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H I G H L I G H T S  

• We develop shallow and deep neural networks for the Short-Term Load Forecasting problem. 
• Different neural networks architectures are tested, including uni- and bi-directional structures. 
• Global climate models’ information is used as input of the neural networks. 
• We present a real study case of time series forecasting for the Brazilian power system. 
• Relevant results are presented and systematically compared using Diebold-Mariano test.  
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A B S T R A C T   

This paper focuses on the development of shallow and deep neural networks in the form of multi-layer per-
ceptron, long-short term memory, and gated recurrent unit to model the short-term load forecasting problem. 
Different model architectures are tested, and global climate model information is used as input to generate more 
accurate forecasts. A real study case is presented for the Brazilian interconnected power system and the results 
generated are compared with the forecasts from the Brazilian Independent System Operator model. In general 
terms, results show that the bidirectional versions of long-short term memory and gated recurrent unit produce 
better and more reliable predictions than the other models. From the obtained results, the recurrent neural 
networks reach Nash-Sutcliffe values up to 0.98, and mean absolute percentile error values of 1.18%, superior 
than the results obtained by the Independent System Operator models (0.94 and 2.01% respectively). The better 
performance of the neural network models is confirmed under the Diebold-Mariano pairwise comparison test.   

1. Introduction 

Short-Term Load Forecasting (STLF) plays an important role in 
supporting Independent System Operators (ISO) in many aspects of 
energy planning and operations, such as power generation reserve, 
system reliability, dispatch scheduling, demand management, and 

electricity pricing [1]. In the past decade, with the advance of smart grid 
technologies and the increasing penetration of wind and solar farms, the 
complexity associated with short-term operational planning has esca-
lated in electricity power systems, posing considerable challenges for 
ISOs to operate power grids reliably [2]. The expected increase in the 
deployment of electric vehicles [3], distributed renewable generation at 
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the regional level [4], and energy storage also exacerbate the un-
certainties in supply and energy controllability in short-term operations 
[5]. In this context, accurate demand forecasts are crucial for systems 
operators and analysts to support planning and operational decisions in 
electricity power systems [6]. 

STLF models aim to improve electrical system planning from small- 
scale regional networks to large-scale interconnected grids. Accurate 
STLFs are essential to balance supply and demand for the hour- or the 
day-ahead operational planning [7]. Several methodologies have been 
applied over the years to model STLF problems; among them, non-linear 
models are frequently superior in representing the behavior of this type 
of time series [8]. In this context, non-linear machine learning methods 
have received considerable attention in the literature with applications 
of Artificial Neural Networks (ANN) and Support Vector Machines 
(SVM) [9]. These models rely on large datasets with multiple variables 
(e.g., load, calendar variables, holidays, temperature, humidity, cloud 
cover, and others), aiming to improve the characterization of the 
problem features and better model hidden relationships between inputs 
and outputs to produce accurate and reliable forecasts. 

Recent methodological developments in machine learning and sig-
nificant improvements in computational hardware (e.g. usage of 
graphical processing units for training ANNs) and software (e.g. avail-
ability of open-source packages such as Keras and Google TensorFlow) 
helped to push the boundaries associated with time series forecasting 
using ANNs, SVMs, and other related methods. As a result of this sig-
nificant development, machine learning models have been successfully 
applied in STLF studies. For example, Fan et al. [10] used SVMs to 
perform hourly and sub-hourly load forecasts for day ahead in New 
South Wales, and Barman et al. [11] used SVMs to perform STLFs for 
Assam (India). SVMs have been applied to regression and classification 
in many engineering problems for many years [12]. Other studies used 
recurrent ANNs to perform STLF in electricity markets like Belgium 
[13]; the work of Panapakidis [14] developed forecasting models for 
day-ahead and hour-ahead load predictions at the bus-level in Greece 
using ANNs; the authors in Jiao et al [15] developed ANN models in 
connection with k-means clustering to investigate non-residential load 
forecasting problem in China. Convolutional Neural Networks (CNNs), 
generally designed to exploit spatial correlation in data when dealing 
with images and speech recognition, have also been applied to STLF 
problems. For example, Voß et al. [16] used CNNs to generate load 
forecasts for individual households in Austin-TX and Boulder-CO, Tian 
and Hao [17] proposed combining unidirectional LSTMs and CNNs for 
STLF in Italy, and Sadaei et al. [18] proposed the use of fuzzy time series 
and CNNs connecting load information and temperature to generate 
forecasts for a company in Malaysia. 

The existing STLF literature shows several applications of Recurrent 
Neural Networks (RNNs) with satisfactory results while using Long 
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, e. 
g. the work of Jin et al. [19] uses GRU models to improve predictor 
accuracy associated with temperature, wind speed and humidity data 
used in agriculture; the authors in Bouktif et al. [20] uses LSTMs in 
connection with genetic algorithms for feature selection and investigate 
electricity consumption in a metropolitan area in France; the work of 
Kong et al. [21] investigate the use of LSTMs for load forecasting using 
aggregated information from smart meters data from customers in New 
South Wales. 

RNNs continue to be explored in recent STLF studies in different 
systems, such as the study by Veeramsetty et al. [22] that uses tradi-
tional RNNs for day ahead and hourly ahead with the support of the 
Principle Component Analysis (PCA) in the data processing stage. Haque 
and Rahman [23] present a heuristic analysis on the selection of relevant 
inputs and the train datset, adjustment of hyperparameters and fine- 
tuning for an ideal LSTM. In turn, Lin et al. [24] presents a two-stage 
LSTM for short-term probabilistic load forecasting, based on an 
encoder built to calculate the inputs correlation with load. Yang et al. 
[25] decompose the initial training dataset into a finite number of 

bivariate modal components, then reconstruct it using multivariate 
permutation entropy to identify internal factors, seeking better accuracy 
in LSTM results. Yue et al. [26] used LSTM combined with empirically 
decomposed techniques, in addition to permutation entropy and feature 
selection, and a Bayesian optimization algorithm in order to increase the 
accuracy of their models. Subbiah and Chinnappan [27] used LSTM with 
selection of inputs based on filtering features and data clustering to 
identify subsets of ideal data, aiming to reduce overfitting and improve 
the accuracy. 

Thus, it is important to note that most of the previous studies that 
apply RNNs to solve STLF problems focus on: one (or a few) ANN ar-
chitecture(s), the input variable selection, and hybrid models that 
combine ANNs with other techiniques such as clustering. Moreover, 
most of the previous literature apply ANN models only considering small 
scale, and/or low to medium complexity systems, seeking to validate the 
proposed methodology performance to those systems. In turn, the pre-
sent study is focused on the analysis of several ANN architectures to the 
STLF problem in a large-scale electrical power systems; such system is 
composed by different geographic zones, climate conditions, population 
centers, which implies in complexities to the load profiles. 

Despite recent advances using LSTMs and GRUs, the existent STLF 
literature and practical implementations still lack proper model/input 
definition and pre-processing procedures [28]. For example, bidirec-
tional RNNs are not as popular as their unidirectional counterpart, 
despite the benefits of bidirectional information in the RNN learning 
process [29]. Only a few papers focused on developing bidirectional 
RNNs to STLFs. For example, the work of Cai et al. [30] shows a multi- 
layer stacked bidirectional LSTM to generate forecasts for a 35 kV sub-
station in China using three years of data as training/test set and pro-
duced more accurate forecasts than a set of other three ANN 
architectures investigated. In Wahab et al. [31], the authors present the 
use of a bidirectional sequential RNN model with feature engineering 
applied to different STLF datasets of historical load and calendar data. 
Ullah et al. [32] show a hybrid model based on bidirectional LSTMs in 
combination with CNNs to forecast household electric power con-
sumption, where authors point out that future studies should attempt to 
incorporate climate conditions in the ANN model inputs. Although the 
use of RNNs in STLF with observed temperature and calendar variables 
has been used in previous studies, to our knowledge there is lack of 
studies evaluating different RNNs architecture performance for the case 
of real large-scale systems considering information originated from 
Global Climate Models (GCMs). 

Most of the previous STLF literature focuses on assessing perfor-
mance accuracy of models based on classical metrics as the Mean Ab-
solute Percent Error (MAPE), the Mean Absolute Error (MAE), the Mean 
Square Error (MSE), and the Root Mean Square Error (RMSE). For 
example, Li et al. [33] uses LSTM in connection with time series 
decomposition to provide STLF for a city in China and compares accu-
racy results using MAPE, MAE, and RSME. Similar comparison by these 
metrics is also presented in Bashir et al. [34] where a hybrid LSTM- 
Prophet is used to model load at Elia Grid in Belgium. Other metrics 
are also added to accuracy performance investigation in Javed et al. [35] 
that uses CNNs in connection with LSTMs for STLF in the city of Lahore 
in Pakistan (a related approach is presented in Rafi et al. [36] with 
application to Bangladesh). Other previous work [37–38] use MAPE, 
MSE, and other related metrics. While previous STLF literature has 
focused on classical metrics to assess model performance accuracy, it is 
still modest in numbers of applications the use of more robust pairwise 
comparisons for STLF models. Such pairwise-comparisons aim to pro-
vide a statistical hypothesis test to determine whether one forecasting 
model is significantly better than another and help with decisions 
regarding model selection. 

This paper presents a novel approach to evaluating potential accu-
racy gains in the STLF problem by combining the use of a range of ANNs 
with temperature forecasts from GCMs. Our research breaks new ground 
by investigating the performance of unidirectional and bidirectional 
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versions of RNNs based on LSTMs and GRUs, as well as the performance 
of Multi-layer Perceptrons (MLP) ANNs with shallow and deep struc-
tures. We also test our methodology using real data from the Brazilian 
Central-Southeast electricity market, which accounts for about 50% of 
the total energy consumption in Brazil [39]. To our knowledge, this is 
the first time bidirectional RNNs have been used in combination with 
climate variables to produce forecasts for a large-scale power system. 
Large-scale systems are subjected to unique STLF challenges due to 
diverse climates, consumer behaviors, limited information, increased 
coordination needs, and susceptibility to external factors. Additionally, 
this work fills the gap by performing systematic pairwise comparisons 
between forecasts generated by different models using the Diebold- 
Mariano significance test [40]. The overall contributions of the work 
can be synthetized as:  

(i). Establishment of a novel time series forecasting framework for 
STLF based on ANNs that uses historical load, calendar, and 
population data in combination with temperature information 
from a GCM;  

(ii). Investigation of bidirectional RNNs performance in comparison 
to other unidirectional RNNs and MLPs architectures, as well as 
existing model used by the Brazilian ISO;  

(iii). Detailed analysis of STLF in a large-scale electrical power system, 
providing a realistic evaluation of different model performance in 
practical applications;  

(iv). Application of the Diebold Mariano test to suggest a more reliable 
and accurate selection of different ANNs architectures for STLF 
applications. 

The other sections of this paper are organized as follows: Section 2 
presents the methodology explaining the application of ANNs to STLF 
and the analysis performed in this work. Section 3 presents the data and 
details the case study. Section 4 contains results and discussion. Section 
5 presents the main conclusions of the work and points to future 
research directions. 

2. Methodology 

2.1. Time series Forecasting: Analysis framework 

This study investigates the STLF problem using the framework 
described in Fig. 1. Different machine learning models and methods are 

employed to generate STLFs, and while our focus is on the use of ANNs 
(in the form of MLPs, LSTMs, and GRUs) SVMs are also considered. 

Initially, the data inputs go through a pre-processing step that in-
cludes the treatment of missing data, one-hot encoding, and normali-
zation. Subsequently, the machine learning models that produce the 
STLFs are applied, and the accuracy of each model is assessed through 
the use of the Mean Average Percentage Error (MAPE) and the Nash- 
Sutcliffe Error (NSE). Finally, the developed models are compared 
using the Diebold-Mariano pairwise test, which assesses whether there is 
a statistical difference between the accuracy of the different models 
investigated. 

2.2. Data Pre-processing 

In possession of the STLF dataset, a set of pre-processing procedures 
must be followed. In this work, missing data and outliers were identified 
and substituted by linear interpolations using the nearest neighbor 
values. After that, the resultant dataset was normalized by subtracting 
the hourly value of each variable (load, temperature, etc.) by its mini-
mum value and dividing the result by the standard deviation of the 
corresponding variable. 

As machine learning models cannot interpret categorical variables 
without a prior treatment, a process of encoding these variables was 
performed using the One Hot Encoding technique [41]. The One Hot 
Encoding is based on the transformation of a categorical variable into a 
binary form (dummy). For example, the calendar variables used as STLF 
input are: day of the week, day of the month, and month. Each variable 
is represented by a vector containing zeros and ones. The vector size is 
the number of possibilities that the variable can reach. For example, the 
day of the week variable has seven possibilities, so a vector with seven 
positions will represent it. If the day in question is a Monday, the first 
position of the vector assumes the value one, and the other positions will 
take the value zero. 

As it is well known, ANNs have a large memorization capacity; 
however, it is not desirable that the model memorizes the training set 
because it affects its generalization capabilities [42]. Ideally, the model 
should be able to generalize the learning process and create reasonable 
extrapolations for events that have not been covered in the training set. 
Therefore, regularization techniques have been created to improve the 
ANN performance and reduce data overfitting. One of the main tech-
niques that is used in this study is the Dropout, where part of the neurons 
in the ANN are randomly turned off during the training phase. More 

Fig. 1. Time Series Forecasting Analysis Framework for Short-term Electric Load.  
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specifically, this work uses the Monte Carlo Dropout technique proposed 
by Gal and Ghahramani [43], which provides a probabilistic approxi-
mation of model forecast, where part of the ANN neurons is randomly 
turned off not only during training but also during forecasting. In this 
framework, different ANN weight configurations can be evaluated in a 
single ANN model providing mathematical bases for uncertainty quan-
tification and improving the model performance. 

Another technique used here to improve model performance is the k- 
fold cross-validation which consists in dividing the training data into k 
mutually exclusive subsets of the same size [44]. From this, a subset is 
used for testing, and the remaining k – 1 subsets are used for parameter 
estimation (model training). This process is performed k times, alter-
nating the training and testing subsets. In the end, k different models are 
trained and tested with different batches of data [45]; similar procedure 
can also be observed in the work of [46] about global solar radiation in 
India. 

2.3. Multi-Layer perceptron Neural Networks 

Among the different ANN architectures, the MLP is one of the most 
popular and it is often used in several types of time series forecasting 
problems, including STLF. In MLPs, initially, the ANN signal moves 
forward from the input layer to the hidden layers until it reaches the 
output layer, where the cost function can be estimated. Then, posteri-
orly, a backward propagation step is performed where the partial de-
rivatives of the cost function with respect to the weights and bias are 
used to update the model parameters [47]. 

Recently, more powerful hardware has enabled the implementation 
of Deep Neural Networks (DNN). DNNs have a large number of hidden 
layers when compared to shallow ANNs. MLPs can be trained as deep 
ANNs and may benefit from the enhanced representation. Given an 
appropriate amount of data and computational time for training, DNN 
contributes to a better abstraction of the system parameters and, 
therefore, better representation of the non-linear relationships between 
inputs and outputs in problems such as the STLF [48]. For a discussion 
about the characteristics of DNNs in comparison with shallow ANNs for 
streamflow forecasting, see [49]. 

2.4. Recurrent Neural Networks (RNN) 

Another ANN model that is constantly employed for STLF is the RNN. 
These models are based on architectures that segment the ANN predic-
tion by time steps, allowing optimal applications in time series problems 
[50]. 

LSTM is a special RNN model capable of learning long-term de-
pendencies [51]. In an LSTM, an internal memory cell gate (Ct) is 
defined to store long-term information. This gate interacts with previous 
output and subsequent input to select which elements of the internal 
vector will be updated, kept, or deleted. In this architecture, the memory 
cell state is defined as in (1–4), where (1) and (2) describe the cell gate 
vector update, (3) represents the input gate (it), and (4) describes the 
computations for the forget gate (ft). The input gate is combined with the 
cell update vector as a mechanism to integrate new information into the 
cell state; similarly, the forget gate is combined with the previous cell 
state in order to delete information from the RNN memory. After 
computing Ct the final output of the RNN cell (ht) can be determined by 
(5–6), where (5) is called the output gate. In equations (1–6), wc, wi, wf , 
w0, and are the weight matrices, bc, bi, bf , and b0 are bias vectors, σ is the 
logistic sigmoidal function, xt is the input vector, ht is the output vector 
of the current cell, “*” represents the element-wise multiplication of 
matrices (Hadmard Product), and “•” represents a normal matrix 
multiplication. 

Ct = ft*Ct− 1 + it*C
∼

t (1)  

C
∼

t = tanh(wc • [ht− 1, xt] + bc ) (2)  

it = σ(wi • [ht− 1, xt] + bi ) (3)  

ft = σ
(
wf • [ht− 1, xt] + bf

)
(4) 

The output gate (ot) and the final output (ht) are described by (5) and 
(6), respectively. Here, w0 is the weight matrix associated with ot and b0 

is the bias vector. 

ot = σ(w0 • [ht− 1, xt] + b0 ) (5)  

ht = ot*tanh(Ct) (6) 

Another important RNN model is the GRU. The GRU architecture 
does not include a cell state and uses its hidden state (ht) to transfer 
information from previous steps of the time series [52]. The GRU ar-
chitecture has two gates the update gate (zt) and reset gate (rt), and can 
be mathematically described by (7–10). Where wh, and wr are weight 
matrices, and bh, bz and br are bias vectors. 

ht = (1 − zt)*ht− 1 + zt*h
∼

t (7)  

h
∼

t = tanh(wh • [xt, rt*ht− 1] + bh ) (8)  

zt = σ(wz • [xt, ht− 1] + bz ) (9)  

rt = σ(wr • [xt, ht− 1] + br ) (10)  

2.5. Bidirectional RNN models 

In addition to RNN structures that have a unidirectional flow of in-
formation (forward in time), there are also models characterized by a 
bidirectional data flow, known bi-RNNs (Fig. 2). Unlike RNNs with 
unidirectional flow (Fig. 2a.), architectures with bidirectional flow 
process data in two directions (Fig. 2b.). For time series problems, bi- 
RNNs process data forwards and backward in time through different 
layers [53]. The combination of the bidirectional flow structure with 
LSTMs and GRUs generates what is known as bi-LSTMs and bi-GRUs. 

Consider a time sequence t→ = {1,⋯,T}, for the forward layer of the 

bi-RNN, and and t
←
= {T,⋯,1} for the backward layer. Following the 

notation of Fig. 2, a forward hidden sequence ( h
→

) would, in general, be 

computed as (11), a backward hidden sequence (h
←

) would be computed 
as (12), and the output (yt) would be computed as (13) [54]. In these 
equations w

x h
→, w

y h
→, b

h
→ are the weight and biases of forward layer, 

w
xh

←, w
yh

←, b
h
← are the weight and biases of backward layer, and by is a bias 

parameter for the output. 

h
→

t = tanh
(

w
x h→

•

[

xt, h
→

t− 1

]

+ b
h→

)

(11)  

h
←

t = tanh
(

w
xh

← •

[

xt, h
←

t+1

]

+ b
h
←

)

(12)  

yt = w
y h→

h
⇀

t +w
yh

← h
←

t + by (13)  

2.6. Support vector Machines for regression 

In this work we use SVMs with the purpose of time series forecasting, 
therefore we consider only SVMs based on Support Vector Regression 
(SVR). Given a dataset (X,Y) with X ∈ RNxM, and Y ∈ RNxT where N is the 
number of samples, M is the number of input elements, and T is the 
number of output elements, the parameters W and b of a SVR model can 
be determined by solving (14–17), where ϕ(Xi) maps Xi to a higher- 
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dimensional space by the use of a kernel function [55]. In this frame-
work, an estimate Y for an arbitrary input vector X has the form of 
Equation (18). 

min
W,b,ξ,ξ*

1
2
||W| |

2
+C

∑N

k=1

(
ξk + ξ*

k

)
(14)  

s.t. yk − WT ϕ(Xk) − b ≤ ε + ξk, ∀k = 1,⋯,N (15)  

− yk + WT ϕ(Xk) + b ≤ ε + ξ*
k , ∀k = 1,⋯,N (16)  

ξk, ξ
*
k ≥ 0, ∀k = 1,⋯,N (17)  

yi = WTϕ(Xi)+ b (18) 

In (14–17), the parameter ε is a margin of tolerance in the approxi-
mation (18), ξk and ξ*

k are slack variables of the model constraints, and C 
≥ 0 is a regularization hyperparameter that controls de degree of the 
deviations above ε. 

By using kernel functions to implicit transform the input data into a 
higher dimensional space, we can solve the dual version of the model 
(14–17), find the dual variables (α) associated with the primal model 
constraints, and easily determine the forecast Y of any input variable X 
using the well-known kernel trick [55]. In this work, the radial basis 
kernel function [55] was used in the implementation of the model 
(14–18) as this is the kernel used by the Brazilian ISO in its load fore-
casting model [56]. 

2.7. Systematic comparison of forecasts 

Traditional accuracy measures such as MAPE, and NSE can lead to 
wrong conclusions while comparing the performance of different models 
if no statistical significance test is performed in the analysis. To face this 
problem, Diebold and Mariano [40] presented an accuracy test capable 
of statistically validating the performance of a given model in relation to 
a benchmark. The Diebold-Mariano (DM) test is presented below. 

Here, we define yi, i ∈ {1,⋯,N} as the ground truth observations of 
the forecasts made by models M1 (ŷ

(M1)
i ), and M2 (ŷ

(M2)
i ), and e(M1)

i , e(M2)
i 

the forecast errors of each model (19). By applying a loss function to the 
errors of each model as in (20), the statistical value of the Diebold- 
Mariano test can be computed as in (21), where S2 is a consistent esti-
mator of the asymptotic variance of (22) [57]. 

e(Mα)
i = yi − ŷ(Mα)

i , ∀i ∈ {1,⋯,N}, andMα ∈ {M1,M2} (19)  

F
(

e(Mα)
i

)
=

(
e(Mα)

i

)2
(20)  

DM =

∑N
i=1

(
F
(

e(M1)
i

)
− F

(
e(M2)

i

))/
N

̅̅̅̅̅̅̅̅̅̅̅

S2
/

N
√ (21)  

E(d) = F
(

e(M1)
i

)
− F

(
e(M2)

i

)
(22) 

Finally, the Diebold-Mariano hypothesis test can be described as:  

• H0: loss function generates predictions that are not statistically 
different (E(d) = 0);  

• Hα = E(d) > 0, where model M1 has better prediction performance 
than M2;  

• Hα = E(d) < 0, where model M2 has better prediction performance 
than M1. 

3. Short-Term load forecasting case study 

3.1. Case study description 

The framework presented in Section 2 is applied and tested using a 
real case study representing a portion of Brazilian electricity market. 
The Brazilian interconnected power system has a load of approximately 
73GW divided in four subregions (South, Central-Southeast, North and 
Northeast) [39]. Our focus in this work is directed to the Central- 
Southeast portion of the system which corresponds to approximately 
60% of the system total load and is the region where the largest load 
centers in the country (São Paulo, Rio de Janeiro and Belo Horizonte) 
are located (Fig. 3a). Fig. 3b shows the load profile of the Central- 
Southeast for typical days representing the four seasons of the year in 
2019. 

STLF has been receiving increasing attention from the Brazilian ISO, 
as the daily operational planning of the Brazilian interconnected power 
system expanded to hourly and sub-hourly time discretization, relying 
on a unit commitment model named DESSEM [28]. DESSEM uses as 
input demand for the day-ahead on a sub-hourly basis. The day-ahead 
forecasts are made for 48 half-hour intervals, which are provided by 
STLF models, and determine the scheduling of the power generation 
plants and the hourly locational marginal electricity prices (LMPs). The 
LMPs are the basis to represent the electricity prices in the Brazilian 
short-term market, and therefore, short-term demand forecasts play a 
significant role in the pricing formation. 

In the daily operation schedule, the most recent STLF model devel-
oped by the Brazilian ISO is named PrevCargaDESSEM, which considers 
as input variables: load historical time series data; calendar variables 
(date, time, month, year), including holidays and days; and minimum, 
average, and maximum observed temperatures for the Brazilian Central- 
Southeast submarket [58]. 

Fig 2. (a)Uni-RNN; (b)Bi-RNN architecture.  
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The PrevCargaDESSEM works with an ensemble of 14 models, with 
different inputs for temperature data, including: four SVMs with linear 
kernel (one with maximum temperatures; one with average and 
maximum temperatures; one with average temperatures; and one 
without temperature data); four radial-kernel SVMs (one with maximum 
temperatures; one with average and maximum temperatures; one with 
average temperatures; and one with no temperature data); 4 MLPs 3- 
layers (one with maximum temperatures; one with average and 
maximum temperatures; one with average temperatures; and one 
without temperature data); and two dynamic regressions based on the 
ARIMA model (p,q,d) (one with maximum temperature; and one with 
mean temperature). The weights of each model are obtained by an 
optimization algorithm that aims at the weighting that results in the 
smallest forecast error. 

3.2. Load and calendar data 

Load data is based on historical information from the Brazilian ISO 
available in hourly discretization in the SINtegre platform [59] for all 
four Brazilian submarkets (Central-Southeast, South, Northeast, and 
North). Furthermore, the load profile is segmented into light, medium, 
and heavy, with the light level being concentrated in the early hours of 
the morning and the heavy level mainly between 6:00 pm and 11:00 pm. 
Initially, forecasts are made on an hourly basis, which are later dis-
cretized on a semi-hourly basis by a cubic monotonic spline approxi-
mation made by ISO. 

Besides that, calendar variables, holiday information, and daylight 
savings time (DST) are available daily in SINtegre [59]. In Brazil, DST is 
defined between the months of October to February; Among the main 
holidays are national holidays, such as Independence Day, Carnival, 
Christmas, New Year’s Eve, and days with special events such as World 
Cup soccer matches. For the models develop in this work, when the STLF 
is performed for a holiday, the calendar variables are reported as Sunday 
since there is a small sample of holiday data available on the input 
dataset. 

3.3. Observed temperature and ISO temperature forecasts 

The verified temperature for each submarket is gathered from civil 
and military aviation databases [60], being available on an hourly basis. 
Also, the temperature forecasts used by the ISO are gathered from the 
Center for Weather Prediction and Climate Studies - CPTEC/INPE [61] 

and the National Center for Environmental Prediction - NCEP [62], 
being available for seven days ahead at hourly time discretization [59]. 
In order to determine an aggregate temperate value for a specific sub-
market, the ISO assigns weights for the temperatures of the main cities 
inside each submarket based on historical data and take the mean of the 
resultant sum. As this is the official procedure adopted by the Brazilian 
regulatory agencies, it was also followed in this work. 

3.4. Temperature forecasts from the Global climate model 

Global climate models focus on short-term atmospheric changes, in 
addition to spatial and temporal accuracy through high-precision algo-
rithms [63]. These models also accurately describe the evolution of the 
present climate and adapt to external changes forced within the climate 
system. Therefore, the greater accuracy that GMCs may have, the better 
will be the meteorological data for inputs for STLF models. In this study, 
temperature data from the Global Ensemble Forecast System (GEFS) 
[64], a GCM provided by the National Oceanic and Atmospheric 
Administration (NOAA), are tested in the STLF models evaluated. This 
data is acquired for the twenty largest cities of the Brazilian Central- 
Southeast submarket, and subsequently weighted by population in 
order to obtain the equivalent temperatures for the system. 

We also analyze the use of temperature forecasts from the GEFS 
database and evaluate the performance of the developed STLF models 
against using temperature forecasts from the Brazilian ISO database. 
GEFS is a weather/climate model developed by NCEP that generates 21 
separate forecasts to overcome uncertainties in the inputs and model 
limitations. GEFS quantifies these uncertainties and produces a range of 
potential outcomes based on data perturbations [64]. This model’s data 
are available from 2000 to 2019 in a three-hour discretization. 

We weight the GEFS temperature by the populations of the twenty 
most populous cities in each state of Central-Southeast region based on a 
geometric mean as previously done in Cawthorne et al [65] for two 
states in the southern US and in a large scale analysis of the 48 states 
representing the contiguous US territorial area in Esraghi et al. [66]. In 
addition, to ensure a bias correction of the GEFS data, a regression 
analysis is performed between estimated population-weighted GEFS 
temperatures with the temperature available from the Brazilian ISO 
dataset. The regression is described by (23) and shows an R2 value equal 
to 0.874. 

t* = 3.5416+ 0.9717tGEFS (23) 

Fig 3. Typical day Load Profile 2019 - Central-Southeast Submarket.  

L.B.S. Morais et al.                                                                                                                                                                                                                             



Applied Energy 348 (2023) 121439

7

In (23), t* is the estimated temperature based on the regression 
equation that uses the GEFS temperature (tGEFS) as the predictor. 

3.5. Time series forecasting considerations 

All forecasts are performed for the day-ahead at half-hour time dis-
cretization. Our models use as input data the verified load and tem-
perature values in the past two days, the predicted temperatures, a 
calendar indicator for the day of the forecast, and additional calendar 
information representing special days (e.g., holidays). After testing 
several combinations of parameters and input variable selection, the 
best results were obtained using five timesteps for RNNs. Each timestep 
is composed of the set of features mentioned earlier (calendar variables, 
historical data and temperature predictions), such that in its totality, an 
input sample of the RNNs contains the information from seven 
sequential days prior to the forecast day. 

The forecasting model used by the Brazilian ISO is based on a com-
bination of a radial SVM, a linear SVM, and a single-layer MLP, com-
bined in an ensemble of twelve different model configurations [56]. This 
ensemble considers different configurations of temperature inputs, such 
as: neglecting predicted temperature, using mean temperatures, using 
maximum temperatures, and using maximum and minimum tempera-
tures. Therefore, when comparing different model performances in 
Section 4, we use the ISO STLF forecast results of the ensemble model 
available [59]. 

4. Results and discussions 

4.1. Experimental design for time series forecasting Analysis 

As mentioned earlier, we focus on evaluating STLF models perfor-
mance for the Brazilian Central-Southeast electricity submarket. The 
STLFs are developed using the electricity market data and consider 
different MLP architectures, as well as unidirectional and bidirectional 
LSTMs and GRUs. Forecasts are obtained on a semi-hourly basis, and in 
addition to performance evaluations through MAPE and NSE the DM test 
is employed for systematic pairwise comparisons. Three different com-
parison analyses among models are carried out using the Brazilian ISO 
and GEFS temperature data. 

For the experiments of Analysis 1 and 2, data is available for the 
period of 01/01/2016 to 09/20/2021. From April to September 2020, 
the load shape changed considerably due to COVID-19 initial quarantine 
effects, and therefore, this time segment was discarded from the input 
data. Also, the last 90 days of the dataset were excluded from the 
training batch to be used as an out-of-sample test for the models. As the 
GEFS temperature data is stored in the NOAA servers from 2000 to the 
end of 2019, for the Analysis 3, the period between 01/01/2016 and 12/ 
31/2019 was selected to match other ISO available data and the entire 
year of 2019 was left to test the model.  

• Analysis 1: Shallow vs. Deep MLPs. Initially, the performances of 
MLPs with different layers are compared to assess whether there is an 
accuracy gain with deeper ANNs. Brazilian ISO historical load data, 
verified temperature, predicted temperature (up to 7 days ahead), 
holidays and calendar variables are considered as input.  

• Analysis 2: Models use datasets with temperature information 
from the Brazilian ISO database for a three-month period. Bra-
zilian ISO historical load data, verified temperature, predicted tem-
perature (up to 7 days ahead), holidays and calendar variables are 
considered as input. Results from MLP, Uni-LSTM, Uni-GRU, Bi- 
LSTM, Bi-GRU, and the Brazilian ISO model are analyzed.  

• Analysis 3: Models use predicted temperatures from the GEFS 
database and the Brazilian ISO database for one-year period. 
Brazilian ISO historical load data, existent and predicted GEFS 
temperature (up to 10 days ahead), holidays and calendar variables 
are considered as input. Unlike the temperature data from Brazilian 

ISO database, where the predicted temperature values are available 
hourly, the GEFS temperature is available every 3 h, a total of 8 
predicted temperature values per day. The performance of the 
models with the GEFS data is evaluated considering a test set with 
one year of the existent data. Results from MLP, Uni-LSTM, Uni-GRU, 
Bi-LSTM, Bi-GRU are analyzed, and the Brazilian ISO model is not 
compared as no ISO information is available for the test period. 

4.2. Analysis 1: Deep Neural Networks vs shallow Neural Networks 

MLPs with one to five hidden layers are designed and compared, 
considering 10 k to 60 k training epochs and ten folds (k-fold cross 
validation). Table 1 summarizes the MAPE results for each configuration 
of hidden layers, and Table 2 shows the results of DM test for MLPs 
considering 10 k epochs. In Table 2 the cells marked in grey indicate that 
the models with the best performance in the pairwise comparison are in 
the columns, cells in blue indicate the MAPE and NSE values of each 
model individually. We note that MLPs with only one hidden layer had 
the lowest MAPE, the highest Nash-Sutcliffe Error (NSE) and, the best 
DM test results were obtained with MLPs with 2, 3 and 5 hidden layers 
but close to the DM test limits (p-value < 0.05 and DM > 1.96). 
Therefore, given the proximity of results only MLPs with one hidden 
layer are further considered in the following comparisons with the 
Brazilian ISO model and RNNs models. 

To avoid model overfitting, a dropout of 10% is used in the MLP 
training process. The dropout procedure is also extended to the pre-
diction of the test set (Monte Carlo Dropout), which allows an assess-
ment of the model uncertainly. Furthermore, a k-fold cross-validation 
with ten splits is also considered to improve the model performance. 

4.3. Analysis 2: Pairwise comparison based on Brazilian ISO temperature 
data 

Next, we compare results produced by the MLP, unidirectional and 
bidirectional versions of LSTMs and GRUs with the Brazilian ISO STLF 
model. Historical data are separated into two sets: training and testing 
sets, according to the description in Section 4.1. Table 3 summarizes the 
comparisons between the results of the models, the cells marked in grey 
indicate that the models with the best performance in the pairwise 
comparison are in the columns. 

Initially, the results of the Diebold-Mariano test with a significance 
degree of 0.05 indicate that the recurrent models produced statistically 
significant better results (p-value < 0.05 and DM > 1.96). More spe-
cifically, the results indicate that the best model is the Bi-LSTM, followed 
by the Bi-GRU. 

Although most models presented MAPEs between 1.2% and 2.11% 
and NSE values close to 1.0, it is observed that the accuracy of the 
models naturally alternate over time. From Fig. 4, it is possible to notice 
that the ISO model and the MLP had their worst performance on holi-
days. This is similar to what has been observed by different authors in 
other STLF studies [67–68]. In this aspect, RNNs performed better in 
some of the holidays, such as 9th of July (a holiday in Sao Paulo state), 
and on 7th of September (Brazilian Independence Day). 

Table 1 
MAPE Results for Deep and Shallow MLPs and Different Training Epochs.  

Epochs / Number of Folds Number of Hidden Layers 

10 k | 10 30 k | 10 60 k | 10  

2.22%  2.19%  2.36% 1  
2.36%  2.16%  2.55% 2  
2.35%  2.21%  2.45% 3  
2.25%  2.13%  2.46% 4  
2.35%  2.26%  2.48% 5  
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4.4. Analysis 3: Pairwise comparison based on GEFS temperature data 

Tables 4 and 5 summarize the comparisons between model perfor-
mances, the cells marked in grey indicate that the model listed in the 
column present the best performance in the pairwise comparison. In the 
Table 4 the results are about the dataset considering the Brazilian ISO 
temperature information as input for ANNs, and in the Table 5 is about 
the results considering the GEFS temperature forecasts data (Table 5). 
The test set for this comparison was defined as the year 2019, with the 
other years of data being used in the training set. 

Tables 4 and 5 show that unidirectional and bidirectional LSTMs and 
GRUs present MAPEs smaller than the MLP, with a NSE metrics closer to 
1. Furthermore, the Diebold-Mariano test indicates that the accuracy 
performance is statistically better for all RNN models. In this compari-
son, it is also possible to notice that most models obtained lower MAPE 

and higher NSE while considering the GEFS temperature forecasts. 
Finally, although in the analysis considering the ISO temperature in-
formation with a test set of only three months (Subsection 4.3), the 
bidirectional models performed significantly better than the unidirec-
tional ones, the same result was not observed with the GEFS information 
and with a one-year test set. 

Overall, the results presented in this section show the superiority of 
the RNN models for STLF. As observed in the accuracy metrics and the 
pairwise comparisons, the analyzed RNN models significantly out-
performed the best MLP model. Lastly, Figs. 5 and 6 show the accu-
mulated verified daily load and the percentage error from the hourly 
forecasts of all models during the 2019 test year. From these Figures, it is 
possible to observe that the models were able to accurately capture the 
seasonality present in the load during the year (small percentage error), 
and that the results of the bidirectional RNNs are generally more accu-
rate than their unidirectional counterparts. Therefore, this class of RNNs 
should be further explored in time series forecasting tasks. Finally, our 
results also show that temperature forecasts from GCMs can be suc-
cessfully used as input for ANN models and provide independence from 
ISO temperature information, which is very useful for electricity market 
agents who follow the ISO procedures. 

5. Conclusions 

The short-term load forecasting is an important and complex prob-
lem in electrical power systems literature. In real and large-scale sys-
tems, the problem is even more challenging, as there are different 
geographic areas with very specific climate conditions, population 
centers, and load profiles. This paper presented an assessment of 
different neural networks architectures to model the STLF problem in a 
large-scale system representing the Brazilian Central-Southeast market. 

Long-Short Term Memory and Gated Recurrent Unit have shown 
superior performance than MLPs and the forecasting model currently 
used by the Brazilian Independent System Operator. Results of the 
present study validate the potential of the RNN models to STLF prob-
lems, especially bidirectional LSTMs and GRUs, which obtained reliable 
results (with Nash-Sutcliffe reaching values up to 0.98 and Mean Ab-
solute Percentile Error values of 1.18%) while using different test sets, 
and temperature information weighted by population. Based on the 
Diebold-Mariano test comparisons, the Long-Short Term Memory and 
Gated Recurrent Unit have shown superior performance than MLPs and 
the Brazilian ISO forecasting model. 

This paper has also shown the use of a Global Climate Models (GCM) 
in STLF in combination with ANN models. ANNs have shown reliable 
performance when using GCM data (with Nash-Sutcliffe reaching values 

Table 2 
Results for Pairwise Comparisons of MLPs – Analysis 1.   

1 Hidden 
Layer 

2 Hidden 
Layers 

3 Hidden 
Layers 

4 Hidden 
Layers 

5 Hidden 
Layers 

1 Hidden 
Layer 

MAPE: 
2.22% 
NSE: 
0.897 

DM: 2.08 
p-value: 
0.041 

DM: 2.75 
p-value: 
0.007 

DM: 1.28 
p-value: 
0.204 

DM: 2.16 
p-value: 
0.034 

2 Hidden 
Layers 

– MAPE: 
2.36%NSE: 
0.857 

DM: 0.93 
p-value: 
0.350 

DM: 0.56 
p-value: 
0.573 

DM: 0.02 
p-value: 
0.986 

3 Hidden 
Layers 

– – MAPE: 
2.35%NSE: 
0.864 

DM: 1.80 
p-value: 
0.074 

DM: 0.96 
p-value: 
0.338 

4 Hidden 
Layers 

– – – MAPE: 
2.25% 
NSE: 
0.859 

DM: 0.707 
p-value: 
0.481 

5 Hidden 
Layers 

– – – – MAPE: 
2.35%NSE: 
0.859  

Table 3 
Results for Pairwise Comparisons – Analysis 2.   

Brazilian 
ISO 

MLP Uni- 
LSTM 

Bi- 
LSTM 

Uni- 
GRU 

Bi- 
GRU 

Brazilian 
ISO 

MAPE: 
2.006% 
NSE: 
0.945 

DM: 
0.90 
p- 
value: 
0.37 

DM: 
5.46 
p- 
value: 
0.00 

DM: 
6.71 
p- 
value: 
0.00 

DM: 
5.45 
p- 
value: 
0.00 

DM: 
6.29 
p- 
value: 
0.00 

MLP – MAPE: 
2.114% 
NSE: 
0.936 

DM: 
6.87 
p- 
value: 
0.00 

DM: 
8.55 
p- 
value: 
0.00 

DM: 
7.25 
p- 
value: 
0.00 

DM: 
8.18 
p- 
value: 
0.00 

Uni-LSTM – – MAPE: 
1.306% 
NSE: 
0.976 

DM: 
4.67 
p- 
value: 
0.00 

DM: 
0.57 
p- 
value: 
0.56 

DM: 
3.87 
p- 
value: 
0.0 

Bi-LSTM – – – MAPE: 
1.179% 
NSE: 
0.979 

DM: 
3.24 
p- 
value: 
0.002 

DM: 
0.97 
p- 
value: 
0.33 

Uni-GRU – – – – MAPE: 
1.329% 
NSE: 
0.976 

DM: 
3.21 
p- 
value: 
0.001 

Bi-GRU – – – – – MAPE: 
1.205% 
NSE: 
0.979  

Fig 4. Accuracy performance of ANNs and ISO model: Holidays Indicated 
by Arrows. 
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up to 0.95 and Mean Absolute Percentile Error values of 1.6%). From 
these results, the GEFS GCM can potentially serve as a reliable alterna-
tive of input information to the ANN forecasting models used to model 
the STFL in the region. Also, other information from this GCM such as 
precipitation, air humidity, wind speed, and solar radiation could be 
investigated in the future as other predictors to the models. For a real 
large-scale system this is extremely significant because of the distinct 
characteristics of each region. 

The results of bidirectional RNNs obtained in this work are prom-
ising, future studies should explore this architecture with modifications 
in the input data selection, activation functions and training process. 
Future studies should also aim to evaluate the performance of other ANN 
architectures in STLF, such as Bayesian Neural Networks and Convolu-
tional Neural Networks. New studies evaluating input from other 
models, such as the European Center for Medium-Range Weather 
Forecasts are necessary. 

Table 4 
Comparison results using Brazilian ISO Data – Analysis 3.   

MLP Uni-LSTM Bi- LSTM Uni-GRU Bi-GRU 

MLP MAPE: 2.196% 
NSE: 0.895 

DM: 6.58 
p-value: 0.000 

DM: 6.98 
p-value: 0.000 

DM: 6.59 
p-value: 0.000 

DM: 7.30 
p-value: 0.000 

Uni-LSTM – MAPE: 1.668% 
NSE: 0.938 

DM: 0.55 
p-value: 0.585 

DM: 1.19 
p-value: 0.242 

DM: 1.24 
p-value: 0.231 

Bi-LSTM – – MAPE: 1.652% 
NSE: 0.943 

DM: 1.62 
p-value: 0.116 

DM: 0.91 
p-value:0.362 

Uni-GRU – – – MAPE: 1.70% 
NSE: 0.944 

DM: 2.76 
p-value: 0.006 

Bi-GRU – – – – MAPE: 1.630% 
NSE: 0.945  

Table 5 
Comparison results using GEFS Data – Analysis 3.   

MLP Uni-LSTM Bi- LSTM Uni-GRU Bi-GRU 

MLP MAPE: 
2.179% 
NSE: 0.886 

DM: 6.12 
p-value: 
0.000 

DM: 6.16 
p-value: 
0.000 

DM: 6.81 
p-value: 
0.000 

DM: 6.88 
p-value: 
0.000 

Uni- 
LSTM 

– MAPE: 
1.649% 
NSE: 0.936 

DM: 0.31 
p-value: 
0.756 

DM: 0.88 
p-value: 
0.377 

DM: 1.24 
p-value: 
0.215 

Bi- 
LSTM 

– – MAPE: 
1.659% 
NSE: 0.940 

DM: 1.12 
p-value: 
0.261 

DM: 1.85 
p-value: 
0.063 

Uni- 
GRU 

– – – MAPE: 
1.618% 
NSE: 0.941 

DM: 0.34 
p-value: 
0.730 

Bi-GRU – – – – MAPE: 
1.608% 
NSE: 0.945  

Fig. 5. Verified Electricity Demand (first y-axis) and Percentage Forecasts Error (second y-axis) for MLP, LSTM, and GRU Models Using the Brazilian ISO Tem-
perature Data. (a) Summer (b) Fall (c) Winter (d) Spring. 
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