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A B S T R A C T   

This work proposes an analytical decision-making framework considering scenario generation using artificial 
neural networks and risk-averse stochastic programming to define renewable offshore portfolios of wind, wave, 
and ocean current technologies. For the scenario generation, a generative adversarial neural network is devel
oped to generate synthetic energy scenarios considering resources distributed over large geographic regions. 
These scenarios are then fed to a stochastic model, which objective to determine the optimal location and 
number of turbines for each technology. In the stochastic model formulation, a representation of the limits in the 
portfolio Levelized Cost of Energy and the maximization of the five percent lower energy generation conditions, 
also known as Conditional Value at Risk, is presented. The framework proposed here is tested considering data 
from a portion of the U.S. East coast, where the generative model was successful in creating energy scenarios 
statistically consistent with the historical data for wind, wave, and ocean current resources at more than 500 
sites. Furthermore, the Conditional Value at Risk portfolio optimization model was used to construct efficient 
frontiers for a combination of different technologies, showing the significance of resource diversification as a tool 
to improve system security.   

1. Introduction 

With the increasing political and financial support directed to 
reducing the world’s dependency on traditional energy resources such as 
coal, oil, and natural gas, the total participation of renewable energy 
generation more than double in the last decade [1], and according to the 
U.S. Energy Information Administration [2] by 2050 renewables will be 
the main source of primary energy consumption in the world. In this 
trend, renewables lead the investments in the power energy sector with 
approximately 350 Billion USD invested in 2020 [3]. 

Despite its potential, incorporating high levels of renewable energy 
into the power grid presents a number of challenges, including main
taining system stability and meeting demand cost-effectively. Various 
solutions have been proposed to address these issues. Reference [4] 
discusses the significance of energy storage in achieving a decarbonized 
energy matrix and analyzes different methods for optimal battery sizing. 
Reference [5] discusses the importance of improved hydropower fore
casting for the operation of hydro-dominant systems and shows that 
ANNs can perform superior to more traditional methods in streamflow 

forecasting. Finally, reference [6] suggests exploring the complemen
tarity of solar and wind energy to reduce energy variability and costs in 
the Mediterranean region. 

Despite being in early stages of development and presenting costs 
that are still high, offshore energy technologies such as wind, wave, and 
ocean current may serve an important role in the future energy matrix 
by helping to reduce energy variability and increase system security, 
offering synergies within themselves and with other technologies. For 
instance, in Ref. [7], the complementarity between offshore wind and 
hydropower is identified for the different regions in Brazil. A significant 
reduction in energy variability is also identified in Ref. [6] when 
combining offshore wind and solar resources in the Mediterranean re
gion. Reference [8] observed synergies between wind and wave energy 
in California, and [9] shows benefits in integrating offshore wind wave 
and ocean current in North Carolina using a mean-variance portfolio 
model. 

From the perspective of assessing the resource quality of an energy 
generation portfolio, the Levelized Cost of Energy (LCOE), average ca
pacity factor (CF), and variance are three of the most common measures 
found in the literature. While using these metrics, many works have 
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followed a mean-variance portfolio approach for determining the 
optimal combination of site locations and technologies in a portfolio. For 
example [9], used the technique to minimize the variance in generation 
at given LCOE levels in the context of offshore energy deployments [10], 
used it in the context of onshore wind energy repowering, and [11] in 
the context of solar PV studies. In general, in a mean-variace model, one 
attempts to minimize the portfolio risk (variance of return) given a range 
of different expected return targets. However, one limitation of the 
mean-variance approach is that, since variance is a symmetric function, 
it penalizes both high and low generation conditions. 

As an alternative to model asymmetric risks in portfolio optimization 
problems, Rockafellar and Uryasev [12] proposed a measure called 
Conditional Value at Risk (CVaR). The α-CVaR is defined as the condi
tional expectation of the “losses” of an investment at the α% worse 
scenarios (e.g α = 5%). In the context of energy systems, if one wants to 
maximize the expected energy generation of a portfolio, the α-CVaR 
could be equationed to represent the expected energy generation at the 
α% worse conditions. In this formulation, a mean-CVaR model [13] 
would attempt to find a portfolio that maximizes the total expected 
generation and a weighted version of α-CVaR (low generating 
scenarios). 

Despite less frequent than the mean-variance formulation, CVaR 
models are gradually being incorporated into the literature to assist in 
the optimization and analysis of energy systems. In Ref. [14], the 

economic risks associated with PV generation are modeled in terms of a 
CVaR-LCOE metric, where yearly solar irradiation is characterized using 
a Weibull distribution for different regions of the Minas Gerais state in 
Brazil, and a Monte Carlo sampling procedure is used to compute the 
expected LCOE of solar PV investments given the 0.1% worse energy 
generation conditions. In Ref. [15], the authors investigated the port
folio optimization of solar and wind energy in Germany using a genetic 
algorithm to compute the efficient frontier of different portfolios 
considering the expected monthly return and risk determined by CVaR 
at the 10% worse scenarios. In Ref. [15], different from Ref. [14], no 
synthetic data generation is considered, and only historical data from 
2015 to 2017 is used. 

Another important component of portfolio optimization analysis is 
data availability. Renewable energy projects have an expected operating 
life of 20–40 years [16,17]. Ideally, the data used to optimize these 
portfolios would need to be long enough to capture different scenarios 
that can happen during the project lifetime. However, this can be 
challenging when only a few years of historical data are available. The 
problem becomes more significant if multiple technologies are evalu
ated simultaneously since all data used needs to be at the same time 
interval for consistency. 

Different works have investigated alternatives to generate synthetic 
data for renewable energy resources. Hill et al. [18] explored the use of 
vector autoregressive models (VAR) in the synthetic generation of time 

Nomenclature 

A. Abbreviations 
ANN Artificial Neural Network 
BN Batch Normalization 
CF Capacity Factor 
CNN Convolutional Neural Network 
CVaR Conditional Value at Risk 
FID Frechet Inception Distance 
GANs Generative Adversarial Neural Networks 
IS Inception Score 
LCOE Levelized Cost of Energy 
MILP Mixed-Integer Linear Programming 
MMD Maximum Mean Discrepancy 
MMD RN MMD considering the real data and the data sampled from 

a multivariate gaussian distribution. Each MMD is 
computed over 365 (1-year) samples 

MMD RS MMD considering the real data and the synthetic data 
created by the GAN model. Each MMD is computed over 
365 samples 

MMD RR MMD of the real data with itself, considering 365 samples 
MMD SS MMD of the synthetic data created by the GAN with itself, 

considering 365 samples 
PDF Probability Density Function 
PV Photovoltaic 
RBF Radial Basis Function 
VaR Value at Risk 

B. Indices and Sets 
e ∈ E Set of energy technologies (wind, wave, and ocean current) 
i ∈ Ie Set of feasible site locations associated with the technology 

e 
k ∈ DR

e,i Set of site locations of the energy technology e ∈ E that are 
less than R km from the site (e, i), DR

e,i⊂Ie.
xh

i ∈ Xh Set of historical data samples for the MMD computation, 
i = {1,…,Nh}

xs
i ∈ Xs Set of synthetic data samples for the MMD computation, 

i = {1,…,Ns}

ζs ∈ ζ Set of synthetic scenarios for the portfolio optimization 
model 

C. Parameters 
Ce,i Annualized cost of deploying one turbine of the technology 

e at the site location i ∈ Ie [$/Year-Turbine] 
EGe,i,ζs Expected daily energy generation of one turbine of the 

technology e at the site location i ∈ Ie and scenario ζs 
[MWh] 

LCOE Upper bound in the Levelized Cost of Energy [$/MWh] 
Nh Number of days in the historical samples 
Ns Number of days in the synthetic samples 
Nte,i Maximum number of turbines of the technology e that can 

be deployed at the site location i ∈ Ie 
TNte Total number of turbines deployed of the technology e 
μ Mean vector for the real/synthetic data (μr/μs) 
Σ Variance covariance matrix for the real/synthetic data 

(Σr/Σs) 
σ RBF kernel bandwidth (a hyperparameter) 
α% A pre-defined percentage value considered in the CVaR 

computation (e.g., 5%) 

D. Decision Variables 
c Value at Risk (VaR). An auxiliary variable in the CVaR 

computation, c ≥ 0 
xe,i ∈ X Number of turbines of the technology e ∈ E deployed at the 

site i ∈ Ie, x(e,i) ∈ Ζ+

ve,i ∈ V Binary variable responsible for controlling the center of the 
energy collection system for each energy technology, ve,i ∈

{0,1}
zs ∈ Z An auxiliary variable in the CVaR computation, zs ≥ 0 

E. Functions 
CVaRα(X,ζ) Expected energy generation of the α% lower generation 

scenarios (ζ) given a decision X 
MMD2(Xh,Xs) Squared MMD of the historical data (Xh) and synthetic 

data (Xs) 
k(⋅, ⋅) Kernel Function  
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series for 14 wind energy sites in the United Kingdom. Dias et al. [19] 
proposed an autoregressive moving average model (ARMA) with 
state-space representation to generate synthetic wind energy data 
showing that this approach was able to partially reproduce the corre
lation between six wind turbine locations. 

Chen et al. [20] and Qiao et al. [21] used Generative Adversarial 
Neural Networks (GANs) for the generation of wind energy time series at 
hourly and sub-hourly time scales considering the correlation of 
different wind energy sites. In these both studies, a maximum time ho
rizon of 24 h was considered together with up to 24 site locations. It is 
interesting to mention that [20,21] also evaluated the capability of 
GANs in generating synthetic data for solar energy generation; however, 
in this case, the correlation of multiple site locations was not considered. 

None of the previous references related to GANs [20,21] considered 
the generation of synthetic data for multiple site locations and energy 
resources simultaneously. This has an immediate application to portfolio 
optimization studies where an algorithm needs to find the optimal site 
selection for each energy conversion device across a large number of 
viable locations to minimize energy intermittency and increase the 
portfolio robustness. In this case, the generative model needs to ensure 
consistency not only between the distributions of different sites but also 
between the distributions of different renewable resources, which can be 
challenging as the number of sites increases. 

This work proposes a CVaR stochastic programming formulation to 
optimize the site selection of offshore wind, wave, and ocean current 
devices to compose a renewable generation portfolio. This formulation 
aims to minimize the risk of low energy generation using CVaR, given 
different site and technology constraints, such that efficient frontiers 
could be computed in terms of the portfolio mean LCOE and CVaR. 
Other works, such as [22,23], have also investigated the use of CVaR in 
risk assessment and portfolio optimization; however, to our knowledge, 
the application of CVaR in the site selection of multiple energy resources 
over a large number of site candidates has not been explored before, and 
it represents an important contribution of this work. 

To represent scenarios in the risk-averse stochastic program, a GAN 
model is developed to generate daily synthetic energy generation pro
files capable of representing the interactions between all site locations 
(+500) and renewable resources analyzed (wind, wave, and ocean 
current). This GAN formulation takes advantage of the geometric dis
tributions of the energy resources by using Convolutional Neural Net
works (CNNs) [24]. Through this approach, the correlation of site 
locations that are closer to each other can be more easily characterized, 
allowing the GAN model to generate high-quality synthetic data at more 
than 500 locations. Finally, the techniques proposed in this work were 
evaluated using offshore resource data from a portion of the U.S. East 
coast. 

The main contributions of this paper can be summarized as follows.  

1) CVaR Portfolio Modeling: A modeling framework is proposed to 
integrate LCOE and CVaR in the construction of efficient frontiers for 
energy portfolios, considering optimal site selection and site/tech
nology feasibility constraints.  

2) GAN Modeling Approach: A new modeling representation of the 
input/output data of GANs is proposed, focused on applying the 
technique to large geographic regions and multiple energy resources 
using CNNs.  

3) Scenario Generation Case-Study: The use of GANs in the generation of 
synthetic data is investigated considering more than 500 site loca
tions and up to three energy resources (wave, wind, and ocean cur
rent), a condition frequently found in practice during site 
optimization/portfolio studies.  

4) Portfolio Optimization Case-Study: Portfolio optimization studies are 
performed, evaluating the importance of sampling size (number of 
years of data) in the construction of efficient frontiers. The CVaR- 
optimized portfolios are compared with the more conventional 
variance-minimization Markowitz modeling [25], and different 

combinations of offshore wind, wave, and ocean current are inves
tigated under our risk-return framework. 

The remainder of this paper is divided as follows: Section 2 describes 
the models and methods used in this work, Section 3 details the simu
lation results, and Section 4 concludes the paper. 

2. Models 

This section details the generative model developed in this work, the 
performance measures used in the synthetic data evaluation, and the 
model designed for the portfolio optimization analysis. 

2.1. Generative adversarial neural network model 

Generative Adversarial Neural Networks (GANs) are a special type of 
neural networks capable of implicitly modeling high-dimensional dis
tributions of data. This architecture is composed of two distinct models 
connected with each other, called Generator and Discriminator (Fig. 1). 
In GANs, the Generator is responsible for producing samples that are 
statistically similar to the real data, and the Discriminator is responsible 
for distinguishing between real and synthetic samples [24]. 

The training of GANs is usually divided into two stages that are 
iteratively repeated until the model improves its performance. In the 
first stage, the Generator receives an input noise vector, and after a se
ries of mathematical operations, generates the first batch of synthetic 
samples. The samples produced by the Generator are labeled as “not 
real” and used to train the Discriminator together with a set of real 
samples. In this stage, the Discriminator learns to classify real and 
synthetic data. 

In the second stage, the internal parameters of the Discriminator are 
frozen, and the synthetic data created by the Generator is deliberately 
labeled as “real data”. In this stage, the Generator is trained to improve 
the quality of its data output such that the Discriminator has more dif
ficulty distinguishing between real and synthetic data. In this training 
scheme, the Generator learns by exploring information embedded in the 
Discriminator, and the Discriminator learns by comparing the samples 
created by the Generator with the real data. 

A diagram of the GAN model implemented in this work to generate 
synthetic data of offshore wind, wave, and ocean current is shown in 
Fig. 1. Initially, historical resource data is processed to have the same 
grid resolution and to cover the same latitude and longitude (lat/long) 
regions in a matrix-like format. For the case shown, the area investigated 
is divided into 25 × 25 grid cells (each cell corresponding to a lat/long 
location). The 25 × 25 matrices of each renewable resource (three) are 
then concatenated so that a 25 × 25 × 3 data sample can be generated 
for each day of the historical data. These 25 × 25 × 3 matrices can be 
interpreted as images as they maintain the relative location of each site 
and resource (wind, wave & ocean current). 

By organizing the data this way, CNNs can help GANs to recover the 
correlations between different site locations more efficiently. Sites that 
are closer to each other have a higher chance of being strongly corre
lated, and these geometric type of structures are known to be well- 
interpreted by CNNs. See, for example, the work of [26,27], which 
propose an understanding of CNNs computing process, showing the 
model’s capacity to isolate localized features, identify lines, edges, and 
complex shapes. 

The GAN model shown in Fig. 1 with its different number of con
volutions and deconvolutions is manually tuned by testing different 
parameter configurations. It was found that a latent space of 100 ele
ments is sufficient to model the synthetic data through the Generator 
and that the use of Batch Normalization (BN) [28] improved the model 
training speed significantly (see Supplementary Note 1). BN normalizes 
the layer’s inputs during training allowing the gradient descent to take 
longer steps toward the objective function minimum [29], not only 
accelerating training but also reducing its dependency on the model 
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initialization. 
A Leaky ReLU activation function is used with the slope of the leak 

equals to 0.2, and the Wasserstein loss function [30] is used together 
with minibatch gradient descent, and Adam optimization algorithm 
[31] with a learning rate of 2e-3, momentum (β1) of 0.5, and minibatch 
size of 256. The Wasserstein loss is used due to its better performance 
compared to more traditional error metrics [30]. 

Different from the binary cross-entropy loss function, the Wasser
stein does not require a careful balance in the training and architecture 
of the Discriminator and Generator. On the other hand, the Wasserstein 
loss is highly intractable when the Discriminator is not a Lipshitz 
continuous function. In this work, the Lipshitz continuity of the 
Discriminator is enforced using a penalty term in the gradient norm as in 
Ref. [32]. 

It is important to mention that while using a Wasserstein loss func
tion, the Discriminator does not output a zero (real) or one (synthetic) 
classification for the images. This function instead allows the Discrimi
nator to assume any real value in order to compute the distance between 
the distribution of the real and synthetic data. 

Still, concerning Fig. 1, a detailed description of the convolution and 
deconvolutional (inverse convolution) operations can be found in Refs. 
[33,34]. In this work, the convolution/deconvolutional layer parame
trization (yellow/blue blocks) are described in terms of their kernel size, 
followed by stride and number of channels, as detailed in the figure 
legend. 

The Generator model starts with a latent dimension of 100, which is 
used as input for a dense layer that creates the foundation for the syn
thetic image, a 4 × 4 matrix with 512 channels. This image is gradually 
extended to 8 × 8, 16 × 16, and 32 × 32 using deconvolutions. Lastly, 
the image is converted to 32 × 32 pixels with three channels and 
cropped to assume the format of the historical data 25 × 25 × 3. The 
Discriminator follows the opposite path of the Generator; the 25 × 25 ×
3 image is gradually reduced to 13 × 13, 7 × 7, and 4 × 4, but at each of 
these steps the number of channels increases. In the end, the model uses 
a dense layer to output the evaluation of the Discriminator as a single 
number. 

The framework described above is based on the ideas of well-known 
GANs architectures such as [35,36]. Finally, although the model shown 
in Fig. 1 is adjusted for a 25 × 25 × 3 grid mapping (25 latitude pixels, 
25 longitude pixels, and three energy resources), it can be modified to 

accommodate different grid resolutions and/or number of technologies 
by increasing/decreasing the number of convolution/deconvolutions. 

The network presented in this section was implemented in Python 
using TensorFlow 2.6 [37], and its code is publicly available on [38], 
where more details regarding the model structure and parametrization 
can be obtained. 

2.2. Performance measure of Generative Adversarial Neural Networks 

The problem of evaluating generative models is an open research 
topic [39,40] that has gained considerable attention due to the 
impressive results shown by GANs. Comparing two sampling distribu
tions in higher dimensional spaces is a difficult task, and classic ap
proaches such as estimating the model log-likelihood are frequently 
impractical [41]. 

In the literature of GANs, the Maximum Mean Discrepancy (MMD) 
[39,42], Inception Score (IS) [40], and Frechet Inception Distance (FID) 
[43] are three of the most used metrics to compare the performance of 
different generative models. As previously discussed by many works, 
each of those three metrics has its pros and cons. References [42,44] 
show that the FID and IS are strongly biased with the sample size, only 
performing properly with very large samples. This bias problem is not 
evident in the MMD metric [42], which performs accordingly even for 
small data sets. The FID is considered to correlate very well with human 
perception and takes into consideration the statistics of the real and 
synthetic samples; the same is not true for the IS [43]. Finally, the FID 
can only capture up to two moments of distributions (from the feature 
space) due to Gaussian approximations made during the metric calcu
lation, and while the FID and IS require a pre-ANN training (capable of 
identifying different classes of the real data-see Refs. [40,43]), the MMD 
requires the definition (and tunning) of a proper kernel function. 

Considering the problem of training an additional ANN classification 
model just for computing the GAN performance (reducing the effective 
training set of the GAN), together with the limitations observed in Refs. 
[42,44] regarding bias in the IS and FID metrics, the authors decided to 
only use the MMD metric in this work. However, other statistical veri
fication procedures, such as comparing the synthetic sampling distri
bution with the historical data at individual sites, are also provided in 
the supplementary file (Note 2) to improve the assessment of the GAN 
performance. 

Fig. 1. Generative adversarial neural network model diagram.  
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Finally, the squared MMD can be computed as (1) [42], where k(⋅), 
represents the kernel considered. The idea behind this metric is to 
compute the difference between two sample distributions by using a 
special class of functions capable of projecting the data in a 
higher-dimensional space. Taking the average distance between samples 
in this new space makes it possible to distinguish non-trivial differences 
in the distributions, such as those associated with the correlations be
tween different sets of variables [45]. While computing the MMD, the 
Radial Basis Function (RBF) (2), rational quadratic, and polynomial 
kernels are frequently explored in the literature [42,45]. This work 
follows the approach of [45] and uses the RBF kernel (2) in the MMD 
computations. 

MMD2(Xh,Xs) =
1

Nh(Nh − 1)
∑Nh

i∕=j

k
(

xh
i , x

h
j

)
+

1
Ns(Ns − 1)

∑Ns

i∕=j

k
(

xs
i , xs

j

)

−
2

NhNs

∑Nh

i=1

∑Ns

j=1
k
(

xh
i , x

s
j

)
(1)  

k(x, y)= exp
(

−
1

2σ2‖x − y‖2
)

(2)  

2.3. Portfolio optimization model 

The risk-averse stochastic optimization model developed in this work 
to perform the portfolio selection of offshore wind wave and ocean 
current technologies is presented in (3-10). The model objective is to 
find the optimal number of turbines per site location such that the ex
pected energy generation of the portfolio in the worse α% scenarios is 
maximized. 

Each energy scenario is equally likely in this work since the GAN 
model randomly generates them one by one. In this context, if a total of 
10,000 scenarios are evaluated under an α equal to 5%, CVaRα would be 
the expected energy generation during the 500 worse conditions. Fig. 2 
illustrates the idea of CVaR showing in red the 500 worse conditions in a 
10,000 sampling simulation. 

In the formulation (3− 10), constraint (4) enforces an upper bound 
for the LCOE of the portfolio, constraint (5) defines the total number of 
turbines per energy technology, constraint (6) limits the number of 
turbines per site location, and constraints (7–8) enforces a maximum 
radius for the energy collection system; (7–8) guarantee that turbines of 
the same technology will not be deployed very far from each other, 

which could lead to prohibitive configurations for the energy collection 
system, with high energy losses and cost. 

Lastly, constraint (9− 10) states that the number of turbines at each 
site location for each technology (xe,i) is a non-negative integer, and the 
variable responsible for defining the energy collection system location 
(ve,i) is binary. 

max
(x,v)
​ CVaRα(X, ζ) (3)  

s.t .

∑

e∈E

∑

i∈Ie

Ce,i xe,i

∑

e∈E

∑

i∈Ie

E
[
EGe,i,ζ

]
xe,i

≤ LCOE (4)  

∑

i∈Ie

xe,i = TNte, ​ ∀ ​ e ∈ E (5)  

xe,i ≤ Nte,i, ​ ∀ ​ (e, i) ∈ (E, Ie) (6)  

∑

k∈DR
e,i

xe,k ≥ ve,i TNte, ​ ∀ ​ (e, i) ∈ (E, Ie) (7)  

∑

i∈Ie

ve,i = 1, ​ ∀ ​ e ∈ E (8)  

xe,i ∈ Ζ+, ​ ∀ ​ (e, i) ∈ (E, Ie) (9)  

ve,i ∈ {0, 1}, ​ ∀ ​ (e, i) ∈ (E, Ie) (10) 

To solve the model (3− 10) using and optimization solver, the CVaR 
metric needs to be represented arithmetically. Rockafellar [12] showed 
that by incorporating two auxiliary variables (zs, and c) the objective 
function (3) can be written in terms of (11-13). In this formulation, c is 
known as Value at Risk (VaR), and it represents the energy generation at 
the 5% quantile for the example shown in Fig. 2 (α = 5%). 

In terms of zs, if the energy generated by the portfolio (xe,i, ve,i) in a 
given scenario (ζs) is larger than the VaR (c), zs is zero; otherwise, it is 
positive and equal to the difference between the VaR (c) and the energy 
generated in the scenario. The combined influence of the objective 
function (11) and the constraints (12–13) leads to the CVaRα value of the 
portfolio. 

Formulated as (11–13 and 4–10), the stochastic portfolio optimiza
tion model presented here can be solved as a large-scale Mixed-Integer 
Linear Programming Problem (MILP), where the influence of each en
ergy scenario (ζs ∈ ζ) is individually incorporated in the formulation 
through the constraint (12). 

max
(x,v,c,z)

​ c − 1
α Ns

∑Ns

s=1
zs (11)  

zs ≥ c −
∑

e∈E
​
∑

i∈Ie

EGe,i,ζs xe,i, ​ ∀ ​ s ∈ {1,…,Ns} (12)  

c≥ 0 and zs ≥ 0 (13) 

By running the model (4− 13) for different LCOE limits (LCOE) it is 
possible to obtain an efficient frontier for the problem investigated. This 
curve characterizes the set of optimal portfolios that have the lowest 
average cost per MWh (LCOE) at a given risk level, here defined by 
CVaRα(X, ζ). Any portfolio outside the efficient frontier can be consid
ered sub-optimal. 

To compare the CVaR model (3− 10) with the more traditional 
variance minimization framework [9,46], the objective function (3) can 
be substituted by (14), with no changes in constraints (4− 10). 

min
(x,v)
​ XT Σs X (14) 

By changing (3) to (14), the model now aims to minimize the vari
ance in the energy generation of the portfolio X, where X is represented 

Fig. 2. Example of The Calculus of CVaR: For a Total of 10,000 Energy Sce
narios, CVaR is the Expected Generation of The Portfolio Conditioned on the 5% 
Worse Scenarios (in red). Refer to Equations 11–13 for the interpretation of “c” 
(VaR) and “zs”. 
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as a column vector of the decisions xe,i, and Σs is the variance-covariance 
matrix for the synthetic data. 

The models described in this section are implemented in Python 
using the Pyomo modeling language [47] and Gurobi [48] as optimi
zation solver. The code is publicly available on [38]. 

3. Simulations 

The simulations performed in this section are based on data from a 
portion of the U.S. East coast in North Carolina. North Carolina has 
recently received significant incentives for the deployment of renewable 
energy resources by establishing a target of 70% reduction in CO2 
emissions by 2030 and carbon neutrality by 2050 [49]. Furthermore, the 
state committed to a plan of deploying 2.8 GW of offshore wind energy 
by 2030 and 8 GW by 2040 [50]. These aspects mentioned above and the 
availability of three major offshore energy resources (wind, wave, and 
ocean current) made North Carolina the ideal region for investigating 
the models proposed in this work. 

Fig. 3 shows a flow diagram summarizing the simulations and 
analysis performed in this section. First, historical data of wind speed, 
wave height/period, and ocean current speed [51–53] was converted to 
electrical energy considering a set of optimally selected turbines [9]. 
This data is then used in the training of a GAN model capable of 
implicitly estimating the probability distribution of the historical data. 
Next, the GAN is used to generate synthetic samples of energy genera
tion, and this data is compared to the historical data for statistical 
consistency. Finally, the synthetic data is used in a portfolio optimiza
tion model to estimate the efficient frontiers of different renewable 
portfolios. 

For the simulations performed in this work, a 16-core 5 GHz CPU 
with 64 GB of RAM and an RTX3080-10 GB GPU was used. 

3.1. Data 

In this work, offshore wind speed data comes from the NREL Wind 
Integration National Dataset (WIND) Toolkit [51], wave significant 
height and period comes from the WAVEWATCH III model [52], and 
ocean current speed comes from the HYCOM/NCODA model [53]. 

The conversion of raw energy resources to electrical energy gener
ation is done using the energy conversion devices described in Ref. [9], 

which were carefully selected for optimal deployment on the North 
Carolina coast. The wind turbine has a rated capacity of 6 MW, the wave 
1.5 MW, and the ocean current 4 MW. Furthermore, the annualized cost 
estimates, minimum/maximum deployment depths and other 
design/cost-related characteristics were also obtained from Ref. [9]. 

When considering the three energy resources simultaneously, a 
maximum seven-year overlapping between the different data sources is 
obtained for the period of 2007–2013 in daily time discretization. 
Consequently, the historical data used for the GAN training follow this 
seven-year overlapping. Finally, the daily energy generation data is 
upscaled for the resolution of 0.1◦ × 0.1◦ and limited to a latitude of 
34.0◦–36.4◦ and longitude of − 77.0◦ to − 74.6◦. 

Fig. 4 shows the average capacity factor from 2007 to 2013 for the 
wind, wave, and ocean current technology. Any site location not rep
resented in this figure is set equal to zero in the GAN training. After the 
scenario generation by the GAN model, only the site locations that 
satisfied the minimum/maximum deployment depths [9] are integrated 
into the portfolio optimization. 

3.2. Generative neural network model 

This section presents the results of the GAN model. Fig. 5 shows a box 
plot of the difference between the average energy generation of the 
synthetic and real data at each site location for the wind, wave, and 
ocean current technology. From this figure, it is possible to notice that 
the generative model produced scenarios that differ on average no more 
than 0.02 [p.u] from the real data. 

Fig. 6 shows the variance-covariance matrix of the real (Fig. 6a) and 
synthetic data (Fig. 6b). In this figure, the x-axis and the y-axis are 
divided into three regions representing the wind, wave, and ocean 
current resources, such that it is possible to identify the interactions 
between any pair of technologies. Here, the results show a strong sim
ilarity between the variances and covariances of both datasets. 

Finally, Fig. 7 shows a boxplot of 1000 samples of the MMDs 
computed using one year worth of data (365 data points randomly 
sampled). In this figure, the MMD_RR group compares the difference 
between two sampled distributions of the real data. The MMD_SS group 
compares two sampled distributions of the synthetic GAN data. The 
MMD_RS group compares the real data with the synthetic GAN data, and 
the MMD_RN group compares the real data distribution with samples 

Fig. 3. Project flow diagram.  
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from a multivariate Gaussian model truncated from 0 to 1pu and fit with 
the real data itself. 

The MMD metric has a non-intuitive meaning when used by itself (a 
single MMD Eq. (1)). On the other hand, this measure is very useful to 
compare the performance of two models. By looking at the MMD_RR 
group, it is possible to notice that random samples of the real data can 
differ themselves by up to 0.04 units of distance, but they differ on 
average only about 0.015 units of distance. 

From Fig. 7, it is desired that both synthetic and real data behave 
similarly, which would translate to the MMD_SS and MMD_RS groups 
assuming values in the same range as the MMD_RR group. However, 
small differences not far from the scale seen in the real data (MMD_RR) 
are expected as the GAN model is capable of increasing the diversity of 
scenarios by sampling from its probability approximation of the real 
data. 

From this figure, it is possible to see a great agreement between the 
data generated by the GAN model and the real data. However, this is not 
true for the samples generated using the multivariate normal distribu
tion, as the MMD_RN group differs significantly from the MMD_RR 
group. 

Since this work investigates the generation of synthetic data for 
multiple sites and technologies simultaneously, traditional statistical 
assessment tools such as comparing directly the probability distribution 
of both datasets becomes complex as the number of site/technology 
combinations increases fast with the number of sites, which is already 
large. However, in Supplementary Note 2.1, a small number of site 

locations is sampled, and the probability density function (PDF) esti
mated with the real data is plotted together with the PDF estimated with 
the GAN synthetic data, showing an excellent agreement between both 
PDFs. 

Discussions about how the probability distribution of the real and 
synthetic data compare in terms of pairs of sites and/or technologies can 
be found in Supplementary Note 2.2. For example, how the energy 
generation of one site location changes given the generation in another 
site, and how this change differs with the real and synthetic data. 
Overall, for all site and technology pairs investigated (28 combinations), 
the GAN model continued to agree with the real data, well capturing 
non-linear interactions. PDFs for a series of portfolios (combinations of 
technologies and site locations) considering the real and synthetic 
datasets are shown in Supplementary Note 2.3. In these plots, it is 
possible to notice that the PDFs of the synthetic data are consistent with 
what is expected from a large sample of a probability distribution having 
smoother transitions in the PDFs when compared with the PDFs of the 
real data, which were estimates using a smaller number of samples 
(years 2007–2013). 

Overall, the results presented in this section and Supplementary 
Notes show that GANs are a powerful tool capable of adequately infer
ring the probability distribution of complex energy generation profiles 
over many technologies and large geographic regions, maintaining the 
statistical properties of its training data and providing diversity in its 
generated scenarios. 

3.3. Portfolio optimization 

In this section, the portfolio optimization models described in section 
2.3 is used together with the GAN model to create efficient frontiers for 
different offshore renewable energy systems. These simulations consider 
the assumptions made in Ref. [9] regarding technology efficiency, rated 
capacity, cost, site feasibility, and maximum radius of the energy 
collection system (DR

e,i). Furthermore, a maximum packing density of 50 
turbines per site location per technology is enforced. 

To understand the influence of the number of scenarios (years of 
data) in determining the efficient frontiers of the offshore energy port
folios, simulations with 10 and 30 years of energy generation are made 
considering the site location optimization of 200 wind, 200 wave and 
200 ocean current turbines, equivalent to 2.3 GW of installed capacity. 

Fig. 8a shows the simulations made using 10 years of data, and 
Fig. 8b shows the simulations with 30 years of data. In these figures, the 
x-axis represents the average energy generation in the 5% worse sce
narios (CVaR5%), and the y-axis represents the average cost per MWh of 
the portfolio (LCOE). The curve in red represents the efficient frontier of 
the portfolio computed using the model (3− 10), and each point on this 
curve represents a different solution, with turbines located at different 

Fig. 4. Capacity factor for the wind, wave, and ocean current technology.  

Fig. 5. Difference in the average energy generation of the synthetic and real 
data at each site location (μs − μr). 

V.A.D. Faria et al.                                                                                                                                                                                                                              



Energy 270 (2023) 126946

8

locations. 
A sensitivity analysis is performed in the efficient frontier (red curve) 

by computing the CVaR and LCOE of each solution in the curve using a 
new sample generation data of the same size (number of years) as used 
in the optimization model (10 or 30 years). This resampling is done 500 
times, and the results are shown as black lines in Fig. 8. 

As can be seen in Fig. 8, the increase in the sample size from 10 to 30 
years significantly reduced the uncertainty in the estimation of the 
efficient frontier. As most offshore energy projects have a lifetime of 
20–30 years, the result of Fig. 8 clearly shows the importance of 
considering larger sample sizes to properly quantify the risk and return 
of these projects. 

Fig. 8 also shows in blue the portfolio optimization results using the 
variance minimization model (14). It is interesting to notice that the 
efficient frontier constructed by the minimization of variance signifi
cantly underperforms in terms of energy generation in the 5% worse 
conditions. The model trades variance minimization for more severe 
low-energy generation scenarios. This result shows the importance of 
CVaR as a risk measure capable of modeling asymmetric risks in port
folio optimization problems. 

Finally, Fig. 9 shows the efficient frontiers for different combinations 
of wind, wave, and ocean current considering seven years of historical 
(2007–2013) and synthetic data using the min-CVaR model. In this 
figure, an arrow indicates the installed capacity of each portfolio in 
terms of GW (Wind/Wave/O.Current). The simulations made with 

Fig. 6. Covariance matrix of the synthetic and real data.  

Fig. 7. MMD Values for one Year Worth of Data, When Comparing the Real 
Data With Itself (MMD_RR) the Synthetic GAN Data With Itself (MMD_SS), The 
Real With the Synthetic GAN Data (MMD_RS), and The Real With Multivariate 
Normal Sampled Data (MMD_RN). 
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historical data are represented as green curves, and the simulations 
made with synthetic data are represented as red curves. A sensitivity 
analysis was also performed on the red curves by computing the CVaR 
and LCOE of each solution point using a new seven-year sample from the 
GAN model. These results are shown as black lines and indicate the 
uncertainty in the synthetic data estimate. 

From this figure, it is possible to notice that the worse portfolios in 
terms of CVaR are those with only wind and only ocean current. Despite 
having the lowest LCOEs the portfolios with only wind energy have 
CVaRs smaller than 0.02 [pu]. It is also possible to notice that the 
combination of different resources significantly improves the CVaR of 
the equivalent portfolio, as the deployments with wind, wave, and ocean 
current had the smallest CVaRs. This shows the importance of inte
grating different resources in order to improve system security and 
availability. Despite the high LCOEs of wave and ocean current 
compared to offshore wind energy, the continuous development of 
marine energy technologies is likely to lead to substantial cost re
ductions, as has been seen in other renewable energies such as solar and 
wind. In this condition, the complementarity between these different 
resources may become a cost-effective alternative to minimize the 
impact of energy variability and intermittency of renewables. 

Fig. 9 also shows that portfolio optimizations made using the syn
thetic have a good agreement with the simulations made using historical 
data. 

4. Conclusion 

This work proposes the use of GAN models to generate synthetic data 
for multiple energy resources over large geographic regions, maintain
ing the statistical properties of each resource and site location such that 
the technique can be used in portfolio optimization studies. Further
more, this work proposes a stochastic formulation for the site selection 
of renewable energy technologies considering the maximization of the 
average α%-worse energy generation conditions (CVaR) at pre-defined 
targets for the portfolio LCOE. The combination of both GAN and 
CVaR minimization models is proposed as a tool for the risk assessment 
of renewable energy portfolios. 

The GAN model was tested considering the generation of synthetic 
data for wind, wave, and ocean current resources in a 25 × 25, 0.1◦ grid 
off the coast of North Carolina. Showing great agreement with the his
torical data, maintaining the statistical properties of each site and 
resource, as well as adequately capturing complex interactions between 
different locations/resources. The CVaR minimization model was used 
to generate the efficient frontier for different combinations of offshore 
portfolios considering the scenarios created by the GAN model. A batch 
of simulations was made using a different number of sampled years (10 
and 30), showing the importance of sample size while performing 
portfolio optimization studies, as results may vary significantly 
depending on the size of the dataset. Our results also show that the 
traditional variance minimization modeling may lead to more severe 
low energy generation conditions, trading variance improvements for 
deterioration in the CVaR metric. Lastly, our results show that signifi
cant benefits in energy generation can be achieved by exploring the 
complementarity between different resources, as the portfolios with 
wind, wave and ocean current outperformed the less diversified 
portfolios. 

Future works should attempt to apply the GAN technique for sce
nario generation of other renewable energy technologies and other lo
cations. Another potential area of research is to improve the capacity of 
the GANs to deal with high-resolution information (e.g., 2 × 2km cells 
and larger regions), and to incorporate time dependency directly on the 
scenario generation of the GANs, such that more complex site selection 
and portfolio optimization studies could be performed and benefit from 
using the generated synthetic data. 

Fig. 8. Efficient frontier given the deployment of 200 wind (1.2 GW), 200 wave 
(0.3 GW), and 200 ocean current turbines (0.8 GW), considering uncertainty 
quantification and the use of different number of samples in the portfolio 
optimization (10 and 30 Years). 

Fig. 9. Efficient Frontier for Different Combinations of Wind, Wave and Ocean 
Current Considering Seven Years of Historical and Synthetic Data. Only The 
min-CVaR Model (3− 10) Was Used in These Simulations. 
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In terms of assessing the performance of GAN models, it is important 
that metrics like FID, IS, and MMD continue to be investigated; for 
example, testing different kernel functions for the MMD metric can 
provide further insights into the generated samples. It is also recom
mended the comparison of the GAN synthetic data with more traditional 
models, even if this would require the use of datasets with fewer 
variables. 

Finally, future research should also focus on improving the stochastic 
model formulation and techniques to speed up optimization, particu
larly when dealing with high-resolution data which increases model 
complexity. 
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