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Abstract: The advent of smart grid technologies has facilitated the integration of new and inter-

mittent renewable forms of electricity generation in power systems. Advancements are driving

transformations in the context of energy planning and operations in many countries around the

world, particularly impacting short-term horizons. Therefore, one of the primary challenges in this

environment is to accurately provide forecasting of the short-term load demand. This is a critical task

for creating supply strategies, system reliability decisions, and price formation in electricity power

markets. In this context, nonlinear models, such as Neural Networks and Support Vector Machines,

have gained popularity over the years due to advancements in mathematical techniques as well as

improved computational capacity. The academic literature highlights various approaches to improve

the accuracy of these machine learning models, including data segmentation by similar patterns,

input variable selection, forecasting from hierarchical data, and net load forecasts. In Brazil, the

national independent system operator improved the operation planning in the short term through the

DESSEM model, which uses short-term load forecast models for planning the day-ahead operation of

the system. Consequently, this study provides a comprehensive review of various methods used for

short-term load forecasting, with a particular focus on those based on machine learning strategies,

and discusses the Brazilian Experience.

Keywords: short-term load forecasting; day-ahead operational planning; time series forecasting;

machine learning methods; electricity power systems

1. Introduction

Recent technological advancements in renewable energy technologies, electric vehicles,
energy storage, and electrification in connection with society’s concern with sustainability,
decarbonization, and climate change are fueling significant shifts in energy planning
and operations across numerous countries worldwide, particularly influencing short-term
perspectives. In this context, one of the biggest challenges for independent system operators
(ISOs) is to ensure the balance between energy supply and demand, particularly due to the
inherent complexity of storing electricity [1]. The rise in renewable energy deployments
amplifies the complexity associated with the supply–demand balance, as these sources
often introduce additional variability and uncertainty. Thus, electricity load (demand)
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forecasting becomes critical to properly balance supply and demand in the system, optimize
operational costs, and effectively manage electricity generation resources.

By accurately forecasting electricity demand, operators can optimize power systems
operations, thereby avoiding potential system overloads or power outages that can affect
consumers and economies at the regional and country level. Furthermore, robust, reliable,
and timely forecasts of electricity load allow for more strategic planning of renewable
energy integration, contributing to a more sustainable and reliable power system. In
general, electricity load forecasting problems are classified into four categories: long-term
(year to multi years ahead), medium-term (from one week to months ahead) [2], short-term
(from hours to days ahead) [3], and very short-term (from minutes to hours ahead) [4].

Long-term forecasts are performed to support system-capacity expansion planning
(for example, see the work of [5]), which discusses the importance of such a problem and
reviews approaches applied for forecasting 10–50 years ahead. Medium-term load forecasts
are needed for fuel-supply scheduling, hydroelectric management, maintenance operations,
and interchange planning [6]. Short-term forecasts are usually aimed at scheduling the daily
system operation, in tasks such as electricity exchange and demand management [7], and
very short-term forecasts are used to quickly respond to intra-hour fluctuations in electricity
demand and help to control generation dispatches within real-time operations [8].

In this work, we are particularly interested in providing an overview of the short-term
load forecast (STLF) problem and the class of machine learning methods that have been
used in this context. STLF plays an important role in supporting system operators in
decision making in generation operation planning and coordination, in systems operative
reserve, in system security, in dispatch scheduling, in price formation in electricity markets,
and in operational cost minimization problems [9]. Nonlinear models, such as Artificial
Neural Networks (ANNs) and Support Vector Machines (SVMs), have gained popularity
over the years for STLF problems, due to advancements in mathematical techniques as
well as improved computational capacity. Computational advances have enabled Deep
Neural Networks (DNN), which improve network resource abstraction, allowing better
efficiency in the machine learning process for non-linear problems [10]. In this context,
many researchers developed alternatives to improve the performance of STLF models,
such as the model ensemble and the hybrid models based on methodologies that include
meteorological forecasts [11].

The academic literature highlights various approaches to improve the accuracy of
these machine learning models, including data segmentation by similar patterns, input
variable selection, forecasting from hierarchical data, and netload forecasts. Despite the
use of nonlinear models, the use of bi-directional Recurrent Neural Networks (RNNs), and
other relevant methods such as transformer neural nets [12] and Bayesian networks [13]
remains to be explored in more depth. This paper reviews the main machine learning
methods applied to STLF, provides guidance concerning the state-of-the-art methodologies
to develop more efficient forecasting models, and discusses the procedures and gaps related
to the field. The paper also presents the Brazilian experience with forecasting models
applied to the daily operational planning of the Brazilian interconnected power system.

In addition to Section 1, this paper is organized in the following manner: Section 2
presents the main linear and non-linear models of STLF; Section 3 describes the main
methodologies that have been used to model and improve STLFs; Section 4 presents how
STLF is approached in the Brazilian electricity sector; and Section 5 presents the main
conclusions and recommendations for future studies.

2. Short-Term Load Forecasting Models and Methods

Over time, STLF models have greatly advanced for both large-scale energy systems and
localized network planning, given their vital role in maintaining an economic equilibrium
between consumer needs and utility provisions. Furthermore, in countries or regions that
are part of deregulated electricity markets, load forecasts also impact price projections,
enabling competitivity [14,15]. In recent decades, STLF has been widely studied, and the



Energies 2023, 16, 7444 3 of 35

main approaches used to represent the problem are classified between linear and non-
linear models. Although linear models are sometimes capable of representing physical
characteristics such as climate and social variables, they are limited in incorporating the
typical non-linearities associated with short-term load behavior [16,17]. The most popular
linear models are based on simple (or multiple) linear regressions, semi-parametric additive
models, autoregressive-moving-average (ARMA) models, and exponential smoothing
approaches. However, hardware and software advancements over time have made viable
the use of non-linear models for such a task, including machine learning techniques such
as SVMs and ANNs.

2.1. Linear Models

Generally, linear models are based on classical statistical methods, providing a contin-
uous response variable from a function that is characterized by the linear combination of
one or more predictor variables [18]. These models can be separated into causal and time
series models [15]. Among the most used causal models are multiple linear regressions and
semi-parametric additive models [16]. In turn, in time series models, load data are usually
modeled as a function of their previously observed values [11,15]. The main models are the
ARMA models and exponential smoothing methods.

2.1.1. Multiple Linear Regressions

Linear models possess the ability to include both quantitative and qualitative predictor
variables. While their definition implies linearity, certain linear models can be applied
to capture non-linear associations between load and predictors [19]. An example is the
polynomial regression model (Equation (1)), encompassing predictor variable polynomi-
als. Moreover, multiple linear regression models can also account for the influence of
interactions among predictor variables, as shown in (Equation (2)) for a case involving
two predictors. In Equations (1) and (2), Yi is the variable to be predicted, βn is the nth
regression coefficient, and εi is the normally distributed error term.

Yi = βo + β1Xi + β2X2
i + · · ·+ βnXn

i + εi (1)

Yi = βo + β1Xi,1 + β2Xi,2 + β3Xi,1Xi,2 + εi (2)

For many decades, linear regression models have been used to support STLF problems.
In the literature, it is possible to find studies that have used these models to perform STLF
for large operators and local network planning, with calendar and temperature variables
being the main predictors [19–21].

Error analysis has been successfully conducted in the context of regression models over
the years. Such a task plays an important role to isolate, observe and diagnose erroneous
predictions, helping analysts to understand performance of the models. By conducting
error analysis, analysts can diagnose whether the model has adequately captured trends,
seasonality’s and other inherent patterns from the time series. For instance, systematic
errors might suggest that the model has not fully learned/represented the seasonality in
the data. Additionally, error analysis can help in identifying anomalies or outliers that
might distort predictions. By understanding the nature and source of these errors, one can
refine feature engineering, input variable selection, help to adjust model hyperparameters,
or even choose a more suitable model architecture for the task. A discussion about error
metrics is further presented in Section 3.7.

2.1.2. Semi-Parametric Additive Models

The primary characteristic of semi-parametric additive models is that they represent
the effect of a variable on the response surface as an additive, independent of the effects of
other variables. Thus, these models verify the individual contribution of each variable in the
forecasting process. Such models allow the use of non-linear and non-parametric methods
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within their structure [22]. In the STLF process, semi-parametric additive models allow
incorporating the past load demands, in addition to calendar variables and temperature
data as predictors. Some studies present load forecasts using semi-parametric additive
models with a representation of logarithmic load demand data [23,24]. In Equation (3), a
simplified example of a semi-parametric additive regression model for STLF is presented,
where yt,p represents the load at time t during period p, hp models the effect of calendar
variables, fp(wt) models the temperature effects, and αp

(

yt−,p

)

models the effects of past
load data.

yt,p = hp(t) + fp(wt) + αp

(

yt−,p
)

+ εt (3)

2.1.3. ARMA Models

ARMA models represent a stochastic process using a combination of autoregressive
and moving average components [25]. Mathematically, an ARMA (p, q) can be written as
in (Equation (4)), where c is a constant, p and q are the data and error term lags, respectively,
and φ and θ are the model parameters.

yt = c + ∑
p

i=1
φiyt−1 + ∑

q

j=0
θjεt−j (4)

In STLF, load series are non-stationary; thus, Autoregressive Integrated Moving Aver-
age (ARIMA) models, which are a generalization of the ARMA model, are often used [26,27].
The ARIMA model (Equation (5)) removes the series trend through differentiation; that is,
it applies the operator (1 − B) on the series of the ARMA model.

(

1− φ1B− · · · − φpBp
)

(1− B)dxt = c +
(

1− θ1B− · · · − θpBp
)

et (5)

Finally, ARMA models can still include exogenous variables, resulting in ARMAX
models (Equation (6)), also used in STLF studies [27–29]. Here, ηj are the input parameters
of the exogenous variable d.

yt = c + ∑
p

i=1
φiyt−1 + ∑

q

j=0
θjεt−j + ∑

b

i=1
ηjdt−j (6)

2.1.4. Smoothing Models

Exponential smoothing models are based on assigning weights to past observations
that lose their relevance exponentially over time [28,30]. Thus, they do not depend on
explanatory variables, requiring less data than multiple linear regression models. The
exponential smoothing method is described by (Equation (7)), where Zt is the exponentially
smoothed value, and α is the smoothing constant (0 < α < 1).

Zt = α∑
τ−1

k=0
(1− α)kZt−k + (1− α)τZ0, ∀ t = 1, . . . , N (7)

Although exponential smoothing models are used in several academic papers about
STLF [31–34], such an approach only accounts for few applications in STLF due to the
impossibility to use predicted future temperatures as the input. As weather patterns have
a great impact on future load, when weather conditions are volatile, forecasts without
considering the predicted temperatures can be significantly affected [14].

2.2. Non-Linear Machine Learning-Based Models

Figure 1 illustrates a flowchart for the STLF process, mapping steps, inputs, outputs
and successful machine learning models used to represent the problem.
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Figure 1. STLF process on machine learning models.

Machine learning-based non-linear model developments consist of two primary stages:
data pre-processing and algorithm processing. In the data pre-processing stage, various
tasks are performed on the input data. These include handling missing values, normalizing
data, and one-hot encoding. Subsequently, in the algorithm processing stage, the input
data are partitioned into training and test sets. During training, the model’s parameters
are optimized. Following this, the test set is employed to validate and assess the model’s
performance. Once the pre-processing step is concluded, algorithms are trained to generate
outputs for the problem at hand.

2.2.1. Support Vector Machines

SVMs with regression capabilities have prominently featured in the literature for
their efficacy in forecasting from non-linear data sets. Nonetheless, there are notable
challenges associated with their use. For one, the outputs of SVMs can exhibit instability,
leading to significant outliers in the forecasted results. Additionally, the intricacies of
SVMs configurations, such as kernel selection, kernel parameter tuning, regularization
balancing, feature scaling, and handling of imbalanced data, can make the training
process complex. Furthermore, the inherent sensitivity of SVMs to hyperparameters and
the potential complexity introduced by multi-class problems add layers of challenge in
achieving optimal model performance [35].

In regression problems, training includes non-linearity evaluating between the input
and output sets of the model. The SVM for regression is based on a hyperplane in multi-
dimensional space to maximize the distance that separates the training data and the loss
function, and posteriorly the SVM minimizes the general errors [34].

Let us consider the optimization model defined in Equations (8)–(12), where (X, Y)
constitutes a dataset with X ∈ R

N×M, and Y ∈ R
N×T . Here N is the number of samples,

M is the number of input elements, and T is the number of output elements. The decision
variables are W and b, while φ(Xi) maps Xi to a hyperspace using a kernel function [36].
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Finally, the estimation of Y for an arbitrary input vector X can be mathematically described
by Equation (12).

min
W,b,ξ,ξ∗

1

2
||W||2 + C∑

N

k=1
(ξk + ξ∗k ) (8)

s.t. yk −WTφ(Xk)− b ≤ ε + ξk ∀k = 1, . . . , N (9)

−yk + WTφ(Xk) + b ≤ ε + ξ∗k ∀k = 1, . . . , N (10)

ξk, ξ∗k ≥ 0 ∀k = 1, . . . , N (11)

yi = WTφ(Xi) + b (12)

2.2.2. Artificial Neural Networks

In recent years, ANNs have become an important area of discussion and research in
the scientific literature, especially when it comes to forecasting problems. This growing
emphasis can be attributed to several distinct advantages that ANNs provide. Firstly, their
ability to deliver accurate and consistent forecasts sets them apart from many other methods.
Unlike many traditional algorithms that may struggle when facing intricate data patterns,
ANNs consistently provide forecasts that are not only precise but also reliable across diverse
scenarios. This leads to ANNs’ second major strength: their unparalleled configurational
flexibility. ANNs’ architectures are not static; rather, they are able to dynamically change
and adapt to better suit the application. Depending on the problem at hand, researchers
can fine-tune layers, tweak the number of neurons, or adjust activation functions, creating
a tailor-made network that resonates with the specific nuances and demands of the task.
The third ANN strength lies in their intrinsic ability to generalize. Instead of merely
memorizing the characteristics of the training data, ANNs explore deeper, extracting and
understanding the underlying patterns, ensuring robust performance even on unseen data.
This generalization is particularly vital when one considers the often-non-linear nature of
STLF problems [10]. ANNs, with their interconnected structure and capable non-linear
activation functions, succeed in such environments by capturing the intricate relationships
that define STLF.

A notable characteristic of ANNs is their ability to produce results even when there is
limited insight into the specific interactions governing the data [36]. This often makes them
considered “black boxes”, where the internal workings might remain obscured to most
users, but the outputs are reliably accurate. Within the vast number of ANN types, several
architectures stand out for their efficacy and wide application. The Feedforward-based
Multi-Layer Perceptron (MLP) is a classic Neural Network structure known for its layered
arrangement of neurons and its capability to tackle a vast number of problems. On the
other hand, Recurrent Neural Networks (RNNs) introduce a time dimension, allowing
for the processing of sequences and offering the ability to “remember” previous inputs in
their hidden state, making them ideal for tasks that include temporal dependencies such as
STLF. Also, Convolutional Neural Networks (CNNs) have been used in STLF, a structure
specially designed for spatial hierarchies, most famously applied in image processing
and recognition.

(a) Multi-layer perceptron

The MLP model is the most popular ANN model, and it is capable to be used in STLF
tasks [24]. MLPs are characterized by the signal moving forward from the input layer to
the hidden layers until it reaches the output layer, where posteriorly the cost function is
estimated [36]. Then, a backward propagation is performed based on the cost function
partial derivatives, where the weights and bias are used for the parameter update [15].
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The computational advance enables Deep Neural Network (DNN) forms of MLPs.
DNNs have a higher number of layers than shallow ANNs, which allows MLP models to be
trained with larger datasets and contribute to a better generalization behavior [35] as well
as a better representation of the non-linear pattern of input and outputs of the dataset [37].

(b) Recurrent Neural Networks

RNNs are networks specialized in exploring temporal dependencies between ob-
servations. The name recurrent derives from the fact that a single network structure is
used repeatedly to perform forecasts, using as an input the outputs from preceding time
stages [37]. In this framework, it is important to create mathematical structures to en-
sure that information learned from previous stages is not lost during optimization, which
commonly happens during simulations with a large number of time discretization [37,38].

Long short-term memory (LSTM) is a type of RNN that tries to address the problem
of long-term dependencies using a series of memorization structures inside the network
model. Equations (13)–(18) detail how this architecture is mathematically represented. A
cell state ( Ct) is used as a memorization vector interacting with previous outputs and
current stage inputs to identify what elements of the internal vector will be kept or deleted
at each time stage. In this architecture, a structure called input gate (it) interacts with the
cell update vector (C̃t) to integrate new information in the cell state, and a structure called
forget gate ( ft) interacts with the previous cell state to delete information from the RNN
memory. In Equations (13)–(18), wc, wi, wf, and w0 are the weight matrices, bc, bi, bf, and
b0 are bias vectors, σ is the logistic sigmoidal function, xt in the input vector, ht is the
output vector of the present cell, “*” is the Hadamard Product (the element-wise of matrix
multiplication), and “·” represents a normal matrix multiplication.

Ct = ft ∗ Ct−1 + it ∗ C̃t (13)

C̃t = tanh(wc·[ht−1, xt] + bc) (14)

it = σ(wi·[ht−1, xt] + bi) (15)

ft = σ
(

w f ·[ht−1, xt] + b f

)

(16)

After Ct is determined, Equations (17) and (18) are used to estimate the final output at
stage t (ht):

ot = σ(w0·[ht−1, xt] + b0) (17)

ht = ot ∗ tanh(Ct) (18)

Another relevant RNN model is the Gated Recurrent Unit (GRU). The work of [39]
applied both LSTMs and Gated Recurrent Unit (GRU) networks to STLF, focusing solely
on time series load data. Unlike LSTMs, which use separate gates to control the flow
of information, GRUs simplify the model with a blend of reset and update gates. This
not only reduces the complexity of the network but also allows it to efficiently capture
dependencies over varied time spans. While LSTMs often remain the go-to for deeper
sequence complexities, GRUs offer a more compact alternative, adept at handling a wide
range of sequential tasks with fewer parameters and often faster training times. The GRU
model does not include the cell state and uses the hidden state (ht) to transfer information
from previous time series stages [40]. The GRU structure has two gates: the update gate
(zt) and the reset gate (rt). Equations (19)–(22) illustrates the GRU model mathematically.

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (19)
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h̃t = tanh(wh·[xt, rt ∗ ht−1] + bh) (20)

zt = σ(w z·[xt, ht−1]+bz) (21)

rt = σ(w r·[x t, ht−1]+br) (22)

Traditionally, RNN architectures have a unidirectional flow of information, but an-
other alternative for these models is the bidirectional data flow, called bi-RNNs. Unlike
unidirectional RNN models, bi-RNNs process data in two directions (forward in time and
backward in time) through different layers [41]. Figure 2a illustrates the unidirectional
RNN (uni-RNN) and Figure 2b illustrates the bi-RNN.

𝑧௧ = 𝜎(𝑤௭ ∙ ሾ𝑥௧ , ℎ௧ିଵሿ + 𝑏௭)𝑟௧ = 𝜎(𝑤 ∙ ሾ𝑥௧ , ℎ௧ିଵሿ + 𝑏)
ff

 

𝑡 = ሼ1,… , 𝑇ሽ 𝑡 = ሼ𝑇,… ,1ሽℎሬ⃗(ℎ⃖ሬ ℎሬ⃗ ௧ = tanh൫𝑤௫ሬሬ⃗ ∙ ൣ𝑥௧ , ℎሬ⃗ ௧ିଵ൧ + 𝑏ሬሬ⃗ ൯ℎ⃖ሬ௧ = tanh൫𝑤௫⃖ሬሬ ∙ ൣ𝑥௧ , ℎ⃖ሬ௧ାଵ൧ + 𝑏⃖ሬሬ൯𝑦௧ = 𝑤௬ሬሬ⃗ ℎሬ⃑ ௧ + 𝑤௬⃖ሬሬℎ⃖ሬ௧ + 𝑏௬𝑤௫ሬሬ⃗ 𝑤௬ሬሬ⃗ 𝑏ሬሬ⃗ 𝑤௫⃖ሬሬ 𝑤௬⃖ሬሬ 𝑏⃖ሬሬ𝑏௬
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Figure 2. Uni-RNN and Bi-RNN structures.

According to Yu et al. [42], in the bi-RNN models the forward time sequence is

represented by
→
t = {1, . . . , T}, and the backward time sequence by

←
t = {T, . . . , 1}; the

forward hidden sequence (
→
h ) is computed by Equation (23), and the backward hidden

sequence (
←
h ) by Equation (24), and the output is computed by Equation (25).

→
h t = tanh

(

w
x
→
h
·
[

xt,
→
h t−1

]

+ b→
h

)

(23)

←
h t = tanh

(

w
x
←
h
·
[

xt,
←
h t+1

]

+ b←
h

)

(24)

yt = w
y
→
h

→
h t + w

y
←
h

←
h t + by (25)

where, w
x
→
h

, w
y
→
h

, b→
h

are the weight and biases of the forward layer, w
x
←
h

, w
y
←
h

, b←
h

are the

weight and biases of the backward layer, and by is a bias parameter for the output.

(c) Convolutional Neural Networks

CNNs have seen a steady increase in STLF over time, as highlighted by numerous
recent studies [38,43,44]. This surge in popularity can largely be attributed to the CNN’s
ability to process spatial hierarchies in the data. CNNs have the capacity for feature ex-
traction, facilitated by its convolutional layers that systematically identify and prioritize
significant patterns in the input data. This makes CNNs exceptionally capable of recog-
nizing and adapting to temporal patterns inherent in STLF tasks, including daily, weekly,
or even seasonal fluctuations. Unlike traditional models, which might require manual
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feature engineering to capture such periodicities, CNNs autonomously discern these cyclic
variations, ensuring a more comprehensive and specific understanding of the data.

In CNNs, a convolution layer extracts the input resources, which are output to an
activation function. The pooling layer then reduces the resource size, providing robust
learning outcomes for the input resources. After several convolution and grouping steps,
features are extracted to feed a fully connected layer to perform regression or classifica-
tion. CNN models use convolution rather than general matrix multiplication in at least
one of its layers. Mathematically, the operation for a two-layer CNN can be described
by Equation (26) [44], where X is an input matrix and W is a kernel matrix.

S(i, j) = (X ∗W)(i, j) = ∑
m

∑
n

X(i−m, j− n)W(m, n) (26)

Although it is not a very popular architecture for STLF tasks, some studies have con-
sidered CNN for this purpose. For example, the work of [45] combines a CNN architecture
with input data clustering by k-means. The work of [46] uses CNN for STLF, and observed
a good learning result for nonlinear problems such as STLF, but in the case of a set of loads
with high volatility and uncertainty, CNN presented inferior results. Other examples of
studies that use CNNs to perform STLF can be found in [47,48].

2.2.3. Other Relevant Machine Learning Techniques

Other techniques relevant to the support of STLF tasks discussed below are Bayesian
Neural Networks, Transform Neural Networks, Hybrid Neural Networks, Ensemble of
Neural Networks, Random Forest, and Gradient Boosting. The literature related to load
forecasting as well as renewable energy forecasting studies generally employ support
techniques for forecasting models, proposing new advances to improve pre-processing
steps, data resource engineering, and machine learning algorithms to improve forecasting
performance. For example, the work of [49] systematically reviews and summarizes data
characteristics, analysis techniques, research focus, challenges, and future development
directions related to wind-energy forecasting.

(a) Bayesian Neural Networks

In forecasting problems where uncertainties play a significant role, the Bayesian
Neural Networks (BNNs) emerge as a reliable model for providing reliable predictions.
BNNs merge the power of traditional ANNs with Bayesian probability theory [13]. This
synergy ensures that the forecasting model remains robust, even when confronted with
challenging and unexpected conditions, such as data anomalies, missing values, or outliers.
Instead of providing a singular prediction, a BNN offers a probability distribution over
possible outcomes. This provides forecasters not just with a prediction but also with
valuable statistical insights regarding the uncertainty and confidence associated with those
predictions [50]. Such probabilistic forecasts can be insightful, allowing decision makers
to have a sense of the risks, understand the model’s level of confidence, and make more
informed judgments.

For BNNs, each parameter W and b is modeled from a probability distribution. The
objective is to estimate all possible different models that are statistically significant from
the feature data for the STLF problem observed in the past [13]. Each of these models has
a different probability of happening and this probably is also estimated in the training
step of the network through the Bayes theorem [51]. In BNNs, the random and epistemic
uncertainties are combined. The Bayes theorem and the ensemble of multiple ANNs, given
the probability of each ANN, are described in Equations (27) and (28), respectively, where
ŷ refers to the predicted flow, x′ to the model input vector (for the current forecast), and X,
Y is the historical data used in training.

p(W|X, Y) ∝ p(Y|W, X)p(W) (27)
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p
(

ŷ
∣

∣X, Y, x′′
)

=
∫

p
(

ŷ
∣

∣x′, W
)

p(W|X, Y) dW (28)

Among examples of recent studies that have applied BNN to STLF tasks is that of [52],
which applies this architecture for load forecasting for multiple households. The work
of [53] also uses BNN to perform STLF with the support of optimization algorithms to
optimize the weights and limits of the Neural Network used. The authors in [54] also used a
BNN, but for the STLF with a focus on load forecasting for aggregated and residential load.

(b) Transformer Neural Networks

The transformer architecture is based on an encoder–decoder layer using stacked
self-attention and layers connected for both the encoder and decoder [12]. The encoder
component is a stack of encoders and is characterized by two main layers: a multi-
head self-attention mechanism and a feedforward ANN. The decoder component is a
stack of decoders, and besides the multi-head self-attention tool and feedforward ANN,
it has a third sub-layer between them that makes multi-head and scaled dot-product
attention [55]. Therefore, transformers use scaled dot-production attention to estimate
the next vector (Figure 3).
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Figure 3. Transformer Neural Network architecture example.

The scaled-dot production attention is estimated by Equation (29), where Att = atten-
tion; Q = WQ

x; K = WK
x; V = WV

x on input x = {x1, x2, . . ., xn}; WQ
x, WK

x and WV
x are

weight matrices; and Q, K and V are obtained by linear transformation on x.

Att(Q, K, V) = so f tmax

(

QKT

√
dk

)

V (29)

The process of multi-head attention that allows the model to attend to infor-
mation from different subspaces in parallel is estimated by Equation (30), where,

headi = Att
(

WQQ
i , WKK

i , WVV
i

)

.

Multi− head(Q, K, V) = Concat(headi, . . . , headn)W
0 (30)

Some recent studies on transformer Neural Networks applied in STLF can be found
in the literature. The work of [56] presents a model that contains a similar day-selection
approach based on the LightGBM and k-means algorithms. The performance was evaluated
by a setup of a series of simulations based on energy consumption data in Australia and
obtained better results than traditional RNNs. The work of [57] uses transformer networks
in combination with data decomposition strategies, to improve the forecasting of load
in a subregion of Spain, showing significant gains in performance through the use of
transformer techniques.
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(c) Hybrid Neural Networks

When the nature of the pattern of the problem to be approximated is not purely
additive or purely multiplicative, it is possible to obtain better performances by considering
a hybrid model, with some neurons contributing in an additive way and others in a
multiplicative way, producing a hybrid Neural Network [58].

The output of the hybrid Neural Network is given by Equations (31) and (32), where
each Θi (i = 1,..., n−1) represents either the sum operator or the multiplication operator,
kj (j = 1,. . ., n−2) represents the weights connecting the cascade of compositions, and the
terms zj (j = 1, . . ., n) are the weighted activation of the jth hidden neuron.

ŝ = (. . . ((z1Θ1z2 )k1Θ2z3) k2Θ3 . . .)kn−2Θn−1zn (31)

zj = wj f j

(

∑
m

i=1
vjixi + vj0

)

, j = 1, . . . , n (32)

In the literature, several studies with hybrid Neural Network architectures can be
found. For example, the work of [59] proposes a hybrid model based on a generalized
regression ANN. In [60], a hybrid model composed of two MLPs is presented to perform
the integrated load forecast in hierarchical order. The work presented in [61] shows a
hybrid model for STLF based on empirical mode decomposition of enhanced ensemble
and on a retro-propagation Neural Network. The work presented in [62] proposes a hybrid
STLF model based on a BNN.

(d) Ensemble of Neural Networks and Probabilistic Models

At its core, an ensemble approach combines the outputs of multiple models, each
precisely fine-tuned prior to integration. This strategy capitalizes on the strengths of
individual models while simultaneously compensating for their respective weaknesses.
Ensemble methodologies initially relied on calculating a weighted average of outputs from
each constituent model. This simplistic approach ensured that more accurate models held
greater importance in the final prediction. However, with advancements in technology
and a deeper understanding of ANNs, more sophisticated ensemble techniques have
emerged [63]. These new methods not only consider the weighted outputs but also factor
in the underlying architecture, training data variability, and potential correlation between
models. By harnessing multiple and diverse ANNs, ensemble strategies aim to provide
a more robust and consistent forecasting tool. The output of a basic ensemble method is
mathematically described by Equation (33).

f =
1

n∑
n

i=1
fi(x) (33)

The basic ensemble approach has the potential to enhance the quality of results;
however, it overlooks the variation in complexity among input models. Its key strength lies
in its direct interpretability and avoidance of increased expected error [64].

An alternative to the basic ensemble is to find weights for each output that mini-
mizes the ensemble error. In this way, the general method of the ensemble is defined by
Equation (34), where αi is chosen to minimize the error concerning the target function f.

f = ∑
n

i=1
αi f i(x) (34)

There are several studies in which ensembles are applied to solve STLF problems.
Some studies have resorted to models of Support Vector Machines (SVMs), fuzzy c-means
approaches and particle swarm optimization [65,66]. In [67], ensembles were composed
by Random Forest and gradient boosting models and were compared with several linear
STLF models.

The work of [68] adopted an enhanced decomposition with integrated autoregressive
moving average and wavelet optimized by a fruit fly optimization algorithm. The work
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of [69] presents a STLF model with the combination of a decomposition, relevance of
redundancy and general regression ANN. The work of [70] proposes a hybrid model for
STLF combining autocorrelation function and least squares, in addition to SVM combined
with a gray wolf optimization algorithm.

Regarding the probabilistic load forecast, these models can be based on scenarios,
unless probabilities are assigned to the scenarios. Probabilities can be in the form of
quantiles, intervals or probability density functions [14]. There are two intervals that we
generally refer to in forecasting: the prediction intervals and the confidence intervals. The
prediction interval is associated with a prediction result, while the confidence interval is
related to a parameter [14].

Probabilistic load forecasts can provide more comprehensive information about future
uncertainties [71]. Quantile regression is one of the main support models for probabilistic
load forecasting and can be formulated as an optimization problem to minimize pinball
loss, which is a comprehensive index to assess the accuracy and calibration of forecasts [72].
The pinball error is defined for any quantile q ∈ (0, 1) from a weighted absolute error, as in
Equation (35), where ŷn,t,q is the forecasted q-th quantile of the n-th method at time t, yt is
the load at time t, q is the quantile index, and Ln,t,q is the pinball loss of n-th method at time
t for the q-th quantile.

Ln,t,q

(

ŷn,t,q, yt

)

=

{

(1− q)
(

ŷn,t,q − yt

)

, i f ŷn,t,q ≥ yt

q
(

ŷn,t,q − yt

)

, i f ŷn,t,q < yt
(35)

This type of model is used by many companies in the electricity sector [24], and has also
been extensively explored in the literature; for example, the work presented in [73] shows
a forecasting model based on semi-parametric regression that uses different temperature
scenarios as an input to create a probabilistic load forecast. In [74], the authors developed a
model based on multiple linear regression also powered by different temperature scenarios.
The authors, in [75], applied a model with quantile regression and generalized additive
models for a probabilistic load forecast. In [11], the authors propose a practical methodology
to generate probabilistic load forecasts by performing quantile regression averaging on
a set of sister point forecasts. In [76], the authors developed a Bayesian model with a
probabilistic load forecast framework based on Bayesian deep learning to quantify the
shared uncertainties across distinct customer groups while accounting for their differences.

The work of [77] proposes a probabilistic load prediction model based on ANN and
probabilistic temperature predictions. The probabilistic load forecast consists of two models
to quantify the probabilistic occurrence and magnitude of peak abnormal load. Based on the
multilayer Gaussian mixture distribution, the work of [78] proposed a model formulated
using quadratic optimization and linear constraints. The work of [79] proposed a model that
combines quantile regression with convolutional bi-directional long short-term memory
for probabilistic load forecasting. In addition, a combination of interval forecasts obtained
by statistical models and machine learning was developed to maintain a high coverage
rate, and narrowed interval width in the load interval forecasting, increasing the accuracy
results when compared to single models.

(e) Random Forest

Random Forest is a machine-learning technique developed by Breiman [80]. This tech-
nique combines the output of multiple decision trees to obtain a single result [81]. A Random
Forest can be described as a classifier formed by a set of decision trees {h(X, vk), k, 1, . . .},
where vk are independent sample random vectors, uniformly distributed among all trees.

The tree-based strategies naturally rank by how well they improve the purity of a
node; this implies a decrease in impurity over all trees, namely Gini impurity. The nodes
with the greatest impurity decrease are at the beginning of the tree, while the nodes with
the least decrease happen at the end of the tree [40].

When developing a Random Forest model, the process begins with the selection of
input data using the Bootstrap method. This approach estimates parameters through a
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simulation based in the asymptotic distribution [82]. Once the dataset is chosen for tree
construction, specific features for prediction are then selected. The growth of individual
trees in the forest continues until a predefined stopping criterion is met. After the trees
have been grown, the model’s performance is evaluated using the out-of-bag error. Essen-
tially, this method leverages the data points that were excluded during the bootstrapping
process [80]. The error is computed by comparing the prediction from the highest-scoring
tree to the actual value of the left-out data. This approach ensures that the Random Forest
model is both robust and validated against unseen data. Figure 4 summarizes the main
steps for Random Forest development.

tt
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Figure 4. Random Forest framework.

Random Forest is able to perform, in some cases, better than the classic models in the
STLF task, as shown in [83,84]. In [85] the Random Forest is used for STLF, with a focus on
data representation and training modes, with high accuracy and low variance, in addition
to being easy to learn and optimize. In [86], they also tested the Random Forest method for
an STLF problem, and the experiments showed that the prediction accuracy was superior
to that of traditional ANN and SVM models.

(f) Gradient Boosting

Gradient Boosting is based on the principle of minimizing a cost function through
the aggregation of multiple weak learners [87]. This technique is generally used with
decision trees, where one of the benefits is to obtain an estimate of the importance of the
characteristics of the trained predictive model. This importance is calculated by the number
of times its use improves the tree’s performance measure. Thus, the more a feature is used
to make decisions in trees, the greater its relative importance. The final importance of each
feature is calculated by averaging its importance in each tree that makes up the model [87].

The objective is to find the minimum value of the cost function so that over the joint
distribution of all values of (y, x) the expected value of a predetermined cost function
Ψ (y, f (x)) is minimized, as shown in Equation (36).

f ∗(x) = min f (x)Ey,x[ψ(y, f (x ))] (36)

The boosting method makes an approximation of the function f *(x) from the calculation
described in Equation (37), where h (x, am) is the weak learner model, and m = {1, . . . , M}
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is the total number of functions. In this equation βm, am are determined using the training
data from Equations (38) and (39)

f (x) = ∑
M

m=0
βmh(x, am) (37)

(βm, am) = minβ,α∑
N

i−1
ψ(yi, fm−1(xi) + βh(x; a)) (38)

fm = fm−1(x) + βmh(x; am) (39)

Gradient Boosting using Decision Trees specializes in this method where the generic
function h(x; a) is a tree with L leaves and is mathematically described in Equation (40). A
tree partitions the input space into L disjoint regions R1m, . . ., RLm and predicts a constant
value in each region. In this equation, ¯ylm is the average of ˜yim in each region Rlm, and ˜yim

is a pseudo-residual, calculated by Equation (41).

h(x, {Rlm}) = ∑
L

l−1
1(x ∈ Rlm) (40)

ỹ = −
[

∂ψ(yi, f (xi))

∂ f (xi)

]

f (x)= fm−1(x)

(41)

Recent studies have applied Gradient Boosting to solve STLF problems: in [88], the
Extreme Gradient Boosting (XGboost) was employed to predict load based on similar days
using clustering. In [89], XGBoost is proposed, based on the analysis of power-grid-load
low big data. In [90], a Gradient Boosting technique is proposed and combined with a
CNN. The work of [91] presents a prediction model based on the matching method based
on pattern sequence and an XGBoost, splitting the holiday STLF problem into predictions
for proportional curve and daily extremum of electricity demand.

2.3. Summary of Model Comparisons

This section briefly summarizes in Table 1 the strengths and weaknesses of the
models described in the previous sections from the perspective of the short-term load
forecasting literature.

Table 1. Summary of Strengths and Weakness of Methodologies applied to STLF.

Methodology Strengths Weakness

Multiple Linear Regression (e.g.,
Polynomial Regression)

Allows simple interpretation of parameters
in the model, facilitating the identification
of strong predictors. Linear regression
models are also easy to implement and fast
to simulate. This class of models has been
broadly applied in the time series literature
over the years.

The model assumes a linear relationship
between predictors and response variable,
which can be limiting if the true
relationship is non-linear. Another issue
can be present when predictor variables are
highly correlated with each other. This will
likely destabilize the coefficient estimates,
making them harder to interpret and
potentially leading to overfitting.
Observations should be independent of
each other, which is not often the case in
time series data.
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Table 1. Cont.

Methodology Strengths Weakness

Semi-Parametric Additive Models Can capture non-linear patterns, are more
generalizable than the multiple linear
regression models, and normally have a
reasonable interpretability.

Require more data than linear models and
requires the determination of the
appropriate function or method to
represent the non-parametric terms, which
is frequently data-dependent and requires
deeper experimentation.

ARMA-ARIMA-ARMAX Simple to understand and interpret,
computationally efficient, and works well
for very short forecasts.

Requires the determination of the order of
differentiation, autoregressive (AR), and
moving average (MA) terms, which can be
difficult in complex datasets. Not all
components of the STLF follow an
ARMA/ARIMA/ARMAX process, which
usually limits the accuracy of
these methods.

Smoothing Models Simple to implement, highly interpretable,
and does not require large datasets.

Limited in handling complex relationships,
which can easily happen when using
multiple historical and forecasted (e.g.,
temperature) predictors.

Support Vector Machines (SVMs) Capable of modeling strong non-linearities,
do not require explicit identification
non-linear relationships between variables
(these are indirectly inferred by the model),
can handle high-dimensional feature
spaces, and is among the models with the
lowest forecasting error on STLF,
frequently being used as a benchmark.

Are sensitive to hyperparameter tunning,
requiring the definition of appropriate
kernel type and parameters, are not easily
interpretable, and have shown inferior
performance compared to the
state-of-the-art ANN models.

Multi-layer Perceptron (MLPs) It is one of the most well-known and used
ANN architectures, can model highly
non-linear relationships without the need
to explicitly define the functions that
govern the interaction between
input/output variables. It is frequently
used in combination with other models to
improve performance as it is a highly
flexible architecture, is of easy
implementation with current ML libraries,
and is also used as a benchmark in many
STLF papers.

This model is not easily interpretable,
usually requires larger datasets and careful
hyperparameter tuning to avoid overfitting.
Other architectures, such as RNNs and
TNNs, have been shown to usually
perform better than MLPs in the STLF task.

Recurrent Neural Networks (RNNs) Are among the most successful models for
STLF. Architecture specially designed to
deal with time-series data and is of easy
implementation. LSTM is a popular type of
RNNs. LSTMs have a unique design with
memory cells that enable them to store and
retrieve information over long sequences,
making them effective for tasks that
involve sequential data. They also have
bidirectional variants, which allows the
ANN to process data from past to future
and vice versa, providing often-better
performance on certain tasks.

Can have difficulty capturing long-term
dependencies, and as in the case of MLPs,
RNNs are not easily interpretable and
require large datasets and careful
hyperparameter tuning to avoid overfitting.
Compared to MLPs, RNNs have longer
training time and are more susceptible to
instabilities during training, such as
gradient vanishing/exploding.
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Table 1. Cont.

Methodology Strengths Weakness

Convolutional Neural
Networks (CNNs)

CNNs are frequently used in combination
with RNNs for the task of STLF, achieving
performance improvements compared to
the isolated architectures. CNNs are
efficient in exploring localized patterns and
identifying complex spatial patterns.

CNNs are not easily interpretable and
require large datasets and careful
hyperparameter tuning to avoid overfitting.
Because they are designed to work with
spatial patterns, their input needs to be
formatted to carry temporal information,
which may affect the identification of
localized patterns. CNNs often shows
inferior performance than other ANNs in
STLF when not combined with
other architectures.

Bayesian Neural Networks (BNNs) BNNs provide a framework for quantifying
uncertainty in the predictions and are more
robust to overfitting compared to other
ANNs. Sampling methods used in BNNs,
e.g., Markov Chain Monte Carlo (MCMC),
can help to explore the model’s parameter
space more widely, potentially avoiding
local minima.

Depending on the BNN model formulation,
the computational complexity can increase
significantly compared to other ANNs.
Hyperparameter turning is usually more
challenging in BNNs, and BNNs are not as
well investigated as RNNs, MLPs, and
CNNs in STLF, making it difficult to access
its general performance against
other models.

Transformer Neural
Networks (TNNs)

TNNs are better at capturing long-term
dependencies than traditional RNN models
and have shown superiority to other ANN
architectures (MLPs, RNNs, CNNs, and
RNNs-CNNs) in the task of STLF.

This architecture traditionally requires
more computational resources, training
data, and time than other models. TNNs
are not as well investigated as other ANN
architectures, making a more generalized
understanding of its performance difficult
under different datasets.

Hybrid ANNs/Ensemble of ANNs
and Probabilistic Models

Provide a way to combine the strengths of
multiple individual models traditionally,
leading to state-of-the-art performance
in STLF.

These models can exacerbate the risk of
overfitting, and it may be challenging to
maintain and debug multiple models.

Random Forests (RFs) These models are robust to outliers,
provide an importance measure of each
model feature. Good performance in the
STLF literature, and easy to implement.

The performance of these models is
traditionally inferior to ANNs, and RFs can
perform particularly bad in cases where the
load behavior changes significantly from
the historical data.

Gradient Boosting (GB) Have been successfully used in
combination with other forecasting models,
arriving at state-of-the-art results
in accuracy.

These models are not easily interpretable
and are prone to overfitting without
appropriate hyperparameter tunning.

3. STLF State-of-the-Art Procedures

Forecasts based on hybrid models can be executed by ensemble from multiple tech-
niques, and by adopting methodologies that improve data pre-processing, model training,
and learning algorithm capabilities [69,92]. Methodologies used in data analysis and mod-
eling such as data segmentation into similar patterns, input variable selection, hierarchical
forecasts, measurement station selections, net load considerations, and rolling window tech-
niques are often incorporated into STLF problems. Table 2 describes these methodologies.
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Table 2. Procedures applied to STLF for data manipulation, training and simulation.

Procedure Description

Data Segmentation in Similar Patterns
They have generalized minimum distances applied for pattern recognition. They can

be obtained by assigning a similarity index to calendar variables or
meteorological variables.

Input Variable Selection

This is the selection of the most influential variables for STLF. Variable selection
methods identify variables, such as calendar variables (day, time, weekday, month),

and meteorological variables (temperature, humidity, cloudiness, wind speed,
radiation, etc), among others.

Hierarchical Forecasts
This is characterized by disaggregating the load time series according to different

attributes. Disaggregation can be performed based on different hierarchies, such as
geographic location and time, among others.

Measurement Station Selection

Geographical factors influencing loading behavior are not easily identifiable without
appropriate data sources. Therefore, selecting data from measurement stations is a
challenge, and it is possible to check the best station or calculate an average from

several stations regarding data measurements of interest.

Net Load
This is based on forecasts to identify uncertainties arising from renewable energies

increasing, as this factor modifies power-generation operational planning
and dispatch.

Rolling Window

Consists of creating a procedure where the output of each step of the forecasting
problem is an input of the next step. It is a useful procedure to adopt when there are a
lack of data for STLF tasks regarding the area of interest. It is also helpful when one is
attempting to generate projections for longer horizons than the model was originally

intended to work with.

3.1. Data Segmentation in Similar Patterns

Similar pattern data segmentation is based on load pattern identification, according
to the calendar variables or meteorological conditions [93]. Generally, clustering is the
most used tool, with a similarity index estimated by a Euclidean distance. One of the most
popular applications is the identification of days where the load presents similar patterns.
This procedure is often adopted in studies using SVMs and MLP-ANNs.

Fan et al. [94] reconstruct time series data for a multidimensional perspective, using the
Phase Space Reconstruction (PSR) algorithm to perform hourly and semi-hourly forecasts
in New South Wales (Australia) from an SVM. Barman et al. [95] performed the STLF for
Assam (India) through the SVM, segmenting the load data by similar patterns, including
Euclidean distance weighting, to incorporate the temperature and humidity patterns.

In turn, Teeraratkul et al. [96] performed the STLF on an hourly basis for the following
day from an ANN; the Dynamic Time Warping (DTW) algorithm was used to group similar
load patterns data. Tian and Hao [97] also performed STLF on a semi-hourly basis for New
South Wales (Australia) through SVM regression but performed a longitudinal selection to
eliminate noise and segment daily similar pattern data. In the study of Dudek [98], although
a decomposition regression model was used to perform STLF in a Polish electricity system,
similar pattern data are identified using a similarity index.

Clustering is also widely used to identify similar days of load patterns, that is, they can
be used to identify patterns by calendar variables (weekdays, seasons, holidays, etc.) and
by weather factors, such as temperature data. For example, Papanakidis [99] performed the
STLF for a Greek electricity system from an ANN, in which the similarity input pattern is
clustered by a fuzzy-C algorithm, where similar load profiles were grouped by temperature
data, weekdays, and holidays.

Quilumba et al. [100] utilized the k-means algorithm to cluster load data in similar
patterns, drawing insights from temperature information, and employed an MLP-ANN for
STLF. Similarly, Jin et al. [101] grouped load data via self-organizing maps and conducted
STLF for the markets of Australia, Spain, and New York using MLP-ANNs. In turn,
data pattern identification and sequencing are also useful for RNNs [102,103]. In these
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models, the input sequence is structured by fixed-size vectors, which sequentially input in
RNN to training.

Other applications can be found in the work of Liu et al. [104], which introduced
long LSTMs coupled with sequenced load data for hourly STLFs in Belgian Electricity
systems. In a related approach, Kong et al. [105] employed LSTM-ANNs for the STLF of
a smart grid in Australia. In this case, load data were clustered to discern load patterns,
sequenced, and then used both for training and forecasting. The work presented in [17]
leveraged the k-means algorithm to cluster similar load patterns, subsequently employing
sequencing learning based on a combination of load, calendar, and climate data for hourly
forecasting using LSTM in New England. The work of [106], focusing on non-residential
load forecasting in China, first segmented similar load patterns by days using the k-means
algorithm, then explored correlations between these clusters using LSTMs.

In [16], the authors adopted sequencing learning for LSTMs to forecast day-ahead
loads on an hourly basis using South Korean data. This effort integrated load data, calendar
variables, and temperature as predictors. The work presented in [107] utilized LSTM
network for short-term zonal load probabilistic forecasting, considering the correlation of
input features and decoding of time dependences. Another contribution presented in [108]
applied sequencing learning with LSTMs for day-ahead STLF on a semi-hourly basis and
considered an array of data-load, temperature, calendar variables, humidity, and wind
speed-from the French electricity system. The work of [109] proposes an approach that
uses LSTMs with sequential pattern mining, which is used to extract sequential features
that are independent of correlation patterns between load and meteorological data. The
proposed model uses load series, temperature, humidity, and wind speed as inputs, among
other meteorological data, to create short-term load forecasts in microgrids.

3.2. Input Variable Selection

The input variable selection aims to identify which are the most influential predictors
associated with the forecast outputs [110]. In addition to the load data, other variables can
be incorporated into STLF models, and among these are calendar variables (time, weekdays,
month, day of the year), weather variables (temperature, humidity, cloudiness, wind speed,
solar radiation, etc.) [92], and socio-economic indicators (electricity prices, distribution
tariffs, income, and others) [111].

Historically, correlation analysis is one of the most used methods for input variable
selection that is highly explanatory and independent of other variables [112,113]. However,
other techniques have also been considered for the selection process.

Stepwise regression is an input variable selection method that selects main variables
for forecast and is considered in studies that use different approaches to load forecast-
ing [23,114,115]. This method defines a procedure for identifying useful predictors to
be used in the forecasting model. To do so, stepwise regression systematically adds the
most significant variable or removes the least significant variable during each step of
the procedure [114].

The mutual information algorithm is another input variable selection method, which
is based on evaluating the interdependence between two random variables [116]. If the
mutual information results in zero, the two variables are independent and there is no
relevant information between them. Some studies apply mutual information algorithms to
remove redundancy in the load time series [117–121].

Optimization algorithms, especially genetic algorithms, have also been used in recent
studies about STLF [95,108,122] for input variable selection. There are several exam-
ples of genetic algorithm applications in the literature, such as ant colony [123], particle
swarm [124], evolutionary [125], and colony algorithms [126]. The Xgboost algorithm is
also a common technique [17], which is based on the gradient estimation for a decision tree,
which performs a variable score, indicating the relevance of each training input.
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3.3. Hierarchical Forecasts

Load time series can be disaggregated according to attributes of interest. These time
series can be disaggregated into different hierarchies, such as geographic region, time step,
and electricity grid, among others.

Hierarchical models are divided into top-down and bottom-up approaches. The top-
down approach starts from the most aggregated hierarchy level but ends up losing some
time series properties. For example, Quilumba et al. [100] used top-down hierarchy to
disaggregate customers from similar load consumption levels. Sun et al. [127] also applied
the top-down approach, initially forecasting the load of the top node and then identifying
the similarity with the node at the levels below.

In the bottom-up approach, there is no loss of information, but the high dispersion
from lower levels is a challenge for load forecasting [128]. The bottom-up approach is quite
robust when there is no lack of information at lower levels; otherwise, the forecasts may
have higher errors [129].

Forecasts based on hierarchical data can also be run from each hierarchy level. In this
case, the sum of forecasts on an aggregated level may not be consistent with the forecasts
made on disaggregated levels [130]. Wang et al. [46] used a weighted combination to
perform load forecasts in individual clusters, then performed the STLF on a semi-hourly
basis, considering individual consumer data from a smart meter. Zheng et al. [17] also used
the STLF-weighted for three hundred customers of an Australian utility, which are grouped
according to their zip codes into thirty disaggregated hierarchical nodes.

Linear and quadratic programming methods can be used to minimize the error be-
tween forecasts based on disaggregated data and aggregate-level data [17]. Other pro-
gramming models can still be proposed based on an appropriate selection algorithm
since different hierarchical levels interact with each other in a complex way, and changes
in the data at a level can modify the sequencing at the same level, as well as other
hierarchical levels [131,132].

3.4. Measurement Station Selection

In models that disaggregate forecast data into hierarchical levels based on geographic
region, the big challenge is to assign measurement information (such as weather variables)
for each region. In the recent literature, an emerging alternative has been the employment of
combination methods and the aggregation of averages from various weather data stations
to pursue a more effective result [133–135]. Other studies are also based on defining a
linear combination to define the best specific weather stations for each zone, looking for
the information that provides the best results [123,124].

According to Hong et al. [136], the procedures for weather-station selection can be
divided into the following steps: (i) how many weather stations should be used for the
STLF problem in a given region; and (ii) which weather stations should be used to feed the
inputs of an STLF model.

To accomplish these steps, initially, several meteorological stations must be heuris-
tically chosen and later, the best stations under the restriction of the previously defined
quantity must be identified [137]. Among the more complex methods are the following:

• Linear combination

Linear combination allocates decreasing linear weights to weather stations sorted in
ascending order of their Mean Absolute Percent Error (MAPE). The normalized weights
are estimated by Equations (42) and (43):

wi =
linwi

∑
n
i=1 linwi

(42)
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where wi is the normalized vector, n is the number of weather stations, and

linwi
=















n i = 1
n− 1 i = 2
. . . . . .

1 i = n

(43)

• Exponential combination

The exponential combination assigns weights to weather stations inversely propor-
tional to the MAPE of each station. Equations (44) and (45) describe the calculation:

wi =
expwi

∑
n
i=1 expwi

(44)

where,

expwi
=















bn i = 1

bn−1 i = 2
. . . . . .

b1 i = n

(45)

where exp_wi is the exponential weight, and b is the base.

• MAPE-based combination

The MAPE-based combination uses the MAPE of a weather station as weight, like is
described in Equation (46):

wi =
100−MAPEwi

∑
n
i=1(100−MAPEwi

)
(46)

where MAPEwi is the MAPE of a weather station.

• Geometric mean combination:

xgmean = n
√

x1x2. . . xn (47)

where xn is the climatic variable profile on the weather station n.

• Twofold combination

The twofold combination takes two iterations to generate virtual stations that indicate
the top-ranked stations. The step-by-step of this method is described below:

(1) Rank the original stations in ascending order based on their in-sample fit error of the
load forecasting model;

(2) Create virtual stations based on the simple mean of top stations;
(3) Forecast the validation using each virtual climate variable profile, and calculate MAPE

for each forecast;
(4) Select the virtual stations based on the best MAPE order;
(5) Create the secondary virtual stations;
(6) Forecast the validation again using the climate variable profile of each secondary

virtual station, and calculate MAPE for each forecast;
(7) The secondary virtual station with the smallest MAPE value provides the climate

variable profile.

• Genetic Algorithm combination

This considers the weather-station selection as an optimization problem, where the
genetic algorithm finds the weights that can minimize the forecast errors. The methodology
follows the following steps:



Energies 2023, 16, 7444 21 of 35

(1) Initialize the problem with randomly assigned weights, where each weight is indi-
vidually assigned to each individual in a population, and capture a set of possible
weights for each station;

(2) Create virtual stations using the weight set;
(3) Evaluate the goodness of fit using MAPE;
(4) Produce the next set in evolution, allowing each unit in the set to mate and mutate;
(5) After all iterations, the desired virtual station will be the one where the weights led to

the smallest MAPE.

3.5. Net Load

The analysis of weather-related behavior plays a crucial role in studies focusing on the
net-load effect, defined as the difference between the global load and the load stemming
from renewable energy sources. These studies seek to comprehend the impact of renewable
energy penetration on the net load pattern. A greater presence of renewable sources can
significantly influence the distribution, management, and operating costs of the electrical
system, as they alter the traditional consumption and production dynamics [138].

Net load forecasting has become fundamental for the operation of modern networks
with strong penetration of renewable energy sources [139–141]. Brazil has been one of
the countries that have paid attention to this, considering the production of photovoltaic
distributed generation in its daily operation schedule [142]. In addition to the impact on
operation, some approaches have focused on commercial microgrids with high solar photo-
voltaic penetration [143,144]. Furthermore, recent studies about net load forecasting are
found in the literature, in which forecasts were performed by different load segmentations
related to several markets and systems with different demand patterns, and analyzing the
renewable sources’ impacts on the STLF [145–152].

The procedure for performing net load forecasting depends on data availability and
the attributes of the sought solution, such as accuracy and granularity. Thus, the net load
prediction can be approached indirectly, where the prediction is the difference between the
load and renewable generation forecast, and in a direct way, which directly forecasts the
net load without further intermediate steps [153].

Some studies use weather data and renewable generation data to estimate renewable
power generation [154]. In this way, they use the renewable generation and the net load
forecast to estimate the total load at each time [153]. Others determine the impact of renew-
able penetration on the STLF, estimating the renewable generation using weather data and
calculating the total load [155]). There are still studies that have evaluated both the direct and
indirect approach, using machine learning models for net load predictions [156,157].

The main steps for net load forecasting consist of (a) data acquisition, and the assess-
ment of quality and input-feature selection; (b) the implementation and optimization of
the machine learning model; and (c) performance evaluation and monitoring. Figure 5
illustrates the main steps for net load STLF.

 
 
 
 

ff ff

tt
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Figure 5. Net load STLF procedures.
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3.6. Rolling Window Forecasting

In the rolling window STLF, the univariate time series spans through the selected time
of the window and is considered as input for the next forecasting evaluation; thus, the
rolling window uses the output as input for the next point forecast [158]. In the academic
literature, some studies have presented the use of rolling window forecasts for different
time intervals. Chalapathy et al. [158] predicted building cooling load in six different
windows. Ahani et al. [159] performed rolling window predictions in up to one window
up to ten windows ahead. Li et al. [160] performed forecasts in four forward windows, and
in the study, the forecasts for short-term windows showed higher accuracy.

The rolling window forecast is illustrated in Figure 6, where n is the number of original
input datasets and l is the forecast window. When l is equal to 1, it is a one-step forecast.

ff

 

𝑥௧ = ൣ𝑙ሾ𝑡 − 𝑛௧ + 1ሿ, … , 𝑙ሾ𝑡ሿ൧  ∈  ℝ𝑦௧ = ൣ𝑙ሾ𝑡 + 1ሿ, … , 𝑙ሾ𝑡 + 𝑛ሿ൧ ∈  ℝబ

𝑥௧ = ൣ𝑥௧ሾ0ሿ, … , 𝑥௧ሾ𝑛் − 1ሿ൧    ∈  ℝ
𝑥௧ሾ𝑖ሿ = 𝑙ሾ𝑙 + 1 + 𝑡 − 𝑛்ሿ

𝑦௧ = ൣ𝑦௧ሾ𝑛் − 1ሿ, … , 𝑦௧ሾ𝑛் + 𝑛 − 2ሿ൧
𝑦ො௧ = 𝑓(𝑥௧; 𝛳)      ∈  ℝబ

Figure 6. Rolling window forecasting.

For the STLF rolling window, a univariate time series of load forecast described by
l = (l [0], l[1], . . ., l[T]) feeds load forecasts for a window of periods ahead. Mathemati-
cally, the load inputs xt and outputs yt in a rolling window forecast can be described by
Equations (48) and (49) [158]:

xt = [l[t− nt + 1], . . . , l[t]] ∈ R
nT (48)

yt = [l[t + 1], . . . , l[t + n0]]∈ R
n0 (49)

where xt is the regressor vector at time t; yt is the true output vector for the input se-
quence at time t; nT is the window size of the regressor vector; and n0 is the time horizon
for the forecast.

For simplicity, it is possible to express the input and output vectors concerning the time win-
dow. Thus, we can rewrite the input vectors at discrete times using Equations (50) and (51) [158]:

xt = [xt[0], . . . , xt[nT − 1]] ∈ R
nT (50)

where x[t] is the input vector of the load and other features at time t.

xt[i] = l[l + 1 + t− nT ] (51)

The output vector can be described by Equation (52):

yt = [yt[nT − 1], . . . , yt[nT + n0 − 2]] (52)

The forecast vector also can be denoted by Equation (53):

ŷt = f (xt; 8) ∈ R
n0 (53)
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where 8 is the vector of parameters estimated by optimized weights of the sequential models.

3.7. Forecast Monitoring, Model Performance and Systematic Comparisons

Forecasting monitoring is an essential step to check whether the performance of any
mathematical model remains stable over time, or if it needs interventions. On the other
hand, comparisons are also pertinent, aiming towards superior performance results for
STLF tasks. There are several accuracy metrics that are generally used to monitor and
compare the performances of STLF models. Among them, the Mean Average Percentage
Error (MAPE), the Mean Error Absolute (MAE), the Mean Square Error (MSE), the Average
Error (AE) and the Nash–Sutcliffe Error (NSE) can be mentioned [3,97]. While error analysis
has been conducted in different forms over the years for applications in renewable energy
forecasting), to our knowledge most of the STLF literature that has used using machine
learning methods has focused on discussing error metrics such as MAPE, MAE, MSE, and
others on selecting the appropriate model.

Although these metrics are consolidated benchmarks for monitoring model perfor-
mance, care must be taken when using them to compare performance across models. In
some cases, there may be no statistically significant difference between the models’ per-
formance, leading to incorrect conclusions. An alternative to circumvent this risk is the
application of the test presented by Diebold and Mariano (1995) [161], which is capable
of statistically validating whether there is a statistically significant superiority between a
model in relation to its benchmark.

In a Diebold-Mariano test, the yi, i ∈ {1, . . . , N} are the forecasts results from the

models M1 (ŷ
(M1)
i ), and M2 (ŷ

(M2)
i ), and e

(M1)
i , e

(M2)
i are the forecast errors of each model.

The estimated errors for each model are introduced into a loss function, and the statistical
value of the Diebold-Mariano test is estimated, where S2 is a consistent estimator of the
asymptotic variance [159]:

e
(Mα)
i = yi − ŷ

(Mα)
i , ∀i ∈ {1, . . . , N}, and Mα ∈ {M1, M2} (54)

F
(

e
(Mα)
i

)

=
(

e
(Mα)
i

)2
(55)

DM =
∑

N
i=1

(

F
(

e
(M1)
i

)

− F
(

e
(M2)
i

))

/

N
√

S2/

N

(56)

E(d) = F
(

e
(M1)
i

)

− F
(

e
(M2)
i

)

(57)

Finally, the Diebold-Mariano hypothesis test can be described as

• H0: the loss function generates predictions that are not statistically different (E(d) = 0);
• Hα = E(d) > 0, where model M1 has better prediction performance than M2;
• Hα = E(d) < 0, where model M2 has better prediction performance than M1.

The Diebold-Mariano test has been applied in several recent studies that have involved
the comparison of new STLF models with already-consolidated applications. The work
presented in [3] applied the test to evaluate and compare different ANN architectures. The
work presented in [160] used the Diebold-Mariano test to compare the performance of
architectures that use machine learning and wavelet transformed for the STLF task. In [162],
the test is used to validate a new approach using LSTM with five other benchmarking
models, including other approaches involving LSTM.

In [163], a decomposition structure is proposed and subsequently evaluated using
different non-linear and linear STLF models; for the comparison between the models’
performances the Diebold-Mariano test is also applied. In [164], the Diebold-Mariano
test is applied to assess the impact of Kalman filters and fine-tuning for load forecasts to
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adapt to new electricity consumptions during the COVID-19 pandemic without requiring
exogenous information.

3.8. Summary of Studies about STLF Procedures

Table 3 summarizes the studies related to the procedures highlighted in Section 3. The
methodologies for data segmentation in similar patterns and input variable selection can
be observed; it is also noted that studies on net load have gained popularity due to the
growth of the penetration of renewable energy sources in different energy matrices.

Table 3. Summary of studies.

Procedure Studies

Data Segmentation in Similar Patterns

Kwon et al. [16], Zheng et al. [17], Mu et al. [93], Fan et al. [94], Barman et al. [95],
Teeraratkul et al. [96], Tian and Hao [97], Dudek [98],

Papanakidis [99], Quilumba et al. [100], Jin et al. [101], Sutskever et al. [102],
Marino et al. [103], Liu et al. [104], Kong et al. [105], Jiao et al. [106], Lin et al. [107],

Bouktif et al. [108], Jahani et al. [109],

Input Variable Selection

Zheng et al. [17], Barman et al. [95], Bouktif et al. [108], Faria et al. [110],
Kuster et al. [111], Koprinska et al. [112], Kouhi et al. [113],

Xiao et al. [114], Nedellec et al. [115], Suzuki [116], Battiti et al. [117],
Ghadimi et al. [118], Amajady et al. [119], Wi et al. [120], Schaffernicht et al. [121],

Eskandari et al. [122], Niu et al. [123], Hu et al. [124], Jalali et al. [125],
Sheikhan and Mahammadi [126]

Hierarchical Forecasts
Zheng et al. [17], Wang et al. [46], Quilumba et al. [100], Sun et al. [127],

Stephen et al. [128], Hyndamn et al. [129], Gamakumara et al. [130],
He et al. [131], Fan et al. [132]

Measurement Station Selection
Niu et al. [123], Hu et al. [124], Xie et al. [133], Liu et al. [134],

Lloyd et al. [135], Hong et al. [136], Sobhani et al. [137]

Net Load

Razavu et al. [143], Kobylinski et al. [144], Falces et al. [145], Allipour et al. [146],
Mei et al. [147], Sreekiemar et al. [148], Wang et al. [149], Van Der Meer [150],

Chu et al. [151], Kaur and Nonnenmacher [152],
Saedi et al. [153]

Rolling Window Chalapathy et al. [158], Ahani et al. [159], Li et al. [160]

4. STLF in the Brazilian Power System

The Brazilian electrical power system has unique characteristics in composition due
to its vast continental dimensions. The country’s load centers are typically situated at
considerable distances from major generation resources, leading to the diverse availability
of power generation and transmission assets [165]. The system encompasses four large and
distinct submarkets: southeast/central–west, south, northeast, and north, each exhibiting
different electricity demand patterns. These submarkets are interconnected by large blocks
of transmission lines forming the so-called National Interconnected System (SIN), which
makes it possible to export and import energy between regions and optimize the use of the
country’s generating portfolio.

The SIN is distinctively characterized by hydropower dominance, which accounts for
approximately 65% of the total generation capacity, making Brazil one of the largest hydro-
dominant countries in the globe. The country has been actively attempting to diversify
its energy portfolio in the last few decades, with significant investments in wind, solar,
and biomass, reflecting a shift towards a more diverse energy matrix. With the increasing
penetration of wind and photovoltaic sources in the country and associated variability
in generation [166], it has become essential to plan energy operations in the very short
term in order to satisfy the system demand at minimum costs while optimizing the use of
available resources.

The Brazilian independent system operator (ONS) utilizes computational algorithms
designed to optimize the operational scheduling of the power generation assets in order to
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satisfy the system demand. This process aims to minimize the total operational costs in
different planning horizons [3]. For mid-term operational scheduling, the NEWAVE model
performs system optimization considering a 5-year horizon with monthly decision periods
(discretization). Among the results from the NEWAVE run, the monthly locational marginal
prices (LMPs) and the future cost function (associated with the dispatch) are obtained. In
turn, the DECOMP model aids in defining the optimal operational scheduling considering
a short-term horizon (two to twelve months ahead) with weekly discretization. DECOMP
simulation uses the future cost function from NEWAVE and defines the weekly LMPs that
have been used over the years as a basis to determine the electricity prices in the Brazilian
electricity market.

More recently, ONS, in an attempt to enhance very short-term operational planning in
the Brazilian interconnected power system, started to adopt the DESSEM model [167,168].
DESSEM aims to plan the daily operation scheduling of a hydrothermal system at half-hour
intervals, and estimate the LMPs on an intra-hourly basis. In this horizon, half-hour-
interval STLFs for the day ahead in each submarket are used as the input of DESSEM,
optimizing the scheduling of generation to satisfy demand at the lowest cost. DESSEM
was designed to minimize the day-ahead operational costs of the hydrothermal system
dispatch, considering a horizon up to two weeks ahead with semi-hourly discretization.
STLF and power generation data, including non-dispatchable sources, are among the main
inputs for the DESSEM model. Figure 7 illustrates the planning horizons, optimization
models, and time discretization of the problems considered by ONS.

ff

tt

Figure 7. Planning horizons, optimization models, and time discretization of the problems considered

by ONS for generation scheduling and resource coordination.

ONS recently started to use machine learning algorithms for creating STLF models for
the Brazilian system. The outputs of these models are used as input for the optimization
of the day-ahead generation scheduling using DESSEM. The main STLF model is named
PrevCargaDESSEM, and performs semi-hourly load forecasts for the following day, in
addition to producing a load curve per level in a weekly horizon. PrevCargaDESSEM is
based on a linear combination between a linear SVM, a radial SVM, and an ANN model.

The PrevCargaDESSEM predictors are load data series (on an hourly basis); verified
temperature history (for an hour); temperature forecast (on an hourly basis); a list of
holidays and special days; DST (start and end); forecast horizon (start and end); and
loading times. The input data (divided in a set of data files) and daily forecast are available
on ONS online database called SINtegre [169].

The STLF performed in PrevCargaDESSEM are divided into steps 1 to 3, also illustrated
in Figure 8:
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(1) Global load forecast in MW for each weekday, using the following predictors: daily
load series; holidays and special days; average, minimum, and maximum daily
temperature; and month;

(2) Global load forecast (p.u) for each day type (normal day, holiday eve, holiday, day
after holiday, and special days). The predictors are month; DST; weekday and hourly
load series; and temperatures;

(3) With the global load average (MW) and the load profile forecast (p.u), the global load
forecast in MW is obtained by multiplying the forecasts for each 1⁄2 hour segment of
the following day for the other weekdays.

 

 

 

ff
ff

Figure 8. PrevCargaDESSEM flowchart.

In the PrevCargaDESSEM model, it is possible to discretize the load data in half-hour
and hourly intervals. Forecasts are made for scheduling the operation for the following day
(D + 1), where half-hour discretization is adopted to obtain a very short-term operation
planning and information for estimating the intra-hour electricity price. The models’
accuracy is evaluated using MAPE and the root-mean-square error (RMSE).

The DESSEM model considers the power system composed of hydroelectric power
plants and thermoelectric power plants, in addition to renewable power plants (wind,
biomass, solar, etc., whose dispatch is not optimized by the model). To represent the
power system network, power plants are arranged in submarkets (subsystems) that are
interconnected by a set of transmission lines. Thus, the PrevCargaDESSEM forecasts
are performed for the four Brazilian submarkets (Southeast/Midwest, South, Northeast,
and North).

The global load series for the four submarkets includes the dispatched generation
data, the exchange between submarkets, and the non-dispatchable generation on an hourly
basis. Then, load data are discretized on a half-hourly basis by a cubic monotonic spline.
The hourly load profile by energy source is also estimated from the hourly generation of
each source, to obtain the daily load profile forecast.

Verified temperature data from the Air Force Command Meteorology Network (RE-
DEMET) [170] are used as input for PrevCargaDESSEM. Other temperature data used by
the model are obtained from operational models from the Center for Weather Prediction
and Climate Studies (CPTEC/INPE) and prediction models from the National Centers for
Environmental Prediction (NCEP) [171].

For the predicted temperature in each submarket, a proxy series called equivalent
temperature is adopted. This proxy is obtained from data from two or more locations and
their respective weights. Weights are estimated using optimization algorithms, such as
genetic algorithms, to maximize the correlation between load and temperature data.

PrevCargaDESSEM is based on fourteen different forecast models together, which is
differentiated by predicted temperature data, not considering the predicted temperature,
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average temperature, maximum temperature, and the maximum and minimum temper-
atures [172]. In addition, predictions can be run from SVM linear kernels, SVM radial
kernels, or over ANN feedforward and two linear dynamic regressions, one considering
mean temperature data as input and the other with maximum temperature data. Posteri-
orly, an ensemble is defined with the best-settings weighting, and finally, a final forecast
is produced.

The PrevCargaDESSEM set of input files contains the load series; temperature series;
load levels; predicted temperature; holidays; start and end date of forecasts; and an
optimizer that looks for the best match among the twelve predictions. Figure 9 illustrates
an overview of the PrevCargaDESSEM framework.

tt

Figure 9. PrevCargaDESSEM overview.

To consolidate the STLF, ONS also uses the Artificial Neural Network Short-Term Forecast
Load (ANNSTLF), from the Electric Power Research Institute (EPRI) [173]. ANNSTLF (6.0)
is a Windows software that uses historical load, temperature information, and predicted
temperature for STLF.

ONS uses ANNSTLF for generating forecasts for a ten-day-ahead horizon. The predic-
tors considered in the ANNSTLF model are the load series, verified temperature, predicted
temperature, holidays and special days, DST (start and end), and unusual load days. The
ANNSTLF forecaster consists of three models, two ANNs for load forecasting, a Base Load
Forecaster (BLF) that forecasts the hourly load for the following day, and a Change Load
Forecaster (CLF) that forecasts the hourly load variation from one day (k) to the next day
(k + 1). A module then combines the predictions using a recursive least squares algorithm.
Figure 10 illustrates the ANNSTLF overview.

tt

 
Figure 10. ANNSTLF overview.
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ONS also validates the STLF with an ensemble of linear and non-linear time series
models, which uses the mean, minimum, and maximum error in the model ranking.
The linear models are ARIMA and Holt–Winters, which include weekly seasonality and
previous-day loads, providing weekly variations. Dynamic regression models are also used,
in which temperature data are included, as well as dummies for weekdays and holidays.
Another linear model used is a quantile regression, which uses load and temperature
information as the input. In turn, among the non-linear models are ANN feedforward
and SVMs with linear and radial kernels, which include load and temperature information
from the seven previous days.

Every week, the ONS presents the performance of its load forecasts on a semi-hourly
horizon, where the average MAPE of the forecasts and also the percentage of semi-hours in
which the forecasts were above an MAPE of 3% are evaluated [174]. In case of frequent mis-
matches in the performance of the models, ONS organizes working groups that investigate
treatment alternatives for the models’ input data, as well as the use of new architectures
for STLF. Since the introduction of daily planning using the DESSEM model, ONS has
started to use machine learning models to execute STLF. As their developments are still
recent, there are opportunities for testing RNN models (e.g., LSTMs and GRUs) as part of
the PrevCargaDESSEM ensemble. LSTMs and GRUs in their uni- and bi-directional forms
have shown promising accuracy results for STLF for the Brazilian southeast/central–west
submarket in [3], with NSE achieving values up to 0.98 and MAPE of 1.2%, respectively. In
addition, there are other things to explore such as weather-station selections for tempera-
ture information, the use of other climate variables as predictors, and the incorporation of
better forecasts for distributed energy resources that impacts the system net load.

In addition to models used by ONS, the literature also presents other studies about
STLF and machine learning models, focused on the Brazilian system. For example,
Silva et al. [166] developed an ANN feedforward for seven subsequent days, in which
the predictors are the month, weekdays, load forecast one and two hours ago, load vari-
ation during the day, and a weighted metric with the climatic variables of temperature,
wind speed, and relative humidity. The authors obtained MAPE results around 1.66% with
their ANN applied to the Brazilian south submarket using 2016 data. Silva et al. [174]
compared three STLF models: an ARIMA; an LSTM; and a GRU ANN. The authors con-
sidered the following information as an input: months; weekdays and holidays; GDP
growth; regional temperatures expressed as weighted load; and a trend factor for popu-
lation growth. Machine learning models developed in [171] and applied to the Brazilian
southeast/central–west submarket achieved MAPE from 1.75% to 2.5% considering data
up to 2019.

Ribeiro et al. [175] presented an RNN of the Echo State Network (ESN) type. ESN is
an RNN with a simple architecture, a sparsely hidden layer, and with synaptic weights
fixed and randomly assigned. The main ESN feature is that the only fixed weights that
are modified in training are the synapses that connect the hidden-layer neurons with the
output layer. In the study, this approach was used for the STLF in Brazil’s southern region,
using the load data for the first four weeks.

In the literature related to STLF in Brazil and the framework adopted by ONS, machine
learning models have started to be employed over the last few years. However, a handful
of machine learning models (e.g., RNNs, BNNs, GRUs, etc.) have not yet been adopted by
ONS. Moreover, many of the classical procedures for data processing, training, and simula-
tion remain largely unexplored. Therefore, there are still opportunities to investigate these
techniques and procedures, signaling potential areas for future research and innovation
that can potentially improve the quality of STLFs and consequently the power-generation
operational dispatch planning in the country.

5. Conclusions

This paper provided a comprehensive review of machine learning-based methods
used for short-term load forecasting and have discussed the Brazilian experience, with



Energies 2023, 16, 7444 29 of 35

applications of such methods to provide forecasts for the Brazilian interconnected power
system. The main characteristics of STLF include the non-linearity behavior of the time
series and the influence of calendar and weather variables in conjunction with load infor-
mation. The advancement in computational capabilities has facilitated the consolidation
of non-linear models based on machine learning, owing to their ability to process large
datasets through pattern identification and improved generalization.

Modern STLF models frequently utilize hybrid approaches, either through ensemble
techniques or methodologies that enhance data pre-processing and/or model training.
These methods can include strategies such as similar pattern data identification, handling
patterns by calendar or climate variables, sequencing learning, input variable selection,
hierarchical forecasts, weather station selection, and net-load consideration.

Recently, the Brazilian ISO has started to use machine learning algorithms for STLF,
including ANN feedforward and SVMs, via model ensemble techniques. However, the
absence of state-of-the-art pre-processing methodologies is noteworthy. Substantial effort
is directed toward constructing input datasets containing load, temperature, holiday, and
special days data. The selection of airports considered for the acquisition of temperature
data, as well as the weighting of the acquired data, also requires attention. Another eminent
challenge is to integrate the load from distributed generation into the daily schedule. Over
the years, Brazil has experienced an increasing fluctuation effect in load patterns originating
from the higher penetration of distributed wind and solar generation and their associated
variability. This growing issue will probably require that STLF models consider a better
representation of these resources, including their associated climate variables, e.g., wind
speed and solar irradiation, in order to create more accurate net load forecasts.

Given the vast and diverse nature of the Brazilian submarkets, each with specific
characteristics, methodologies involving similar pattern data, input variable selection, and
meteorological station selection can substantially improve frameworks to perform STLF.
Finally, it is worth noting that other state-of-the art machine learning techniques could be
tested in the context of the Brazilian system, aiming to improve STLF accuracy.
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