑋𝑚𝑎𝑥

𝑡+𝛥 − 𝜇𝑡+𝛥)
= 𝜇𝑡+𝛥 + 𝜌(𝑋𝑚𝑎𝑥 − 𝜇𝑡+𝛥) (9)
𝑡+𝛥|𝑡 𝑡 (𝑋𝑚𝑎𝑥 − 𝜇𝑡) 𝑡+𝛥
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Fig. 3. Effect of the correlation in coal costs. The red line shows the maximum worst-case values 𝐗𝑚𝑎𝑥
𝑡 from the [40] while the green line shows the reference case values 𝜇𝑡. The

dark dotted line shows a scenario where coal cost assumes maximum worst-case value in 2035, 𝐗𝑚𝑎𝑥
2035. 𝜇𝐗40|35

and 𝜇𝐗45|40
denote the impact of worst-case coal cost in 2035 on the

year 2040 and 2045, respectively. The lighter dotted lines show the cost trajectory when it hits the maximum worst-case value in other time periods. The equation on the top
shows the computation of 𝑔𝐹𝐶

𝑡𝑓𝑡 required for the CR-ESOM formulation.
The CR-ESOM formulation given in (6a)–(6j) requires the compu-
tation of 𝑔𝐹𝐶

𝑡𝑓𝑡 , which represents the ratio of the worst case value and
nominal value of an uncertain fuel parameter for a given time period.
As per the above computations, 𝑔𝐹𝐶

(𝑡+𝛥)𝑓𝑡 can be given by

𝑔𝐹𝐶
(𝑡+𝛥)𝑓𝑡 = 𝜇𝐗𝑡+𝛥|𝑡

∕𝜇𝑡+𝛥 (10)

Fig. 3 shows an example of coal costs over the time horizon given
that the worst case occurs in every time period. Since the difference in
adjacent model time periods 𝛥 = 5, 𝜇𝐗40|35

represents the coal cost in
2040 given that coal cost in 2035 assumes worst-case value. Similarly,
𝜇𝐗45|35

represents the coal cost in 2045 given that coal cost in 2035
assumes worst-case value. If coal cost assumes worst-case value in 2035
and 2040, then the coal cost in 2045 will be maximum of 𝜇𝐗45|35

and
𝜇𝐗45|40

.

5. Robust optimization results

We use the CR-ESOM formulation to address the basic questions
outlined in Fig. 1. In Section 5.1, we develop three scenarios based
on running the CR-ESOM formulation under different budgets of un-
certainty. We then fix the capacity decisions from each scenario and
allow the model to take recourse action by optimizing the associated
activity variables under budgets of uncertainty ranging from 0% to
100%. The goal of the exercise is to observe how the system costs
change under each scenario as the budget of uncertainty varies. As
a reminder, the budget of uncertainty represents the percentage of
uncertain parameters taking on their worst-case value. It can also be
interpreted as the level of risk tolerance. When 𝛤 = 0%, all parameters
take on their nominal values and thus, the model ignores uncertainty,
which implies a high-risk decision strategy. When 𝛤 = 100%, all
uncertain parameters take on their worst-case value, and the model
returns a solution that is maximally conservative, implying a highly
risk-averse decision strategy.

In Section 5.2, we perform the solution quality analysis described
in Section 2.3. The Naive (𝛤 = 0%) and Robust (𝛤 = 7%) scenarios are
subject to a Monte Carlo simulation in which the capacity variables are
fixed, and the model takes recourse action under different realizations
of the uncertain parameters. The goal of this analysis is to rigorously
test and compare the performance of the robust and naive strategies
under a wide array of conditions.

In Section 5.3, we vary the budget of uncertainty (𝛤 ) from 0%
to 100%. Unlike in the previous sections, the capacity and activity
9

variables are solved simultaneously. The goal is to observe how the
technology pathways in each sector change as the risk tolerance is
adjusted.

In Section 5.4, we identify the uncertain parameters that have the
largest effect on system cost under different budgets of uncertainty.
Since ESOMs are computationally intensive, the goal of this exercise
is to identify the uncertain parameters with the highest impact, which
can be prioritized for further refinement in future modeling efforts.

5.1. Performance of the robust optimization strategy

Fig. 4 presents the total system cost versus the budget of uncer-
tainty (𝛤 ) under three different scenarios: ‘Naive’, ‘Robust’, and ‘Robust
Nominal’. For each scenario, the optimization is performed in two
steps. In the first step, capacity deployment decisions are made under
a particular scenario-specific planning strategy using the CR-ESOM
formulation. In the second step, the model utilizes the fixed capacity
decisions from the first step to making optimal technology utilization
decisions under different budgets of uncertainty.

In the ‘Naive’ scenario, the model optimizes technology capacity
assuming no future uncertainty (𝛤 = 0%). In the ‘Robust’ scenario,
the model optimizes technology capacity assuming 𝛤 = 7%. We chose
this budget of uncertainty because the probability that more than 7%
of the uncertain parameters take on their worst-case value becomes
negligible, as shown in Fig. 4. As a result, decision-makers will have
a little economic incentive to choose a solution with higher robustness.

In the second step, under both the ‘Naive’ and ‘Robust’ scenarios,
the capacity decisions remain fixed and (𝛤 ) ranges from 0% to 100%.
The total system cost calculated in this second step accounts for the
model’s recourse actions under different realizations of uncertainty,
under which different numbers and combinations of parameters take
on their worst-case values. More significant recourse actions in the
second step will result in higher system costs. In general, the ‘Robust’
scenario accounts for the possibility of worst-case parameter values in
the capacity planning stage, which help limit the required recourse
actions in the second step under higher budgets of uncertainty.

We also test a ‘Robust Nominal’ scenario where in the first step 𝛤
varies from 0%–100%. Then in the second step, for each 𝛤 value, the
capacity decisions are fixed, and the model performs the optimization
under nominal conditions with 𝛤 = 0%. Thus, results from the ‘Robust
Nominal’ scenario provide a useful point of comparison by quantifying
the added cost of hedging capacity decisions only to find that none of
the parameters take on their worst-case values in the future.

As shown in Fig. 4, the naïve solution is more expensive than the
robust solution with one exception: if all uncertain parameters assume
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Fig. 4. Percent change in the total system cost as a function of the budget of uncertainty. ‘Naïve’ represents the cost of the naïve solution as the budget of uncertainty (𝛤 ) increases;
‘Robust’ represents the same for the robust solution; ‘Robust Nominal’ represents the cost of the robust solution if all uncertain parameters assume their nominal value. The solid
line labeled ‘Probability’ indicates the probability that the number of parameters taking on their worst-case value will exceed a given budget of uncertainty. The probability that
more than 7% of uncertain parameters assuming their worst-case value is negligible.
their nominal value in the future, the extra expense associated with
hedging under the robust strategy is not required. Since the naive
solution ignores uncertainty while making capacity decisions, it must
take more expensive recourse actions when some subset of uncertain
parameters assume their worst-case values. Fig. 4 indicates that the
risk of the robust strategy is lower than the risk of the naïve one:
at a 7% budget of uncertainty, the robust solution will only cost 6%
more than the naïve solution if no parameters assume their worst-case
value. However, the naïve solution may cost 91% more than the robust
solution if 7% of the uncertain parameters assume their worst-case
value.

5.2. Assessing the quality of the robust solution

In reality, most uncertain parameters will not assume their worst-
case value simultaneously. Instead, the realization of uncertain param-
eters will more likely be within the uncertainty range, defined on the
lower end by the nominal value and on the upper end by the worst-
case value. To account for this behavior, we analyze the quality of the
robust solution following the procedure outlined in Section 2.3. We
then compare the quality of the RO solution with the naïve solution
under potential future realizations of uncertain parameters. To do so,
we fix the capacity decisions based on the RO solution with 𝛤 =
7% and solve the least cost formulation (1a)–(1d) for 2000 different
realizations of uncertain parameters. We follow the same procedure for
the naïve solution. The spread of total system cost for the RO and naïve
solution under varying realizations of uncertain parameters is shown
in Fig. 5. This approach allows us to estimate the economic savings
associated with following a robust versus naïve strategy. Fig. 5 suggests
that the expected cost of the RO solution, 𝜇𝑟𝑜𝑏, is 12% lower than the
expected cost of the naïve solution, 𝜇𝑑𝑒𝑡, while the standard deviation
of the naïve solution is 8% higher than the robust solution. Thus,
the results suggest that making investment decisions that explicitly
consider future uncertainty yields significant economic benefits, with
a modest decrease in the potential range of system costs.

5.3. Robust emission mitigation pathways considering future uncertainty

This section investigates technology pathways consistent with US
commitments under the Paris Agreement under different robustness
assumptions. Fig. 6 shows the change in energy system activity in three
10
representative time periods (2020, 2030, and 2050) under a gradually
increasing budget of uncertainty. Each stacked bar plot for each time
period contains three elements, from left to right: a single bar indicating
the naive solution (𝛤 = 0%), a series of 12 bars representing a range in
the budget of uncertainty (𝛤 = [2%, 24%]), and a single bar indicating
the worst-case scenario (𝛤 = 100%). The strategy with 𝛤 = 100%
represents the [16] hedging approach whereby all uncertain parameters
assume their worst-case value. However, varying the budget of uncer-
tainty, as proposed by Bertsimas and Sim [19], allows us to identify the
solutions along a continuum. For 𝛤 varying between 0% to 24%, the RO
approach encourages diversification in fuels and technology to hedge
against uncertainty. These intermediate solutions do not emerge in the
more traditional [16] approach. For a budget of uncertainty greater
than 24%, the RO solution remains relatively constant, though there
are exceptions. A similar diversification in optimal results is observed
for the numerical simulations presented by Bertsimas and Sim [19]. In
Fig. 6, we vary the budget of uncertainty to observe the technology
deployment options available to decision-makers based on their risk
tolerance. Note that the industrial sector is excluded from Fig. 6 as
we only represent process heating and CHP in detail while assuming a
fixed fuel share for the rest of the sector. Moreover, only the variation
space heating and space cooling is shown in detail for the residential
and commercial sector as the rest of the sector-specific technology
composition does not change significantly.

The composition of the energy system changes dramatically when
we account for uncertainty. In Fig. 6(a), the naïve solution with an
emission target achieves 40% electricity generation by nuclear power
plants in 2050. However, the robust solution suggests diversifying the
sources of electricity generation. Carbon capture and sequestration
(CCS), underground hydrogen storage, and solar thermal play a more
significant role even though these technologies are not a cost-effective
choice in the naïve case. In other words, if we assume a rational but
naive cost-minimizing decision maker, then the optimal technology
mix would not include these technologies. The relative capacity of the
technologies, however, depends on the decision maker’s risk tolerance.
Interestingly, with an increased budget of uncertainty, the investment
in new CCS decreases while investment in new nuclear increases. Bert-
simas and Sim [19] observe similar results whereby the diversity of
the solution decreases under the highest budgets of uncertainty. The
rationale behind this observation is that when 𝛤 = 100%, solving the
RO model is equivalent to solving a deterministic model where all cost
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Fig. 5. Distribution of system cost for the naïve (𝛤 = 0%) and robust solutions (𝛤 = 7%) under 2000 uncertain parameter realizations produced via Monte Carlo simulation.
parameters are at their worst-case value. As a result, the model chooses
the least-cost option instead of diversifying the resources. Overall elec-
tricity generation in 2050 increases by approximately 20% in a robust
solution as compared to the naïve solution regardless of the budget of
uncertainty. This result indicates that increasing electrification in the
end-use sector enhances diversification. The RO solution at 𝛤 < 10%
also suggests delaying some investments in wind and solar generation
until after 2030 because of high uncertainty in their investment cost.
Instead, the required emission reduction is achieved using nuclear
power plants and CCS. Note that this insight is driven by our selection
of worst-case values. As a result, future work is needed to refine the
bounds and correlation coefficients to increase the confidence in the
insights. With the increase in CCS, the robust solution suggests delaying
the retirement of coal power plants even though natural gas combined
cycle power plants are cheaper to operate. The main reason behind
this shift is that the relative variation in coal prices is lower than the
variation in natural gas prices. Thus the retirement of coal is delayed
until 2030. After 2030, with the reduced uncertainty in the cost of
renewable generation, coal is replaced by solar PV and onshore wind
turbines.

Figs. 6(b) and 6(c) show the changes in space heating and space
cooling for commercial and residential sectors, respectively. The com-
mercial sector results remain consistent across all 𝛤 values, with some
trade-offs between natural gas boilers and furnaces. In the residential
sector, there is a switch from geothermal to natural gas heat pumps as
𝛤 increases from 2% to 16%, and then a large scale shift to electric
heat pumps in the worst-case scenario (𝛤 = 100%). Overall, heat
pumps appear to be a robust technology option across the full range
of uncertainty. De Villiers and Matibe [46] show a similar solution and
suggest mitigating emissions from the residential sector by increasing
electrification.

The transportation sector, plotted in Fig. 6(d), undergoes more
drastic changes when the uncertainty is considered compared to the
residential and commercial sectors. The first significant shift from the
naïve solution is reducing the dependency on electric cars alone and
replacing them with PHEVs and hybrid vehicles. High uncertainty in
electricity prices caused by highly uncertain natural gas prices affects
11
the transportation sector’s electric vehicle share. The model results
indicate that the share of PHEVs and hybrid vehicles depends on the
preferred level of risk tolerance.

As mentioned above, the diversity of the resources in the robust
solution tends to decrease at the highest budgets of uncertainty. Conse-
quently, the share of technologies within each sector depends on the
budget of uncertainty selected. The naïve solution suggests electrifi-
cation of vehicle transport; however, more robust strategies prioritize
the electrification of process heating in the industrial sector over in-
vestment in electric vehicles. Since the process heating technologies
in the industrial sector have conservative worst-case values, the model
tends to choose them over electric cars, which have a wider potential
cost range. This observation illustrates a broader point: the results are
contingent on how the worst-case values are calibrated.

5.4. Importance of a parameter in achieving a robust solution

For a given budget of uncertainty, the CR-ESOM formulation deter-
mines the uncertain parameters, among all 2252 uncertain parameters
considered for this analysis, that produce the highest impact on the
total system cost. Identifying the most impactful parameters helps
to prioritize data development associated with technologies and pa-
rameters that play a key role in the model. To do so, we sort the
shadow prices corresponding to the feasible domain given in Eq. (5),
in decreasing order. Specifically, we concatenate optimal values of the
variables 𝐲𝐼𝐶𝑖�̃� and 𝐲𝐹𝐶

𝑓𝑡 and put them in descending order, since a higher
value of 𝐲 leads to a higher impact of the uncertain parameter on the
cost function. We plot the parameters corresponding to the highest 𝐲𝐼𝐶𝑖�̃�
and 𝐲𝐹𝐶

𝑓𝑡 in Fig. 7. As we move from top to bottom, the importance of
the parameter decreases. As we move from left to right, the robustness
of the solution increases. For example, for 𝛤 = 1, an investment
cost of light-duty vehicles influences the objective function the most
(top-left corner). For 𝛤 = 50, solar PV investment cost becomes the
most influential parameter (top-right corner). As we move down a
column in the triangle, corresponding to a given budget of uncertainty,
the importance of the parameter in determining the robust solution
decreases. For example, at 𝛤 = 50, the investment cost uncertainty
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Fig. 6. Activity of technologies in different sectors as a function of the budget of uncertainty and three different time periods (2020, 2030, 2050): (a) electricity generation, (b)
commercial space cooling (‘SC’) and heating (‘SH’), (c) residential space cooling and space heating, and (d) transportation. The ‘WC’ stacked bars represent the technology activity
in a given sector and time period under the worst-case outcome (𝛤 = 100%), and ‘naïve’ represents the reference scenario where uncertainty is ignored (𝛤 = 0%).
t
elated to solar water heating in the commercial sector (far right-
ottom corner) is less influential in determining the robust solution
han the investment cost of solar PV (top-far right). It is important
o note that the RO methodology tries to minimize the product of
he worst-case value and optimal capacity of a technology and thus
12
he ordering of the most influential parameters can change. When 𝛤
is lower than 30, this product for solar PV and bioenergy with CCS
(BECCS) is not large enough, as their optimal capacity is small. As we
increase 𝛤 , the optimal capacity of these technologies increases and
hence, they show up as more important in Fig. 7.
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Fig. 7. Identification of the most sensitive parameters as a function of the budget of uncertainty. The importance of a parameter increases as we move from bottom to top and the
obustness of a solution increases as we move from left to right. The top right corner shows the most impactful parameter, investment cost of solar PV, when budget of uncertainty
s 50, i.e., 50 uncertain parameters assume their worst-case value.
This result also suggests that resolving the uncertainty in solar PV
nvestment cost would assist in achieving a robust strategy. Further-
ore, if the uncertainty is irreducible through improved data anal-

sis, then the parameter range and auto-correlation should be well-
alibrated. Other critical costs are the natural gas fuel cost, investment
ost of light duty vehicle technologies, especially PHEV, investment
ost of coal with CCS, BECCS, nuclear, hydrogen electrolysis, and
ynthetic natural gas production. Since the goal of the analysis is to
chieve greenhouse gas emissions reductions, the low carbon technolo-
ies in the electric sector tend to have a higher impact on the objective
unction than the technologies with GHG emissions.

. Conclusions

Highly uncertain input data is a reality of using ESOMs. Since the
nsights obtained from such models are often used to inform policy, the
ncertainties should be explicitly considered to build robust strategies.
he main goal of this paper is to implement robust optimization in
n ESOM in order to explore deep decarbonization pathways that are
obust to uncertainties in future fuel costs and investment costs.

Here we introduce a robust optimization (CR-ESOM) framework
hat is the first to consider the auto-correlation in uncertain parameters.
ecause the technology and fuel specific input cost parameters are in-
exed by time period, it is important to consider how the assumption of
13
a worst-case value achieved in a particular time period affects the value
of that parameter in other time periods. Ignoring auto-correlation can
diminish the effect of any single worst-case value realized in a single
time period. On the other hand, auto-correlation does add additional
data requirements and complexity to the formulation. Future applica-
tions should weight the costs and benefits of including auto-correlation,
taking into account the nature of the problem being addressed.

The results indicate that pursuing a robust strategy has significant
monetary benefits relative to pursuing a naive strategy that ignores
future uncertainty. The degree of monetary benefits from the robust
strategy depends on how uncertainty is resolved in the real world.
Our analysis indicates that more than 7% of the input parameters
assuming their worst-case value has a negligible probability. At such a
budget of uncertainty, the robust pathway entails diversification of both
fuel supply and technologies deployed. US climate policy should focus
on ways to diversify fuel and technology pathways across the energy
system, in order to make it more robust to future uncertainty.

Several open issues deserve further investigation. First, the process
of estimating auto-correlation associated with uncertain parameters
needs improvement. For some parameters, data for computing auto-
correlation is limited. For example, to compute the correlation coeffi-
cient for industrial coal prices, we use the weighted average of the other
types of coal. For future work, sensitivity analysis focused on the cor-
relation coefficients is needed to ensure the robustness of the strategy.
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Second, the formulation in this paper only considers auto-correlation
for uncertain parameters but does not consider the correlation between
different uncertain parameters, which exist in the real world. Such a
formulation can be written as a natural extension of model (6a)–(6j).
Third, we assume the uncertain parameters are a normally distributed
random variable when estimating auto-correlation across time periods.
However, the CR-ESOM formulation itself ignores information about
the parameter distributions and merely works with the nominal value
and parameter deviation. Fourth, the data and methodology used to
determine the ranges for uncertain parameters needs to be refined
over time. Many technologies lack a detailed cost range, and under
a conservative assumption about their worst-case value, can be over
emphasized by the RO model. A critical focus of this work needs
to be an extended effort to develop an improved representation of
uncertain input parameters. Section 5.4 outlines a method to target
the most sensitive input parameters in the model. Fig. 7 can serve
as a guide to prioritize future data collection efforts. Given the data
intensive nature of ESOMs generally and this RO method specifically,
it would be beneficial to make this data gathering a community effort,
with contributions and critical reviews provided by a broad array of
modelers and analysts.

Despite the daunting task of quantifying the uncertainty for solving
the robust optimization model, it can provide valuable insights to pol-
icymakers who must act before uncertainty is resolved. While further
research is needed to improve the construction of the uncertainty set
and the underlying data, the utility and computational tractability of
RO can be an essential tool for addressing parametric uncertainty in
ESOMs. While the application of robust optimization yields a hedging
strategy, this analysis should nonetheless be viewed as an exercise to
explore the decision space when the parametric uncertainty is explic-
itly considered. In addition, we emphasize that models alone cannot
provide a solution in such complex decision landscapes but can yield
insight that informs decision making.
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Appendix. Uncorrelated robust optimization formulation

In order to implement the RO formulation proposed by Bertsimas
and Tsitsiklis [33], we need to rewrite the objective function of ESOM
in the form of a constraint as given below in Eqs. (A.1a)–(A.1e).

min 𝐖 (A.1a)

s.t. 𝐖−
(

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐼𝐶𝑖𝑣𝐂𝐀𝐏𝑖𝑣 +

∑

𝑡∈𝑇𝑖

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝑂𝐶𝑖𝑣𝑡𝐀𝐂𝐓𝑖𝑣𝑡

+
∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝐹𝐶𝑓𝑡𝐂𝐎𝐍𝑓𝑡

)

≥ 0 (A.1b)

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐀𝐂𝐓𝑖𝑣𝑡 ≥ 𝐷𝑡 ∀𝑡 ∈ 𝑇
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(A.1c)
∑

𝑉𝑖≤𝑇𝑖

𝛾𝑖𝑣𝑡𝐂𝐀𝐏𝑖𝑣 ≥ 𝐀𝐂𝐓𝑖𝑣𝑡 ∀𝑡 ∈ 𝑇𝑖, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼

(A.1d)

𝐵𝐱 ≥ 𝑏 (A.1e)

where, 𝐖 is a dummy variable introduced to write the model’s objec-
tive function in the form of a constraint. Since we assume uncertainty
in fuel cost and technology investment cost, only constraint (A.1b)
contains uncertain parameters when attempting to solve an extension
of model (A.1a) under uncertainty.

In the R-ESOM formulation, we assume that the uncertain ESOM
parameters are independently random. We provide a formulation for
the uncertain investment cost and fuel costs; however, the formulation
can be extended to consider the uncertainty in fixed operations and
maintenance cost. Let 𝐼 be the set of technologies with uncertain
investment cost and 𝐹 be the set of fuels with uncertain prices. The
elements of the vector, 𝐼𝐶𝑖𝑣 i.e., investment cost of a technology 𝑖 with
vintage 𝑣, for 𝑖 ∈ 𝐼 and 𝐹𝐶𝑓𝑡 i.e., cost of fuel 𝑓 in time period 𝑡 for
𝑓 ∈ 𝐹 , are assumed to be subjected to uncertainty. Let the uncertain
realization associated with investment cost and fuel cost be denoted
as 𝐼𝐶∗

𝑖𝑣 and 𝐹𝐶∗
𝑓𝑡, respectively. 𝐼𝐶∗

𝑖𝑣 belongs to a symmetrical interval
[𝐼𝐶𝑖𝑣 − 𝛥𝐼𝐶𝑖𝑣, 𝐼𝐶𝑖𝑣 + 𝛥𝐼𝐶𝑖𝑣] defined by the modeler, where 𝐼𝐶𝑖𝑣 and
𝛥𝐼𝐶𝑖𝑣 are used to represent nominal values and deviation magnitudes,
respectively. This interval is centered at the point forecast 𝐼𝐶𝑖𝑣, while
𝛥𝐼𝐶𝑖𝑣 measures the range of the estimate. Similarly, 𝐹𝐶∗

𝑓𝑡 belongs to
a symmetrical interval [𝐹𝐶𝑓𝑡 − 𝛥𝐹𝐶𝑓𝑡, 𝐹𝐶𝑓𝑡 + 𝛥𝐹𝐶𝑓𝑡] defined by the

odeler. The scaled deviation 𝐬𝐼𝐶𝑖𝑣 of uncertain investment cost 𝐼𝐶∗
𝑖𝑣

nd 𝐬𝐹𝐶
𝑓𝑡 of uncertain fuel cost 𝐹𝐶∗

𝑓𝑡 from its nominal value can then be
efined as (A.3) and (A.3), respectively.

𝐬𝐼𝐶𝑖𝑣 =
𝐼𝐶∗

𝑖𝑣 − 𝐼𝐶𝑖𝑣

𝛥𝐼𝐶𝑖𝑣
∀𝑖 ∈ 𝐼, 𝑣 ∈ 𝑉𝑖 (A.2)

𝐬𝐹𝐶
𝑓𝑡 =

𝐹𝐶∗
𝑓𝑡 − 𝐹𝐶𝑓𝑡

𝛥𝐹𝐶𝑓𝑡
∀𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇𝑓 (A.3)

The scaled deviation 𝐬𝐼𝐶𝑖𝑣 belongs to [−1, 1] as (𝐼𝐶∗
𝑖𝑣 − 𝐼𝐶𝑖𝑣) varies

within [−𝛥𝐼𝐶𝑖𝑣, 𝛥𝐼𝐶𝑖𝑣]. Similarly, 𝐬𝐹𝐶
𝑓𝑡 belongs to [−1, 1]. The aggre-

gate scaled deviation for the constraint with uncertain parameters,
∑

𝑣∈𝑉𝑖
∑

𝑖∈𝐼 |𝐬𝐼𝐶𝑖𝑣 | +
∑

𝑡∈𝑇𝑓
∑

𝑓∈𝐹 |𝐬𝐹𝐶
𝑓𝑡 | can take any value between 0

and 𝑁 , where 𝑁 is the total number of uncertain parameters. How-
ever, it is unlikely that all of the coefficients take their worst cases
simultaneously. Consequently, the true value of ∑

𝑣∈𝑉𝑖
∑

𝑖∈𝐼 |𝐬𝐼𝐶𝑖𝑣 | +
∑

𝑡∈𝑇𝑓
∑

𝑓∈𝐹 |𝐬𝐹𝐶
𝑓𝑡 | can be assumed to be in a narrower range as given

in (A.4), i.e.,
∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
|𝐬𝐼𝐶𝑖𝑣 | +

∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
|𝐬𝐹𝐶
𝑓𝑡 | ≤ 𝛤 (A.4)

where 𝛤 ∈ [0, 𝑁], referred to as the budget of uncertainty of the
constraint containing uncertain parameters, is used to adjust the level
of conservatism of the solution. Its value reflects the decision maker’s
tolerance for risk. Thus, 𝛤 = 0 returns the "naive" solution with no
‘‘protection’’ against uncertainty and 𝛤 = 𝑁 yields a very conservative
solution since it represents all uncertain parameters taking their worst-
case values at the same time. For any values between 0 and 𝑁 , the
decision maker makes a trade-off between the robustness of the solution
and the related cost. Based on [19], the general ESOM model (A.1a)–
(A.1e), and on Eqs. (A.2)–(A.4), the R-ESOM formulation can be written
as (A.5a)–(A.6).

min 𝐖 (A.5a)

s.t. 𝐖−
(

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐼𝐶𝑖𝑣𝐂𝐀𝐏𝑖𝑣 +

∑

𝑡∈𝑇𝑖

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝑂𝐶𝑖𝑣𝑡𝐀𝐂𝐓𝑖𝑣𝑡

+
∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝐹𝐶𝑓𝑡𝐂𝐎𝐍𝑓𝑡

)

− max
𝐬𝐼𝐶𝑖𝑣 ,𝐬𝐹𝐶

𝑓𝑡 ∈𝑆

(

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝛥𝐼𝐶𝑖𝑣𝐶𝐴𝑃𝑖𝑣𝐬𝐼𝐶𝑖𝑣

+
∑ ∑

𝛥𝐹𝐶𝑓𝑡𝐶𝑂𝑁𝑓𝑡𝐬𝐹𝐶
𝑓𝑡

)

≥ 0

(A.5b)
𝑡∈𝑇𝑓 𝑓∈𝐹
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Fig. A.1. Probability that the number of uncertain variables assuming their worst-case value exceeds 𝛤 . 𝑁 represents the total number of uncertain parameters in a constraint. For
example, for an optimization problem with 500 uncertain parameters in a constraint, if we set budget of uncertainty to 𝛤 = 30, then the probability that more than 30 uncertain
variables assume their worst value is less than 10%.
∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐀𝐂𝐓𝑖𝑣𝑡 ≥ 𝐷𝑡 ∀𝑡 ∈ 𝑇

(A.5c)
∑

𝑉𝑖≤𝑇𝑖

𝛾𝑖𝑣𝑡𝐂𝐀𝐏𝑖𝑣 ≥ 𝐀𝐂𝐓𝑖𝑣𝑡 ∀𝑡 ∈ 𝑇𝑖, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼

(A.5d)

𝐵𝐱 ≥ 𝑏 (A.5e)

𝑆 =
{

|𝐬𝐼𝐶𝑖𝑣 | ≤ 1,∀𝑖 ∈ 𝐼, 𝑣 ∈ 𝑉𝑖; |𝐬𝐹𝐶
𝑓𝑡 | ≤ 1,∀𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇𝑓 ;

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
|𝐬𝐼𝐶𝑖𝑣 | +

∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
|𝐬𝐹𝐶
𝑓𝑡 | ≤ 𝛤

} (A.6)

In the above model, (A.6) is a feasible domain for the maximization
problem given in (A.5b). For a given 𝛤 , the maximization problem in
constraint (A.5b) provides a protection against infeasibility by assum-
ing that total system cost includes the worst-case cost of 𝛤 uncertain
parameters. It maximizes the protection for a given 𝐶𝐴𝑃𝑖𝑣 and 𝐶𝑂𝑁𝑓𝑡
by varying 𝐬𝐼𝐶𝑖𝑣 and 𝐬𝐹𝐶

𝑓𝑡 over 𝑆. Note that the maximization model is
formulated as a linear programming problem, as we keep the 𝐶𝐴𝑃𝑖𝑣
and 𝐶𝑂𝑁𝑓𝑡 constant as defined by the minimization model. Problem
(A.5a)–(A.5e) can be solved by iteratively solving minimization and
maximization models to minimize 𝐖. To avoid the iterative method,
we can simplify model (A.5a)–(A.5e) through the application of strong
duality, which says that at the optimum, objective function value of
the dual problem is the same as primal problem [33]. The dual of the
maximization problem is given below in (A.7a)–(A.7f)

min
∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐪𝐼𝐶𝑖𝑣 +

∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝐪𝐹𝐶
𝑓𝑡 + 𝛤𝐩 (A.7a)

s.t. 𝐩 + 𝐪𝐼𝐶𝑖𝑣 ≥ 𝛥𝐼𝐶𝑖𝑣𝐫𝐼𝐶𝑖𝑣 ∀𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼
(A.7b)

𝐩 + 𝐪𝐹𝐶
𝑓𝑡 ≥ 𝛥𝐹𝐶𝑓𝑡𝐫𝐹𝐶

𝑓𝑡 ∀𝑡 ∈ 𝑇𝑓 , 𝑓 ∈ 𝐹

(A.7c)
− 𝐫𝐼𝐶𝑖𝑣 ≤ 𝐂𝐀𝐏𝑖𝑣 ≤ 𝐫𝐼𝐶𝑖𝑣 ∀𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼

(A.7d)
− 𝐫𝐹𝐶

𝑓𝑡 ≤ 𝐂𝐎𝐍𝑓𝑡 ≤ 𝐫𝐹𝐶
𝑓𝑡 ∀𝑡 ∈ 𝑇𝑓 , 𝑓 ∈ 𝐹

(A.7e)
𝐩,𝐪𝐼𝐶𝑖𝑣 ,𝐪𝐹𝐶

𝑓𝑡 , 𝐫
𝐼𝐶
𝑖𝑣 , 𝐫𝐹𝐶

𝑓𝑡 ≥ 0 ∀𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇𝑓 , 𝑓 ∈ 𝐹

(A.7f)
15
Where, 𝐩,𝐪𝐼𝐶𝑖𝑣 ,𝐪𝐹𝐶
𝑓𝑡 , 𝐫

𝐼𝐶
𝑖𝑣 , 𝐫𝐹𝐶

𝑓𝑡 are the dual variables associated with
the feasible domain given in (A.6). The simplified version of (A.5a)–
(A.5e) is given in (A.8a)–(A.8j) where we replace the maximization
problem with the objective function of the dual problem. Constraints of
(A.7a)–(A.7f) can be added as they are without changing the solution
to the problem (A.5a)–(A.5e).

min 𝐖 (A.8a)

s.t. 𝐖−
(

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐼𝐶𝑖𝑣𝐂𝐀𝐏𝑖𝑣 +

∑

𝑡∈𝑇𝑖

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝑂𝐶𝑖𝑣𝑡𝐀𝐂𝐓𝑖𝑣𝑡

+
∑

𝑡∈𝑇𝑓

∑

𝑖∈𝐼
𝐹𝐶𝑓𝑡𝐂𝐎𝐍𝑓𝑡

)

−
(

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐪𝐼𝐶𝑖𝑣 +

∑

𝑡∈𝑇𝑓

∑

𝑓∈𝐹
𝐪𝐹𝐶
𝑓𝑡 + 𝛤𝐩

)

≥ 0

(A.8b)

∑

𝑣∈𝑉𝑖

∑

𝑖∈𝐼
𝐀𝐂𝐓𝑖𝑣𝑡 ≥ 𝐷𝑡 ∀𝑡 ∈ 𝑇 (A.8c)

∑

𝑉𝑖≤𝑇𝑖

𝛾𝑖𝑣𝑡𝐂𝐀𝐏𝑖𝑣 ≥ 𝐀𝐂𝐓𝑖𝑣𝑡 ∀𝑡 ∈ 𝑇𝑖, 𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼 (A.8d)

𝐵𝐱 ≥ 𝑏 (A.8e)

𝐩 + 𝐪𝐼𝐶𝑖𝑣 ≥ 𝛥𝐼𝐶𝑖𝑣𝐫𝐼𝐶𝑖𝑣 ∀𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼 (A.8f)

𝐩 + 𝐪𝐹𝐶
𝑓𝑡 ≥ 𝛥𝐹𝐶𝑓𝑡𝐫𝐹𝐶

𝑓𝑡 ∀𝑡 ∈ 𝑇𝑓 , 𝑓 ∈ 𝐹 (A.8g)

− 𝐫𝐼𝐶𝑖𝑣 ≤ 𝐶𝐴𝑃𝑖𝑣 ≤ 𝐫𝐼𝐶𝑖𝑣 ∀𝑣 ∈ 𝑉𝑖, 𝑖 ∈ 𝐼 (A.8h)

− 𝐫𝐹𝐶
𝑓𝑡 ≤ 𝐶𝑂𝑁𝑓𝑡 ≤ 𝐫𝐹𝐶

𝑓𝑡 ∀𝑡 ∈ 𝑇𝑓 , 𝑓 ∈ 𝐹 (A.8i)

𝐩,𝐪𝐼𝐶𝑖𝑣 ,𝐪𝐹𝐶
𝑓𝑡 , 𝐫

𝐼𝐶
𝑖𝑣 , 𝐫𝐹𝐶

𝑓𝑡 ≥ 0 ∀𝑣 ∈ 𝑉𝑖, 𝑡 ∈ 𝑇𝑓 , 𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 (A.8j)

Bertsimas and Sim [19] show that irrespective of the distribution
of uncertain parameter values, we can compute the probability, 𝜖, that
the number of uncertain parameters assuming their worst-case value
exceeds the specified budget of uncertainty 𝛤 ∈ [0, 𝑁], where 𝑁 is the
total number of uncertain parameters. In other words, if the decision
maker chooses a budget of uncertainty 𝛤 , then the probability of the
system cost going beyond the optimal objective function value of CR-
ESOM is less than 𝜖. The probability, 𝜖, can be calculated as 1−𝛷((𝛤 −
1)∕

√

𝑁), where 𝛷(.) represents the cumulative density function (CDF)
of a normal distribution. Note that in the results section, we represent
𝛤 in terms of percent of total uncertain parameters assuming their
worst-case value, however, we define 𝛤 as an integer in [0, 𝑁] for
the CR-ESOM formulation. Fig. A.1 plots 𝜖 assuming a different total
number of uncertain parameters (𝑁).
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