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H I G H L I G H T S  

• A novel portfolio model to analyze offshore wind, wave and ocean current is proposed. 
• Mean-variance portfolio theory is used to combine LCOE and resource availability. 
• We propose a model relaxation to allow the simulation of large-size instances. 
• Our optimal energy portfolios are incorporated in a capacity expansion model. 
• Synergies between renewable resources and targets for cost reduction are estimated.  
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A B S T R A C T   

The deployment of offshore wind, wave, and ocean current technologies can be coordinated to provide maximum 
economic benefit. We develop a model formulation based on Mean-Variance portfolio theory to identify the 
optimal site locations for a given number of wind, wave, and ocean current turbines subject to constraints on 
their energy collection system and the maximum number of turbines per site location. A model relaxation is also 
developed to improve the computational efficiency of the optimization process, allowing the inclusion of more 
than 5000 candidate generation sites. The model is tested using renewable resource estimates from the coast of 
North Carolina, along the eastern US coast. Different combinations of technology-specific offshore technologies 
are compared in terms of their levelized cost of electricity and energy variability. The optimal portfolio results 
are then included in a capacity expansion model to derive economic targets that make the offshore portfolios 
cost-competitive with other generating technologies. Results of this work indicate that the integration of different 
offshore technologies can help to decrease the energy variability associated with marine energy resources. 
Furthermore, this research shows that substantial cost reductions are still necessary to realize the deployment of 
these technologies in the region investigated.   

1. Introduction 

With the world’s rising concern about climate change and sustain
ability, renewable energy technologies have improved substantially 
over the last two decades as a result of technology innovation and policy 
support. According to the International Renewable Energy Agency 
(IREA) [1], in 2020, renewables represented 80 % of total capacity ad
ditions in the world, continuing to outpace fossil fuels. In this context, 
onshore wind and solar currently lead the deployment of renewables 
accounting for 91 % of its added capacity. 

In addition to the large deployments of onshore wind and solar 
photovoltaics, marine-based generating technologies, including offshore 

wind, wave, and ocean current have the potential to further diversify 
electricity supply. The complementarity between different renewable 
energy resources can be utilized to reduce energy variability and in
crease system security [2,3]. 

In 2019 the IEA [2] reported 28 GW of offshore wind energy capacity 
in the world (1 % of total renewables), of which 77 % was located in 
Europe. However, it is expected that offshore wind will grow by at least 
15-fold in the next 20 years, potentially accounting for more than $1 
trillion in investment [2]. Finally, despite being currently more expen
sive than onshore wind energy, offshore wind has lower hourly vari
ability, can be deployed at higher capacity factors (average energy 
generated divided by maximum electrical energy output), and is seen (in 
some instances) as a solution to many of the siting concerns that arise 
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with onshore wind turbines, which can negatively impact local tourism 
and land value [4]. 

Wave energy technology is still largely in the research and devel
opment phase, with only small deployments used to conduct pilot and 
demonstration studies [5]. For this technology, the project design can 
vary significantly with the characteristics of the wave energy resource, 
including wave height and wave period, making it difficult to establish a 
convergent design model that could help to accelerate its development. 
Nonetheless, wave energy has a higher power density than solar, wind, 
and even ocean current [6,7]. Also, since ocean waves propagate with 
little attenuation, they can be detected several miles offshore, allowing 
for skilled forecasts many hours in advance [8,9]. 

Finally, although the use of ocean currents as a hydrokinetic energy 
resource has been studied for many decades [10,11], this technology is 
still in the early stages of development with no commercial de
ployments. As in the case of wave energy, ocean current technology is 
attractive because of its high power density and availability. Also, the 
design of ocean current turbines has been adapted in part from existing 
commercial wind turbines [12]. However, ocean current resources can 
exhibit significant spatiotemporal variation, therefore limiting the re
gions where it can be utilized cost-effectively [13,14,15]. Other aspects 
such as ocean depth and distance from shore are also critical consider
ations, narrowing further the set of practical locations for energy 
extraction. As an example, the Gulf Stream, one of the most well-studied 
ocean currents in the world, starts from the Gulf of Mexico, follows a 
significant portion of the US east coast, and departs the continental shelf 
near Cape Hatteras (located in the state of North Carolina) [13]. Despite 
the Gulf Stream’s long reach, the most viable regions for energy 
extraction are in the Florida Straits and off the North Carolina Coast, 
where the current makes its closest approach to shore [13]. 

As previously mentioned, resource variability is a common concern 
regarding renewable energy technologies [16]. The electric power sys
tem needs to balance electricity supply and demand in real time such 
that fluctuations in voltage and frequency can be minimized, thereby 
avoiding power outages and damage to various grid components. In this 
context, the variability of many renewable energy resources adds 
complexity to the operation and planning of the electrical system, 
leading to larger requirements for reserve power (e.g., storage, and 
natural gas turbines), capable of responding over short time intervals to 
ensure that the grid remains balanced. 

Many studies have investigated alternatives to cost-effectively 
address the problem of renewable energy variability. Lund et al. [17] 
performed an extensive review of the topic, discussing alternatives such 
as demand-side response, energy storage, and regulatory practices, 
showing that a substantial amount of system flexibility can be obtained 
without massive economic investments. Several studies have explored 
the benefits of resource diversification and complementarity between 
different renewable energy technologies as a strategy for reducing en
ergy variability. 

Solomon et al. [18] investigated different levels of wind-solar 
penetration in California’s electricity grid, showing a substantial 
reduction in energy storage for the hybrid wind-solar system when 
compared to the scenarios with only wind or solar. Kalogeri et al. [19] 
investigated the complementarity between offshore wind and wave in 
Europe, showing that the combination of these resources can lead to 
portfolios with lower energy variability and fewer hours of zero pro
duction. Halamay et al. [20] analyzed the energy reserve requirements 
of the US Pacific Northwest given different levels of penetration for 
solar, wind, and wave energy, showing that an equal combination of 
these resources provides the best solution for the system analyzed. 
Bhattacharya et al. [21] showed that the electric grid can benefit from 
higher penetrations of marine renewable energy reducing energy bal
ance requirements and variability; his work considered tidal, wave, and 
ocean current technologies and focused on the U.S. and Great Britain. 
Finally, Zhang et al. [22] investigated the problem of optimal allocation 
of wind power in China using a clustering model to aggregate similar 
geographic regions showing the importance of portfolio optimization in 
reducing short-term energy variations and increasing the firm energy 
capacity of the system. 

Previous studies have also applied Mean-Variance Portfolio theory to 
develop optimal renewable energy portfolios. Li et al. [15] developed an 
optimization model to create portfolios consisting of diversified site 
locations for ocean current energy turbines. In their formulation, the 
optimization model minimizes the total variance in electricity produc
tion subject to a target capacity factor. Their results indicate that it is 
possible to significantly reduce the variability in electricity generation 
by optimally diversifying the selection of site locations where the tur
bine units are placed. In [23], a similar methodology was used to 

Nomenclature 

Indices and sets 
e ∈ E Set of energy technologies (wind, wave, and ocean 

current). 
i ∈ Ie Set of feasible site locations associated with the 

technology e. 
j ∈ Je Set of relaxed site locations associated with the 

technology e. 
k ∈ DR

w(e,j) Set of xe,i variables that have its correspondent site 
location (e, j) farther than R kilometers from the site 
location of we,j. 

k ∈ DR
v(e,i) Set of ye,i variables that have its correspondent site 

location (e, i) farther than R kilometers from the site 
location of ve,i. 

Parameters: 
Ce,i Annualized cost of deploying one turbine of the 

technology e at the site location i ∈ Ie [$/Year-Turbine]. 
CTe,i Annualized cost of a transmission system build for the 

technology e with substation located at the site i ∈ Ie 
[$/Year]. 

EGe,i Expected annual energy generation of one turbine of the 
technology e at the site location i ∈ Ie [MWh]. 

LCOE Upper bound in the Levelized Cost of Energy [$/MWh]. 
Nte,i Maximum number of turbines of the technology e that 

can be deployed at the site location i ∈ Ie. 
R Maximum radius of the energy collection system [km]. 
TNte Total number of turbines deployed of the technology e. 
∑

Variance covariance matrix for the available energy 
generation at each site location for each technology 
considering a 3 h time scale. 

Decision variables 
ve,i Binary variable responsible for controlling the center of 

the energy collection system for each energy 
technology, ve,i ∈ {0,1}. 

we,j ∈ W A relaxation for the binary variable responsible for 
controlling the center of the energy collection system 
for each energy technology, we,j ∈ {0,1}. Upscaled 
version of ve,i. 

xe,i ∈ X A relaxation for the number of turbines deployed of the 
technology e ∈ E at the site i ∈ Ie, xe,i ∈ R+. 

ye,i ∈ Y Number of turbines deployed of the technology e ∈ E at 
the site i ∈ Ie, ye,i ∈ Z+. 

Functions: 
CT Pe(•) Annualized cost of the transmission system for the 

technology e considering the deployments (Y) defined 
by the optimization model [$/Year].  
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investigate the geographical optimization of solar and wind energy in 
China, showing the importance of portfolio diversification and the 
complementarity between different resources. 

This paper represents a significant extension of the existent literature 
by modifying the portfolio optimization to constrain the levelized cost of 
electricity (LCOE: Cost per MWh generated) while minimizing variance, 
including offshore wind and wave energy in the resource mix, and 
embedding the optimal portfolios in an electric sector capacity expan
sion model that indicates the required cost reductions necessary to make 
the offshore portfolios economically competitive with other technolo
gies. We design a novel and general optimization framework based on 
Mean-Variance portfolio theory to determine the site selection of 
renewable energy technologies – including offshore wind, wave, and 
ocean current – considering technical constraints in the length of the 
energy collection system [24] and the levelized cost of energy. A convex 
relaxation of our original formulation is also proposed to allow the 
representation of a larger number of site locations without prohibitive 
computational times. Once the optimal offshore portfolios are identified 
they are incorporated into a capacity expansion model, allowing us to 
estimate the capital cost reduction that would make offshore renewable 
technology cost-competitive within the interconnected power system. 
The proposed framework is then applied to analyze renewable offshore 
resources along the US East coast. To our knowledge, this work is the 
first to evaluate the optimal selection of wind, wave, and ocean current 
sites simultaneously, providing valuable information regarding the 
synergies between these resources and the economic targets for the 
future deployment of these technologies. Moreover, this research also 
contributes to the development of more detailed portfolio optimization 
models where the structural constraints related to the energy collection 
system can be incorporated directly into a large-scale mixed-integer 
nonlinear optimization. 

The remainder of this paper is divided as follows: Section II describes 
the portfolio optimization and discuss the link with the capacity 
expansion model used; Section III describes the data used in this work; 
Section IV presents the results, and Section V concludes the paper. 

2. Methods 

2.1. Mean-Variance portfolio model 

The Mean-Variance Portfolio Theory was developed by Harry Mar
kowitz in the mid-20th century [25]. His work enforced the importance 
of risk in the selection of optimal portfolios, suggesting the use of an 
efficient frontier curve, where the expected return and risk (variance in 
return) are considered together in the analysis. 

This method has been extensively used in many fields including the 
area of energy planning. Roques et al. [26], applied the technique to 
identify optimal baseload generation portfolios in a liberalized elec
tricity market; the study considered gas, coal, and nuclear generation, as 
well as costs associated with CO2 emissions. Kitzing [27], used a Mean- 
Variance approach to compare different support instruments for 
renewable energy, showing the importance of a proper risk represen
tation when designing policy schemes. Li et al. [15] used a Mean- 
Variance model for the portfolio optimization of ocean current de
vices, considering the tradeoff between total energy generation and 
energy variability. 

The Mean-Variance Portfolio formulation considered in this work is 
presented in Model I (1–6). The model’s goal is set to optimize the 
number of turbines at each viable site location such that it minimizes the 
total energy variability of the portfolio (YTΣ Y) given an upper bound on 
the LCOE and a set of other structural constraints (4–7). The LCOE is the 
average cost of each MWh generated by the portfolio. The goal is to 
identify portfolios with low LCOE and low energy variability. However, 
there is typically an existent tradeoff between the two: sites that mini
mizes LCOE may have high variability, and vice versa. 

To simplify the Mean-Variance portfolio formulation, we assume that 

each technology has its own transmission and energy collection system, 
which is not shared among different technology groups. Also, each site 
location defined by the indices (e, i) has assigned an annualized turbine 
cost value (Ce,i), and a turbine generation capacity (EGe,i). The annual
ized turbine cost value (Ce,i), takes into consideration the CapEx, and 
OpEx of the energy conversion device, and an equivalent fractional 
value associated with the transmission and energy collection system 
infrastructure. 

Given the total number of turbines for each technology e (TNte) it is 
possible to estimate the annualized transmission system costs at any site 
i ∈ Ie where offshore substations can be built (CTe,i). Considering a so
lution (ye,i) of the portfolio optimization model, a reasonable estimate of 
the transmission system can be derived by doing a weighted average of 
the ratio CTe,i/TNte with the number of turbines at each site (ye,i), as in 
equation (1). 

By assigning a fractional transmission cost (CTe,i/TNte) for each site 
location, it is possible to use the formulation presented in Model I to 
indirectly incorporate complex aspects of the transmission system such 
as distance from shore, depth, and electric configuration (AC/DC or AC/ 
AC) in a computationally efficient way. Additional information 
regarding collection and transmission costs is provided in the Supple
mentary Notes. 

CT Pe(Y) =
∑

i∈Ie

CTe,i

TNte
ye,i ∀e ∈ E (1) 

Regarding the turbine generation capacity (EGe,i) parameter, its 
value takes into consideration the characteristics of the energy conver
sion devices, the renewable energy available at each site location i ∈ Ie, 
losses associated with the energy collection system (considered con
stant), and losses associated with the transmission system. The efficiency 
of the transmission system depends on its distance from shore and sys
tem configuration (AC/DC or AC/AC). In this context, since the location 
of the offshore substation is not defined by the optimization model, we 
attribute a transmission energy efficiency for each individual site (e, i). 
All considerations regarding cables, power capacity, voltage, and losses 
are detailed in the Supplementary Notes. 

In Model I, constraint (3) limits the LCOE of the portfolio, (4) limits 
the number of turbines for each energy technology investigated (wind, 
wave, and ocean current), (5) limits the number of turbines for each site 
location, and (6–7) control the extent of the energy collection systems 
for each technology. These last two constraints ensure that the optimi
zation model will not choose to deploy spatially distant turbines, which 
could lead to higher energy losses and high energy collection system 
costs. 

Model I: Mean-Variance Portfolio Optimization. 

minYT Σ Y (2)  

s.t  

∑
e∈E

∑
i∈Ie

Ce,iye,i
∑

e∈E
∑

i∈Ie
EGe,iye,i

≤ LCOE (3)  

∑

i∈Ie

ye,i = TNte∀e ∈ E (4)  

ye,i ≤ Nte,i∀(e, i) ∈ (E, Ie) (5)  

∑

k∈DR
v(e,i)

ye,k ≥ ve,iTNte∀(e, i) ∈ (E, Ie) (6)  

∑

i∈Ie

ve,i = 1∀e ∈ E (7) 

The complexity of the model described above increases severely with 
the number of integer variables, which represent the number of site 
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locations. Simulating (2–7) for a large coastal area can lead to prohibi
tive computational times. Thereafter, a relaxation procedure, described 
in Subsection B, was developed to help decrease the computational 
complexity of the problem. 

2.2. Model relaxation 

A model relaxation is a mathematical strategy that consists of 
approximating a difficult problem by a simpler one, which is easier to 
solve. The relaxed model is strategically constructed such that all the 
solutions of the original model are still present after the relaxation. 
However, the relaxed model normally contains additional feasible so
lutions that do not exist in the original model formulation. In this 
context, for a minimization model such as Model I, a relaxed solution 
would lead to a lower bound for the original problem. A model relaxa
tion offers a faster way of investigating the problem feasibility space and 
can provide valuable information for decreasing the problem size and 
finding near-optimal solutions. 

After a series of attempts to create a relaxed model formulation, the 
best strategy to reduce simulation time was to modify Model I by making 
the variable ye,i a continuous variable, which we name xe,i, and reduce 
the number of ve,i variables by creating an upscaled version of it, defined 
here as we,i. In our analysis, we notice that different from the xe,i vari
able, it is important to keep the we,i variable integer in order to achieve 
tighter relaxed solutions (close to the global optima). In this work, the 
relaxed version of Model I is called Model II. 

Fig. 1 exemplifies the process of upscale for the ve,i variable and its 
consequence in constraints (6–7). The example shown in this figure ig
nores the index e for simplicity. 

Model II: Relaxed Mean-Variance Portfolio Model. 

minXT Σ X (8)  

s.t  

∑
e∈E

∑
i∈Ie

Ce,ixe,i
∑

e∈E
∑

i∈Ie
EGe,ixe,i

≤ LCOE (9)  

∑

i∈Ie

xe,i = TNte∀e ∈ E (10)  

xe,i ≤ Nte,i∀(e, i) ∈ (E, Ie) (11)  

∑

k∈DR
w(e,j)

xe,k ≥ we,jTNte∀(e, j) ∈ (E, je) (12)  

∑

j∈Je

we,j = 1∀e ∈ E (13) 

In Model I, for each ye,i variable there is a correspondent ve,i variable 
responsible to limit the spatial extent (i.e., radius) of the energy 
collection system (R) for each technology (Fig. 1a). In the example 
shown in the left panel of Fig. 5, v45 = 1 and R = 5km, which means that 
all cells in the light red area are candidates for the deployment of tur
bines (DR

v(e,i)). The problem with this approach is that it is still necessary 
to represent as many integer variables (ye,i, and ve,i) as two times the 
number of site locations. Even with the relaxation of ye,i as a continus 
variable (xe,i), the model would still have a prohibitively large number of 
integer variables. 

In order to reduce the number of integer variables associated with 
the energy collection system (ve,i), it is possible to aggregate the ve,i 

variables that are “close” to each other. The right panel of Fig. 1 shows 
an example where four ve,i variables are aggregated (dark red) and 
represent a single integer variable (w22). The w22 variable corresponds 
the energy collection system of the variables v44, v45, v54, and v55, and 
therefore in Model II, D5km

w(22) must be the union of D5km
v(44), D

5km
v(45), D

5km
v(54), and 

Fig. 1. Model I relaxation of the site locations. Nearby sites are aggregated to reduce the number of integer variables.  
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D5km
v(55). 

It is important to notice that if v45 = 1 is optimal for Model I, this 
solution is still a feasible solution for Model II when w22 = 1. However, 
from the perspective of Model I, solutions obtained with Model II will be 
a lower bound. 

2.3. Two-stage optimization and efficient frontier 

The solution of Model II provides a lower bound for the original 
model formulation and an approximate location for the energy collec
tion system (we,i = 1). At this stage, Model II results can be used to limit 
the site locations analyzed, and Model I can be solved considering the 
region limited by we,i = 1 (light red area in Fig. 5b). This constrained 
solve of Model I will only provide an upper bound for the original 
problem. If the difference between this upper bound and the lower 
bound from Model II is small enough, our constrained Model I simula
tion can be considered close to the global optimal solution of the original 
problem. 

Finally, given a specific portfolio with a predefined number of wind, 
wave, and ocean current turbines, we can run the two-stage relaxed 
model for different LCOE levels and build an efficient frontier repre
senting the optimal tradeoff between LCOE and variability in energy 
output. Fig. 2 is a flow diagram summarizing the process described in 
this section. 

2.4. Capacity expansion model 

After finding the efficient frontiers associated with different offshore 
energy portfolios, we incorporate our optimal portfolios into a capacity 
expansion model that represents the North Carolina energy system to 
estimate the level of reduction in LCOE in order to see the deployment of 
these portfolios by 2030 and 2050. 

The capacity expansion model used in this work is called Tools for 
Energy Model Optimization and Analysis (Temoa) [28]. Temoa mini
mizes the present cost of energy supply by deploying and utilizing en
ergy technologies and commodities overtime to meet a set of constraints 
that ensure proper system performance. The model has been extensively 
used in the literature [29,30,31]. We use Temoa-compatible input 
database representing the North Carolina electric sector (Base case file), 
which is publicly available for download and is documented in [32]. 
This dataset has been used in several other studies for the North Carolina 
Region [30,31], and thereafter was also considered in this work. It is also 
important to mention that many of the system projections considered in 
the dataset used in this work [32] are based on the Annual Technology 
Baseline reports [33] from NREL, which do not consider resource 
availability changes due to climate changes that is likely to affect 

resources and technology efficiency/costs during the years 2030–2050 
[34]. 

3. Data 

This work considers as study domain a portion of the US east coast 
representing the state of North Carolina (NC). This state has among the 
largest offshore wind and wave energy potential along the US east coast 
[35,36]. In addition, the North Carolina represents one of the few lo
cations where energy extraction from ocean currents is considered 
viable [13,37]. 

When integrating different energy resources in a portfolio optimi
zation analysis it is important to maintain the same time scale and time 
interval across all resources, for the US east coast, the largest common 
time interval available for wind, wave, and ocean current data was from 
January 2009 to December 2013 at a 3-hour time discretization. 
Therefore, this is the period of analysis chosen in this work. 

3.1. Wind 

Offshore wind speed data is drawn from the NREL Wind Integration 
National Dataset (WIND) Toolkit [38], which contains data at 2 km × 2 
km grid resolution and was sampled at 3-hour time intervals to be 
consistent with the other data sources used in this work. This dataset 
contains more than 11,000 site locations for North Carolina, which 
would be a computational challenge for the portfolio optimization 
model. However, the WIND-Toolkit [38] provides documentation 
specifying the set of viable site locations for offshore wind deployments 
in the United States based on depth, distance from shore, and wind 
speed, also considering environmental and land-use criteria. This 
documentation is used to limit the number of wind sites evaluated in this 
work, leading to the analysis of 1692 wind energy sites in North 
Carolina. 

Wind speed is converted into energy assuming a 6 MW wind turbine 
with rotor diameter of 155 m and hub height of 100 m [33,39], with an 
associated power curve drawn from [40]. Additionally, it is assumed 
that each 2 km × 2 km grid cell can accommodate a maximum of four 6 
MW turbines [33,39]. This turbine model was chosen following the 
common practices of NREL [39]. Fig. 3 depicts the site locations 
analyzed for wind energy, along with the corresponding capacity factors 
(CFs). 

The capital expenditures (CapEx) and operational expenditures 
(OpEx) for wind energy were obtained from [33], which defines 15 
different cost groups based on depth and distance from shore. More 
information regarding the resource characterization, turbine parame
ters, as well as cost estimates can be found in the Supplementary Notes. 

3.2. Wave 

For the wave energy resource, data of significant wave height and 
wave period were obtained from the WAVEWATCH III model [41] from 
January 2009 to December 2013 at a spatial resolution of 1/15◦ (~6.7 ×
6.7 km) and time resolution of three hours. WAVEWATCH III is a third- 
generation wave model developed at NOAA/NCEP, and is widely used 
for the assessment of wave energy resources [42,36,43]. 

As for the energy conversion device, after investigating a set of four 
alternative energy converters, see Supplementary Note 2, we considered 
a scaled version of the Pelamis model [44] developed by the University 
of Edinburgh [45]. This is an attenuator-type model of 1.5 MW scaled to 
operate at regions with lower wave heights when compared to the 
original Pelamis model [44], which would perform well off the North 
Carolina coast. 

For the scaled Pelamis energy converter, its project design [45] limits 
the deployment depth to 50–150 m, leading to 82 feasible sites in North 
Carolina, each corresponding to cells of approximately 6.7 × 6.7 km, 
where a maximum packing density of 12.5 devices per km2 is allowed. Fig. 2. Process for Estimating the Portfolio Efficient Frontier.  
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Fig. 4 depicts the site locations analyzed for wave energy and the cor
responding CFs. 

Finally, estimates for the CapEx and OpEx of the wave devices were 
based on the information presented in [46] and [47]. Similar to wind 
energy, a detailed description of the cost assumptions and generator 
model associated with wave energy technology is available in the Sup
plementary File. 

3.3. Ocean current 

For hindcasts of ocean current speed in the North Carolina region, 
two different models were considered, namely HYCOM/NCODA [48] 
and MABSAB [49]. 

The Hybrid Coordinate Ocean Model (HYCOM) is a primitive equa
tion ocean general circulation model that evolved from the Miami 
Isopycnic-Coordinate Ocean Model (MICOM) [50]. It is a multi- 
institutional effort sponsored by the National Ocean Partnership 

Fig. 3. Average site-specific capacity factor estimates for wind energy off the North Carolina coast from 2009 to 2013.  

Fig. 4. Average site-specific capacity factor estimates for wave energy off the North Carolina coast from 2009 to 2013.  
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Program and has been used in many studies for the assessment of hy
drokinetic energy resources [51,52,53]. In this work, the abbreviation 
HYCOM/NCODA is used to represent data coming from the HYCOM 
model in which the Navy Coupled Ocean Data Assimilation System 
(NCODA) was used for data assimilation. 

The MABSAB model [49] was developed to hindcast and diagnose 
ocean circulation variability in the Middle Atlantic Bight (MAB) and the 
South Atlantic Bright (SAB). It is based on the Regional Ocean Modeling 
System (ROMS) [54], a high-resolution, free-surface, terrain-following 
coordinate oceanic model extensively explored in the literature 
[55,56]. For open boundary conditions, the MABSAB model is nested 
inside the 1/12◦ global data assimilative HYCOM/NCODA output [49], 
assuring consistency between the hindcast generated by the two models 
used in this work. 

Because the process of simulating ocean circulation is extremely 
complex, often requiring a substantial amount of computational re
sources, there are very few datasets available with high spatial resolu
tion and high time–frequency. In the case of the North Carolina, 
however, data on ocean current speed from January 2009 to December 
2013 is available from HYCOM/NCODA [48] at a 3-hour discretization 
and 1/12◦ grid resolution (~8 × 8 km), and for MABSAB [49] at daily 
discretization and 2 × 2 km grid resolution. Therefore, in this work, we 
constructed a synthetic dataset with the objective of capturing the 
hourly variability presented in HYCOM, while keeping the better spatial 
resolution of MABSAB. 

We first, normalize the HYCOM data. In each day of the HYCOM/ 
NCODA dataset, the eight current estimates (3-hour discretization) for 
each grid cell are divided by their corresponding daily average. Next, for 
each MABSAB cell, we find the closest HYCOM cell and transfer the 
HYCOM data into the MABSAB resolution (2 × 2 km), scaling the 
normalized HYCOM data (eight estimates each day) by the daily ocean 
current speed from the MABSAB dataset. 

This synthetic dataset for ocean current speed has 3-hour time res
olution and 2 × 2 km grid resolution ranging from January 2009 to 
December 2013, and is used thereafter in this work for the analysis of the 
ocean current resources in North Carolina. 

For the ocean current energy conversion device, we consider the 
RM4 model developed by Sandia National Laboratory [47], since this 
design is well-documented and used in other analyses made for the U.S. 
east coast [47,15]. However, a few modifications were made to the 
turbine design in order to adjust its characteristics to the North Carolina 
ocean current resource. The original RM4 model was developed to 
operate along the coast of Florida in faster ocean currents compared to 
North Carolina. To compensate for this reduction in current speed, we 
increase the rotor diameter of this turbine from 33 m (original model) to 

45 m, which results in a larger energy capture area. This change leads to 
additional modifications in the model design, CapEx and OpEx values, 
all of them detailed in the Supplementary Notes. 

Finally, in this project, we assume that ocean current turbines will 
operate with its buoyancy tank and rotor at 50 m depth and that a 
maximum packing density of four devices per 2 × 2 km grid cell is 
allowed, as done in [47] and [15] to assure the safety and efficiency of 
the system. Additionally, a minimum ocean depth of 100 m and a 
maximum of 2500 m is considered in the definition of feasible site lo
cations in order to satisfy constraints related to the turbine model [47] 
and its anchoring system [57]. 

Fig. 5 depicts the site locations analyzed in this work for the ocean 
current technology (4108 sites) and their corresponding CFs. 

4. Results 

We utilize the models described in Section II to develop optimal 
portfolios consisting of different resource mixes. We specify the capacity 
mix of the three resources exogenously in order to explore the decision 
space, in each case allowing the model to optimally select the locations. 
We choose technology-specific capacity combinations that are large but 
plausible for the North Carolina power system. Thus we analyze the 
deployments of 300 and 600 MW of wind energy, 150 MW of wave 
energy, and 200 MW of offshore ocean current, as well as different 
combinations of these technologies. These deployment sizes were also 
chosen to ensure that most benefits from economies of scale would 
already be incorporated into the CapEx and OpEx of the portfolio, 
following references [33] and [47]. 

A total of eleven different portfolio sizes were simulated, and the 
Mean-Variance portfolio model proposed in this work was used to 
construct the efficient frontier of these portfolios. Temoa was then used 
to estimate the levels of cost reduction necessary for these offshore 
technologies to reach cost parity with other generating technologies in 
North Carolina. 

4.1. Mean-variance portfolio optimization 

Fig. 6 presents the efficient frontier for the various capacity combi
nations. The y-axis represents the LCOE of a specific portfolio, and the x- 
axis represents the square root of the variance in the CF. The size of the 
portfolio is described by three capacity numbers in the following 
sequence: wind, wave, and ocean current. For each portfolio size, there 
is a blue and red curve representing the results of Stage 1 and 2 from the 
models described in Section II. Finally, it is important to understand that 
each point in a given curve represents one solution of the Mean-Variance 
Portfolio model, and therefore is associated with a unique deployment 
pattern across the respective technologies in the portfolio. 

As discussed in Section II, the relaxed model formulation proposed in 
this work is good when the distance between the Stage 1 and Stage 2 
solution is small, since the global optimal solution is between these two 
curves. Based on the results shown in Fig. 6, it is possible to see that the 
relaxation proposed in Section II is tight for most of the portfolios, 
showing that the model is reaching results close to the global optima. 

The model relaxation performed worse for the portfolio with only 
ocean current. In this case, there is a maximum gap of 0.012 between the 
bounds of σ(CF) for an LCOE of 344[$/MWh]. However, given the un
certainty associated with cost estimates and energy generation esti
mates, the gap seen in this case will not substantially affect the analysis 
associated with this portfolio. 

Additionally, Fig. 6 shows that the North Carolina region has a very 
diversified offshore energy potential and that although the costs of wave 
and ocean current technology far outweigh the costs of wind, the com
bination of these different resources can promote significant reductions 
in energy variability. As an example, the portfolio with 300/150/200 
MW of wind/wave/ocean current had the best performance in terms of 
the variance in its capacity factor, and although the portfolios with only 

Fig. 5. Average site-specific capacity factor estimates for Ocean Current off the 
North Carolina coast from 2009 to 2013. 
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wind energy performed better in terms of LCOE, these portfolios are 
among the worse in terms of energy variability. 

Still analyzing Fig. 7, it is possible to see that the ocean current 
portfolio (0/0/200 MW) has a very elongated efficient frontier, with a 
wide range in energy variance, which illustrates the diversity of this 
energy resource in the North Carolina region. Another interesting aspect 
shown in Fig. 6 is the strong synergy that wind and ocean current have 
with wave energy. This characteristic can be seen in all instances where 
wave is added to a portfolio (e.g. 300/0/200 MW to 300/150/200 MW, 
and 600/0/0MW to 600/150/0MW). In these cases, after wave energy is 
added, there is a substantial reduction in the energy variability of the 
equivalent portfolio. 

Finally, Fig. 7 depicts the site location selection for a few of the 
portfolios shown in Fig. 6. The locations chosen for the wind, wave, and 
ocean current are represented by open squares, open triangles, and 
crosses, respectively. Additionally, the CF of all feasible site locations 
with an average value larger than 0.25 are shown to provide information 
regarding the spatial distribution of the offshore energy resource in the 
region. Fig. 7a-b shows the portfolios of three different system config
urations 300/0/0MW, 0/150/0MW, and 0/0/200 MW, for the lower 
LCOE region (a), and lower CF region (b); Fig. 7c and Fig. 7d shows, 
respectively, the configuration 0/150/200 MW, and 300/150/200 MW 
for the lower CF region. 

Regarding the interpretation of Fig. 7 and its connection with Fig. 6 it 
is important to notice that a low LCOE region in the efficient frontier 
implies in a high variance in the CF, and that a high LCOE implies in a 
low variance in the CF. 

4.2. Capacity expansion model 

Table 1 shows the capacity expansion model results from Temoa for 
all of the different portfolio options shown in Fig. 6. For each of these 
configurations, the portfolio with the lowest LCOE, the portfolio with 
medium LCOE, and the portfolio with the highest LCOE were investi
gated. In each LCOE configuration (low, medium, high), the first column 

represents the current LCOE estimate, and the second and third columns 
represent the LCOE values required to fully deploy this specific portfolio 
in the NC Energy system by 2030 and 2050, respectively. The values in 
the “2030” and “2050” columns can also be interpreted as the maximum 
price that the system operators in North Carolina would be willing to pay 
per MWh generated by each of our portfolios. 

Based on Table 1, it is possible to see that offshore wind energy 
(Portfolios 1 and 2) is the technology closest to being deployed by the 
capacity expansion model, needing a reduction of 56 % in its cost to be 
integrated into the system by 2030, and a 34 % cost reduction to be 
incorporated by 2050. Still, it is interesting to notice that the capacity 
expansion model values the energy of Portfolios 1 and 2 at a much lower 
price than it values the energy of more diversified portfolios. As an 
example, a value of up to 101 [$/MWh] was attributed to Portfolio 7 
(wind/wave) in 2050, but a maximum of 92 [$/MWh] was attributed to 
the wind portfolios in the same period. 

Through Table 1, it is also possible to see that as the variance in the 
portfolios’ capacity factor decreases, its LCOE [$/MWh] value increases 
and that offshore renewable energy technologies will gradually benefit 
from the North Carolina energy system evolution, improving the LCOE 
level required for their deployment from 2030 to 2050. 

5. Conclusion 

This work investigates the problem of defining optimal portfolios for 
wind, wave, and ocean current technologies. A Mean-Variance portfolio 
formulation is proposed to determine the optimal site location for each 
turbine, considering constraints on the energy collection system and 
maximum number of turbines per site location. Due to the complexity 
associated with running a large-scale nonlinear mixed-integer optimi
zation model, a relaxation was proposed for the original Mean-Variance 
portfolio formulation in order to allow the simulation of instances with 
more than 5000 site locations in suitable computational times. 

This relaxed portfolio formulation was then used to investigate the 
deployment of offshore wind, wave and ocean current out of the North 

Fig. 6. Efficient Frontier For Different Deployments of Wind, Wave, and Ocean Current.  
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Carolina Coast. After building the efficient frontier for portfolios with 
different, exogenously specified installed capacities, these results were 
then incorporated into a capacity expansion model of the North Carolina 
electric sector to estimate the required reduction in the costs of each 
portfolio such that it can be fully deployed by 2030 or 2050. 

Our results show that North Carolina has a very diverse offshore 
energy potential and that different offshore energy technologies can be 
combined to reduce energy variability. 

More specifically, we show that the efficient frontier of the ocean 
current technology is very elongated in the region investigated, 
providing conditions for low and high energy variability. We also 
showed that despite the high energy variability of wave energy, this 
resource can be easily integrated with wind or ocean current, improving 
substantially the energy variability of the equivalent portfolio. 

Additionally, the simulations made using the capacity expansion 
model show that substantial cost reductions are still necessary for the 
deployment of the offshore portfolios examined in this work. For 2030, 
the required cost reduction is between 56 % and 84 %, but for 2050 this 
level is between 34 % and 74 %, showing that these portfolios will get 
progressively more attractive as time passes. The capacity expansion 
simulations presented in this work also highlight the benefit of portfolios 
with low variability in output. The model results indicate that portfolios 
with low CF variance have higher break-even costs compared with 

higher variance portfolios. 
Finally, despite the considerable effort made to provide accurate 

estimates for the CapEx, OpEx, and LCOEs of the offshore energy tech
nologies investigated, a reasonable amount of uncertainty may still exist 
in our analysis, given the limited amount of data pertaining offshore 
deployments. In this context, future works should explore the use of 
robust and/or stochastic optimization as an alternative to incorporate 
the uncertainties related to technology cost and resource availability 
(wind speed, ocean current speed, significant wave height, and period). 
Future work also could explore the application of the presented meth
odology to investigate deployments of offshore renewable portfolios in 
other regions considering synergy with other technologies such as bat
tery and hydrogen storage. 
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Table 1 
Required LCOE values for portfolio deployment in the North Carolina Energy System by 2030 and 2050.  

Portfolio 
Installed 
Capacity Wind/ 
Wave/Ocean 
Current [MW] 

Low LCOE Portfolios (High CF Variance) Medium LCOE Portfolios (Medium CF 
Variance) 

High LCOE Portfolios (Low CF Variance)   

Current LCOE Estimate 
[$/MWh] (2021) 

NC Energy 
System (TEMOA) 
Required LCOE (% 
Reduction from the 
Current Values) 

Current LCOE Estimate 
[$/MWh] (2021) 

NC Energy 
System (TEMOA) 
Required LCOE (% 
Reduction from the 
Current Values) 

Current LCOE Estimate 
[$/MWh] (2021) 

NC Energy System 
(TEMOA) Required 
LCOE (% 
Reduction from the 
Current Values)    

2030 2050  2030 2050  2030 2050 

(1) 600/0/0 114 50 (56 
%) 

75 (34 
%) 

121 53 (56 
%) 

80 (34 
%) 

128 56 (56 
%) 

84 (34 
%) 

(2) 300/0/0 114 50 (56 
%) 

75 (34 
%) 

126 55 (56 
%) 

83 (34 
%) 

139 61 (56 
%) 

92 (34 
%) 

(3) 0/150/0 284 58 (80 
%) 

93 (67 
%) 

288 58 (80 
%) 

94 (67 
%) 

290 54 (81 
%) 

95 (67 
%) 

(4) 0/0/200 247 56 (77 
%) 

87 (65 
%) 

296 55 (82 
%) 

90 (70 
%) 

343 56 (84 
%) 

89 (74 
%) 

(5) 600/ 
150/0 

153 52 (66 
%) 

85 (45 
%) 

164 56 (66 
%) 

90 (45 
%) 

174 57 (67 
%) 

94 (46 
%) 

(6) 600/0/ 
200 

153 52 (66 
%) 

83 (46 
%) 

168 55 (67 
%) 

91 (46 
%) 

180 57 (68 
%) 

93 (48 
%) 

(7) 300/ 
150/0 

178 54 (70 
%) 

90 (50 
%) 

195 59 (70 
%) 

99 (49 
%) 

214 60 (72 
%) 

101(53 
%) 

(8) 300/0/ 
200 

174 53 (70 
%) 

88 (50 
%) 

198 56 (72 
%) 

93 (53 
%) 

224 60 (73 
%) 

100(55 
%) 

(9) 0/150/ 
200 

291 55 (81 
%) 

92 (68 
%) 

315 55 (83 
%) 

92 (71 
%) 

319 56 (82 
%) 

90 (72 
%) 

(10) 300/ 
150/200 

202 54 (73 
%) 

90 (55 
%) 

227 59 (74 
%) 

85 (63 
%) 

254 59 (77 
%) 

94 (63 
%) 

(11) 600/ 
150/200 

176 54 (70 
%) 

89 (50 
%) 

192 58 (70 
%) 

90 (53 
%) 

206 57 (72 
%) 

96 (54 
%)  
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