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A B S T R A C T

This work uses Bayesian modeling and mechanical model simulations through the Ansys-AQWA software to
construct fragility curve estimates for marine hydrokinetic devices, more specifically, their mooring system. The
fragility curves proposed here associate wind speed levels with the risk of damage to the equipment and could be
used to better understand the susceptibility of these devices to damage from hurricanes. Our proposed modeling
framework uses acoustic Doppler current profiler measurements from a site located off the North Carolina coast
and the RM4 conversion device from the Sandia National Laboratory. By evaluating different scenarios with and
without dynamic tension in mooring lines due to changes in current velocities caused by extreme wind speeds,
our results indicate that the risks of damage may be significant depending not only on the average current ve-
locity but also on the velocity variation.

1. Introduction

With the ever-increasing global climate change and sustainability
concerns, the deployment of renewables is expected to increase rapidly
in the coming decades. Although this increase is primarily led by solar
photovoltaic (PV) installations and onshore wind energy (IEA - Inter-
national Energy Agency, 2021), substantial investments are also ex-
pected in the offshore renewable energy sector. The US government, for
example, announced a 30 GW target for offshore wind deployments by
2030 and 110 GW by 2050 (White House, 2021). Additionally, the Eu-
ropean Union (EU) has a 300 GW target for offshore wind deployments
and a 40 GW target for ocean energy deployments by 2050 (European
Commission, 2020a, 2020b).

Despite being in its early development stages, marine hydrokinetic
devices are considered to be one of the many promising alternatives to
improve the share of renewable energy sources to compose a diversified
generation portfolio, potentially reducing energy variability and
improving system security. The viability of this technology has been
investigated on the Asia east coast (Chang et al., 2015; Liu et al., 2018)
and in the states of Florida (Neary et al., 2014; Haas et al., 2013) and
North Carolina (Faria et al., 2022) in the United States. Particularly in

North Carolina, portfolio optimization and capacity expansion studies
have indicated synergies between ocean current and offshore wind as
well as ocean current and wave energy technology, leading to reductions
in the energy output variability of the equivalent portfolio (Faria et al.,
2023).

As the size and frequency of offshore renewable energy deployments
increase, a proper understanding of the risks associated with this tech-
nology becomes of utmost importance for continuing economic interest
in the renewable offshore energy sector. The risks of hurricane damage
to many different renewable energy technologies, such as solar PV
(Goodman, 2015) and wind turbines (Rose et al., 2013), have been
investigated and modeled in the past through the use of fragility curves
(Watson and Etemandim, 2020; Faria, 2024), which map the probability
of damage to the equipment given certain hurricane speed levels.
Similar curves exist for coal power plants, substations, transmission, and
distribution lines (Bennett et al., 2021). However, to our knowledge,
there is a gap in the literature regarding the definition of fragility curves
for ocean current energy systems, indicating an obstacle that inhibits our
ability to characterize the susceptibility of these marine hydrokinetic
devices to damage from hurricanes.

It is important to mention that although large-scale ocean current
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conversion devices are expected to be submerged about 50 m below the
surface (Neary et al., 2014), previous studies have indicated that the
influence of extreme weather events can reach such depths. For
example, in (Todd et al., 2017) the authors investigated the Gulf Stream
conditions during three major hurricanes in 2017, observing transient
anomalies for depths of up to 100 m. Similar results were observed by
(Ezer, 2018) during Hurricane Matthew in 2016 and by (Oey et al.,
2006) during Hurricane Wilma in 2005.

In this work, we postulate that the mooring lines associated with
ocean current energy converters pose a critical vulnerability that needs
to be considered when constructing fragility curves. Therefore, we
propose a novel framework to integrate mechanical model simulations
of the mooring system with the statistics obtained from ocean current
measurements or hindcasts to produce fragility curve estimates. The
ANSYS-AQWA software (ANSYS, 2013) is used to build a mechanical
model for the mooring system of a well-known hydrokinetic device, the
RM4 developed by the Sandia National Laboratory (Neary et al., 2014),
and a Bayesian model is used to estimate the probability distributions of
the ocean current variables given extreme wind speed conditions.
Finally, this framework is used to construct fragility curves based on
ocean current speed measurements from the Gulf Stream in North Car-
olina. These measurements were obtained using Acoustic Doppler Cur-
rent Profilers (ADCPs), specialized instruments that measure water
velocity using underwater acoustic technology.

The main contributions of this paper can be summarized as follows:

(i) A Bayesian formulation is proposed to perform extreme value
analysis for ocean current variables.

(ii) Ansys-AQWA software is used to perform mooring system simu-
lation designs for the RM4 current turbine, considering steady-
state and dynamic conditions.

(iii) A framework to connect ocean statistics with mooring system
designs is developed to determine fragility curves for hydroki-
netic devices, associating extreme weather events (e.g., hurri-
canes) with the probability of equipment damage.

(iv) A case study using ADCP measurements from the NC coast is
performed, providing insights into the ocean conditions in the
region and its effect on mooring system modeling.

Our work contributes to a better characterization and definition of
the mooring system of ocean current conversion devices, and its results
provide an initial assessment of the risks of damage given hurricane-
induced conditions. The remainder of this paper is divided as follows:
Section 2 presents the models considered in this work, Section 3 presents
the case study, detailing the data used and the region investigated,
Section 4 shows the simulation results, and Section 5 concludes the
paper.

2. Methods

The development of the approach proposed here can be segmented
into four steps: (1) Data Acquisition and Treatment; (2) Statistical
Analysis to explore the influence of extreme weather events in ocean

Fig. 1. Models & methods flow diagram.
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current variables; (3) Modeling and Simulation of the Mooring System;
and (4) Estimation of the Fragility Curve for Ocean Current Devices.
Fig. 1 shows a flow diagram with detailed information about these four
steps and how they connect in this work.

First, ADCP measurements are used in statistical analysis to deter-
mine the set of extreme current events expected to repeat every 100
years (100-year recurrence curve). This data is essential in the definition
of the loads induced in the mooring system of the ocean current device.
Additionally, wind speed measurements from the National Data Buoy
Center (NDBC) are integrated with the ADCP ocean current speed data to
determine the probability distribution of the ocean current variables
under different wind speed conditions during extreme weather events.

Next, the 100-year recurrent curve from the statistical analysis is
used in the modeling of the mooring system of the ocean current device.
During this stage, the components of the mooring system are defined and
incorporated in the Ansys-AQWA software, such that different line
configurations (e.g., materials, diameters) can be investigated until a
design configuration capable of enduring the loading associated with the
100-year recurrence curve is specified. Finally, with a suitable mooring
system design, the maximum operating limits of the system (above the
100-year curve) are determined.

Lastly, with the maximum operating limits of the mooring system
and the probability distribution of the ocean current variables as a
function of the wind speed, the fragility curve of the mooring system of
the ocean current turbine can be determined, thereby associating the
risk of damage to the equipment with different hurricane speed levels.

The following sections provide detailed explanations of each model’s
structure, parameter selection, and applicability to this specific problem.

2.1. Bayesian modeling

As will be detailed in Sections 2.2 and 2.3, the statistical models
developed in this work to compute 100-year ocean current states and the
joint probability distribution of extreme wind speeds and ocean current
variables are based on Bayesian methodologies. Bayesian models were
chosen due to their several advantages, such as their capacity to provide
comprehensive uncertainty quantification through posterior distribu-
tions and their ability to handle complex dependencies betweenmultiple
variables.

Bayesian analysis begins by specifying a prior distribution for each
model parameter (π(θ)), which represents our beliefs about the param-
eter values before new observations are considered (Y). These priors can
be uninformative, indicating little prior knowledge, or informative,
incorporating existing knowledge or expert judgment (Reich and Ghosh,
2019). While this work utilizes uninformative priors in the models
presented in Sections 2.2 and 2.3 for simplicity, the use of informative
priors can significantly enhance parameter estimation, especially in
contexts where observations are sparse or subject to high variability, as
often encountered in extreme value analysis.

After defining prior distributions, likelihood functions are defined
(f(Y|θ)), which represents the probability of observing the data (Y)
given a specific set of parameter values. With these two sets of distri-
butions, Bayes’ theorem (1) can be applied to compute the model pos-
terior distribution P(θ|Y), which provides a full probabilistic description
of the model parameters (Reich and Ghosh, 2019). Unlike point esti-
mates produced by Maximum Likelihood Estimation (MLE) models,
Bayesian models yield a posterior distribution that captures the range of
plausible parameter values along with their associated uncertainties.

P(θ|Y) =
f(Y|θ)π(θ)

∫
P(Y|θ)π(θ)dθ

∝f(Y|θ)π(θ) (1)

For most complex models, solving Eq. (1) analytically is highly
challenging and often infeasible. In such cases, Markov Chain Monte
Carlo (MCMC) methods are employed to estimate the posterior distri-
bution by generating a series of random samples (Reich and Ghosh,

2019). This approach allows for an approximation of the posterior dis-
tribution when direct computation is not possible and is the procedure
adopted in this work.

2.2. 100-year recurrence curve- bivariate extreme value analysis

Frequently, mooring systems are designed based on extreme condi-
tions that can occur recurrently every 100 years (DNV, 2015; IEC, 2015).
Particularly for marine hydrokinetic devices, preliminary mechanical
model simulations indicated that the ocean current velocity (St) and
velocity amplitude variations (ΔSt = St+1 − St) are significant in
defining these extreme conditions, as will be shown in Section 4.3.

In general, recurrence curves are constructed by fitting a probability
distribution to a set of observations and finding through this distribution
the set of extreme events that are expected to repeat only every a certain
period of time (e.g., 100 years) (Young et al., 2020; Alves and Young,
2003). The curve that separates this set of extreme 100-year events from
the remaining data is defined as the 100-year recurrence curve.

To induce independence between observations in the data set used in
the probability distribution construction, not allowing for multiple ob-
servations from the same storm, only the peak measurements above a
threshold rule are considered, and a minimum distance of 48 h between
extreme events is enforced, similar to Young et al. (2020), Caires and
Sterl (2004). An extreme event is considered to begin when the
threshold is violated upwards and to end when it is violated downwards.
However, if amid two events, the time distance between a downward
threshold violation and an upward violation is smaller than 48 h, the
corresponding observation is considered as a single extreme event.

The threshold rule adopted for the models in this section is defined
for both the ocean current velocity (St) and velocity variation (ΔSt). Any
measurement pair (St , ΔSt) such that St + ΔSt is above the 90th
percentile is considered to be above the threshold. Furthermore, the
peak measurements are also defined through the summation of St and
ΔSt.

After defining the set of extreme conditions, two Bayesian models are
formulated to explain the existing data. Model I estimates the joint
probability distribution of S and ΔS (a single extreme event), and Model
II estimates the probability distribution of the number of extreme events
in a given time interval.

Model I assumes the ocean current velocity and velocity variations
follow a multivariate normal distribution (Eq. (2)), where the mean
ocean current speed (μs) and speed variation (μΔs) depends on the
measurement depth (D), and the variance-covariance matrix (Σ) is
represented through Eqs. (5)–(8), which ensure that Σ is positive semi-
definite and uninformative (Huang and Wand, 2013). Furthermore, in
Eqs. (2)–(9), ρ is the correlation between S and ΔS, a is a constant set to
0.01 to enforce uninformative priors (Reich and Ghosh, 2019), and β are
parameters of the model, where β1,s associates the mean ocean current
speed with the measurement depth and β1,Δs associates the speed vari-
ation with the depth.

Model I: Joint Probability Distribution (S,ΔS)

(S,ΔS) ∼ Normal(μ,Σ) (2)

μs = β0,s + β1,sD (3)

μΔs = β0,Δs + β1,ΔsD (4)

̅̅̅̅̅̅̅
Σ11

√
∼ Gamma(a, a) (5)

̅̅̅̅̅̅̅
Σ22

√
∼ Gamma(a, a) (6)

Σ12 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σ11Σ22

√
× ρ (7)

ρ ∼ Uniform(− 1,1) (8)
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β ∼ Normal(0,1 / a) (9)

Model II assumes that the number of extreme events (Y) occurring in
a given time interval (ΔT) follows a Poisson distribution as in (10–12),
where λ is the expected number of events per unit of time. This is a well-
known class of Bayesian models (Reich and Ghosh, 2019), and the
conditional probability distribution of λ given the data is shown in (11).
As in Eqs. (2)–(9), a is set equal to 0.01.

Model II: Probability Distribution of the Number of Extreme
Events

Y ∼ Poisson(λΔT) (10)

λ ∼ Gamma(a, a) (11)

λ|Y ∼ Gamma(a+Y, a+ΔT) (12)

Finally, Models I and II are integrated as in Algorithm 1 to determine
the 100-year recurrence curve. In this algorithm, we chose N to be the
number of iterations necessary for the convergency of the Markov Chain
Monte Carlo (MCMC) run (Reich and Ghosh, 2019) of Model I.

The procedure mentioned above is a generalization of the single
variable 100-year extreme value analysis (Young et al., 2020; Alves and
Young, 2003). With the data presented in Section 3 and the models
described in this section, Fig. 6 in Chapter 4 (Results) illustrates the
100-year recurrence curve computed in this work.

2.3. Bayesian statistical modeling of hazardous wind speed conditions

In this section, we propose a model for the joint probability distri-
bution of the ocean current velocity and velocity variation, given
extreme wind speed conditions. Model III is mathematically similar to
Model I, with the only difference being the mean ocean current speed
(μs) and speed variation (μΔs) are assumed to depend not only on the

measurement depth (D) but also on the measured wind speed (WS) close
to the water surface.

Model III: Joint Probability Distribution (S,ΔS) Under Extreme
Winds

(S,ΔS) ∼ Normal(μ,Σ) (13)

μs = β0,s + β1,sD+ β2,sWS (14)

μΔs = β0,Δs + β1,ΔsD+ β2,ΔsWS (15)

With β and Σ and priors following Equations (5 − 9) (16)

For this model, since the interest is in evaluating the impact of
extreme wind on ocean current variables, the extreme events are defined
based on the threshold rule (Young et al., 2020; Alves and Young, 2003)
using the 90th percentile of the wind speed measurements and not on
St + ΔSt as in Models I and II.

For each extreme event mapped in the dataset, the maximum wind
speed (WSt1 ) and the (St2 ,ΔSt2 ) pair correspondent to the maximum St2 +
ΔSt2 measurement is assigned to Model III. Notice that in this data
processing, the time (t1) of the critical wind speed condition may be
different from the time (t2) of the critical ocean current condition.

Due to limitations in data availability for high-resolution ocean
current speed data, as will be discussed in Section 3, a linear correlation
model was chosen for analyzing the effects between extreme ocean
currents and wind speed conditions. Nonetheless, with advancements in
data collection and availability, future research should also investigate
possible non-linear effects and identify those with statistical
significance.

2.4. Mooring system modeling

The deployment of offshore floating marine hydrokinetic devices

Algorithm 1
100-year recurrence curve estimation.
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requires the installation of mooring systems. By providing restoring
force, the mooring system keeps the marine hydrokinetic device sta-
tionary, within tolerance, as environmental forces cause it to be dis-
placed from its equilibrium position (Xu et al., 2021). Catenary and taut
moorings are among the most common mooring configurations avail-
able for use by the marine hydrokinetic industry. Catenary mooring
derives its compliance from the change in suspended line weight. In the
case of taut mooring, compliance is mainly from the elastic stretch of the
lines and is related to the stiffness/modulus of the material from which
the mooring line is made (DNV, 2010).

As the focus of this work is on evaluating the mooring of ocean
current devices, the RM4 from Sandia (Neary et al., 2014) was used as a
basis for the system parametrization. The RM4 has four rotors, each with
a 1 MW power rating, yielding a total of 4 MW. The device uses a
buoyancy tank within the wing and five nacelles to keep its position
within the water column.

Fig. 2 shows a diagram of the device (Neary et al., 2014); as can be
seen, the mooring system consists of buoyancy and thrust mooring lines
secured to the seafloor. The thrust mooring line accommodates the
tension from the thrust load produced by the four turbines under various
operational conditions, and the buoyancymooring(s) accommodates the
tension from the buoyancy tank needed to keep the device at an
approximately stationary position within the water column. The clump
weight attached to the thrust mooring line at the seabed serves to render

the forces acting on the drag embedment anchor to be mainly oriented
horizontally, as drag anchors have minimal vertical pullout capacity
(VanZwieten et al., 2014).

For subsea profile, a condition representative of a potential deploy-
ment site in North Carolina is considered with a water depth of 200 m
and the RM4 submerged at 50 m deep (Fig. 3).

Fig. 3 shows the simulated model in ANSYS-AQWA. For the sake of
simplicity, only the buoyancy tank, the mooring lines, and the clump
weight have been modeled. A 4:1 mooring scope is considered, allowing
the mooring system to accommodate the necessary thrust load from the
device without requiring large buoyancy (Neary et al., 2014), and the
buoyancy tank is sized to provide sufficient up-force to keep the taut
mooring line in tension.

The buoyancy tank is modeled as a hollow steel cylinder with a
diameter of 6 m, a wall thickness of 64 mm, and a length of 16 m, at a
depth of 50 m. These geometrical values provide a buoyancy tank dry
mass of 150 mt and a net buoyancy force of 3020 kN after accounting for
the tank’s weight. Additionally, it has a Gyration radius of 2.83 m about
the x-direction and 5 m about the y and z directions.

According to the RM4 specifications (Neary et al., 2014), an extreme
hydrodynamic loading condition based on a 2.4 m/s current velocity
will produce a 1400 kN thrust load on a rotor. This thrust force is
modeled by applying a force vector of the same value on the buoyancy
tank towards the x-direction. The thrust force (Th) on each rotor of the

Fig. 2. RM4 device configuration and dimensions (Neary et al., 2014).

Fig. 3. Schematic model in ANSYS-AQWA.
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simulated ocean current turbine at different current velocities is esti-
mated by Eq. (17), where ρw is the water density, AR is the rotor blades’
swept area, CT is the thrust coefficient, and U is the current velocity
(VanZwieten et al., 2014). Water density is equal to 1025 kg/m3, rotor
diameter is 33 m per the reference model, and CT is assumed to be 0.55.
Considering U equal to 2.4 m/s would yield a thrust load of 1400 kN
(Neary et al., 2014). The thrust force is determined for various current
velocities using Eq. (17).

Th = 0.5ρwCTARU2 = 0.125πρwCTD2U2 (17)

The water current force (Fcs) acting on a cylinder can be estimated
using the following formula (Kuang et al., 2022):

Fcs = 0.5 CdAρwU2 (18)

Where Cd is the drag coefficient of the water flow, which is assumed 1.0
for a cylinder parallel to the flow. A is the projected area of the buoyancy
tank in the direction perpendicular to the incident water current.

A coupled dynamic analysis is used to determine the maximum
tension in the mooring system. In this approach, the complete system of
equations accounting for the rigid body of the device and the slender
body model for the mooring lines are solved simultaneously using a non-
linear time domain approach (DNV, 2010). The dynamic analysis con-
siders the impact of added mass, dampening, fluid acceleration, and the
relative velocity between the mooring system and fluid (Rahayuningsih
et al., 2020).

The design is established according to the Det Norske Veritas (DNV)
Offshore Requirements for Position Moorings (DNV, 2015) since there
are no offshore standards that are specific for ocean current turbines. For
ultimate limit State (ULS) criterion, it is recommended to use partial
safety factors in the case of dynamic analysis. The simulated moored
turbine system is characterized as a Class 1 Consequence Class, in which
possible consequences of a mooring system failure include loss of human
life and significant economic damages. Accordingly, a partial safety
factor (γdyn) of 1.5 for dynamic tension and a partial safety factor (γmean)
equal to 1.1 for mean equilibrium tension are specified. In this case,
acceptable mooring component strength is achieved when (19) is
satisfied (DNV, 2015). In this inequality, CBS is the catalog break
strength of the mooring line, which is multiplied by 0.95 as recom-
mended in DNV (2015), Tmean is the equilibrium tension and Tdyn is the
dynamic tension.

Tmeanγmean + Tdynγdyn ≤ 0.95CBS (19)

2.5. Fragility curve estimate for ocean current devices

Fragility curves relate a specific physical condition with the proba-
bility of damage to the equipment/structure. In this work, for a given
hurricane speed level (WS) and turbine depth (D), different ocean cur-
rent speeds (S) and speed variations (ΔS) may occur. These conditions
are statistically represented by the Bayesian Model III, and from this
model, the conditional probability distribution of the ocean current
variables (S,ΔS | WS, D) can be obtained.

In this context, if the mooring system’s operation limits are defined
(e.g., maximum admissible S and ΔS curve), the probability of damage
to mooring lines and the equipment can be computed as in (20). In other
words, the fragility curves can be determined by varying the wind speed
levels and computing the probability of the system exceeding its oper-
ational limits. This work determined this probability by computing the
ratio of samples from the Bayesian model that fall outside the device’s
limits of operation at a given wind speed. This computation considered
all possible distribution parameters estimated by the Bayesian model
and their respective probabilities.

Uncertainty in the process of computing a device fragility curve
stems from both the device’s structural capacity and the statistical
modeling of extreme events. Different operational limits are often
investigated to help understand how the probability of damage to the
device is affected, as will be demonstrated in Section 4. However, recent
research by Ceferino et al. (2023), Kakareko et al. (2021) highlights the
use of Bayesian frameworks to account for uncertainties in extreme
event statistics. These studies use the Bayesian model to provide
different parameters for the extreme value distribution and compute
fragility curves for each individual parametrization, thereby providing
insights into the uncertainty of the estimated fragility curves. Although
this approach is not utilized in this work, it is recommended as a po-
tential direction for future research.

1 − P((S,ΔS) ∈ Limit of Operation| WS, D)) (20)

3. Case study

As a case study, we focus on a portion of the US east coast repre-
senting the state of North Carolina, where previous literature has
investigated the Gulf Stream as an alternative renewable energy source
to power hydrokinetic devices (Faria et al., 2022; Li et al., 2017).

ADCP measurements of ocean current velocity were obtained with
the ECU Coastal Studies Institute (Haines et al., 2022) in 10 min time

Fig. 4. ADCP and NDBC station together with the spatial distribution of the ocean current resource at 50 m Depth (HYCOM 1994–2021).
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discretization at 34.56∘ N latitude and 75.67∘ W longitude from April
2017 to November 2018, accounting for approximately 580 days worth
of data or 84,000 10 min observations.

Although the ADCP measurements were available for horizontal and
vertical current velocities, for simplicity, only horizontal velocities were
used in this work, and in the definition of velocity variation during
consecutive periods, changes in direction were not considered; ΔSt is
assumed to be the difference in velocity amplitude between betten t +1
and t (ΔSt = St+1 − St). This work also assumes that the horizontal

current direction is perpendicular to the ocean current device and
mooring system, as shown in Fig. 3.

For wind speed, data were obtained from the National Data Buoy
Center (NDBC) (NOAA, 2023) at 10 min resolution and 34.21∘ N
longitude 75.70∘ W latitude, which corresponds to the NDBC anemom-
eter closest to the ADCP covering the period of 2017 to 2018.

Fig. 4 shows the location of the ADCP device and NDBC station used
in this study, together with the average Gulf Stream velocity estimates
from 1994 to 2021 at 50 m depth using the HYCOM (2023) model. The
Hybrid Coordinate Ocean Model (HYCOM) is an ocean circulation
model developed as a multi-institutional effort sponsored by the Na-
tional Oceanographic Partnership Program and has been used in many
studies for the assessment of hydrokinetic resources (Halliwell, 2004;
Kabir et al., 2015; Faria et al., 2023).

As previously mentioned in Section 2.4, the Reference Model 4 from
SANDIA (Neary et al., 2014) is proposed for operation at 50[m] depth.
Accordingly, all the statistical analyses described in Sections 2.2 and 2.3
considered only data from 40 to 60 m depth such that the relationship
between the ocean variables (S,ΔS) and the depth (D) could be
approximated as quasilinear.

Regarding the ADCP data, it is important to mention that turbulence

Fig. 5. Ocean and wind condition during hurricane Florence. (a) Ocean current speed at 50[m] (b) Ocean current speed at 60[m] depth; (c) Ocean current speed
variation at 60[m] depth; (d) Wind speed.

Fig. 6. 100-year recurrence curve: worst events every 100 years.

Table 1
Mean and quantiles (Confidence interval) for Model I and Model II (Conditioned
on the normalized input data).

Parameter Σ11 Σ22 ρ β0,s

Median 1.012 1.011 − 0.267 0.001
2.5 % Quantile 0.820 0.816 − 0.547 − 0.155
97.5 % Quantile 1.271 1.270 − 0.098 0.155
Parameter β1,s β0,Δs β1,Δs λ
Median − 0.047 − 0.001 − 0.060 0.044
2.5 % Quantile − 0.200 − 0.153 − 0.208 0.029
97.5 % Quantile 0.105 0.155 0.094 0.064
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close to the air-sea interface can influence the ADCP measurements,
leading to the loss of the ADCP return signal. Therefore, evaluating data
across a range of depths (e.g., 40 m to 60 m) while applying the statis-
tical analyses can help to compensate for the eventual missing data,
strengthening the statistical model.

Fig. 5 shows the ocean current speed at 50 m (Fig 5a) and 60 m (Fig
5b) depth, the ocean current speed variation at 60 m depth (Fig 5c), and
the wind speed (Fig 5d) during Hurricane Florence, a category four
hurricane that hit the NC coast in September of 2018 (Stewart and Berg,
2019). From this figure, it is observed that a significant segment of data
is missing at 50 m depth; and that at 60 m, the same time segment
contains few missing measurements, justifying the need for using mul-
tiple depth measurements in the statistical analysis. Also, from Fig. 5c
and d, it is possible to notice that the increase in ocean current speed
variation coincides with the increase in wind speed.

Finally, even though ocean current speed data can be obtained from
models such as HYCOM andMABSAB (HYCOM, 2023; Gong et al., 2015)
at high spatial resolution covering large geographic areas, data at
sub-hourly time discretization capable of capturing the anomalies that
may occur during extreme weather events is not easily available. As a
result, this study relies solely on ADCP measurements. However, ADCP
data is often constrained due to several factors: the high cost of equip-
ment and deployment, the logistical challenges of maintaining in-
struments in remote and harsh ocean environments, and the relatively
sparse distribution of long-term measurement stations. The authors
acknowledge the importance of expanding the dataset, both in terms of
time period and geographic coverage, to improve the accuracy and
reliability of future analyses.

4. Results

4.1. Fragility curve estimate for ocean current devices

Fig. 6 shows the 100-year recurrence curve for the site location
investigated. This curve is generated following the procedure detailed in
Section 2.2, where Model I is implemented using JAGS (Just Another
Gibbs Sampler) (Depaoli et al., 2016) in R Programming Language. A
Markov Chain Monte Carlo (MCMC) model (Reich and Ghosh, 2019) is
used to sample the probability distribution of Model I (Bayesian Infer-
ence), with 106 iterations, thinning of one, two chains, and a burn-in of
104, which ensured that only samples from the equilibrium distribution

Table 2
Mean and quantiles (Confidence interval) for Model III (Conditioned on the normalized input data).

Table 3
Mooring system parameters.

Parameters Steel chain Polyester fiber rope

Mass per unit length [kg /m] 750 54
Equivalent cross-section area [m2] 0.0955 0.0388
Diameter [mm] 200 280
Stiffness, EA [MN] 3600 392
CBS [kN] 30,688 23,000
Section length [m] 200 410

Fig. 7. Thrust mooring line tension versus time in different scenarios.
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were saved for later use. Furthermore, all model parameters converged
with a Gelman-Rubin (Gelman and Rubin, 1992) statistic of 1.0. For
more details regarding the confidence intervals of the parameters of
each model, refer to Table 1.

From Fig. 6, we select three extreme ocean current conditions (I, II,
and III) expected to repeat every 100 years and use these events in the
mooring system modeling (Section 2.4).

4.2. Model III: probability distribution of current velocity and velocity
variation under extreme winds

Similar to Model I, Model III was simulated in JAGS (Depaoli et al.,
2016), with 106 iterations, thinning of one, two chains, and a burn-in of
104, converging with a Gelman-Rubin (Gelman and Rubin, 1992) sta-
tistic of 1.0 for all parameters.

Table 2 shows the confidence intervals for all parameters of Model
III. From these results, we can notice a strong relationship between the
wind speed condition and the ocean current velocity variation (β2,Δs). It

is important to mention that other works have documented similar be-
haviors during hurricane events (Todd et al., 2017; Ezer, 2018; Oey
et al., 2006).

Regarding the other parameters of Table 2, no particular relationship
can be immediately drawn. However, as the Bayesian modeling provides
a probabilistic representation of each parameter of Model III, it also
statistically limits the range of values that the parameters can assume,
improving the representation of the probability density function of
(S,ΔS) during extreme wind events.

4.3. Mechanical moorings model simulations

This section determines the minimummooring line diameter that can
withstand extreme ocean conditions over a 100-year period, following
DNV code recommendations (DNV, 2015). Many combinations of line
type, line size, location, and size of clump weights can be used to achieve
a given target limit state. To minimize the number of variables in the
analyses, the mooring scope, clump weight, buoyancy mooring line

Fig. 8. Thrust Mooring line tension versus time in different scenarios.

Fig. 9. (S, ΔS) operational limits of the system.
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properties, and steel chain section of the thrust mooring line are kept
constant (Table 3). By adopting the same mooring line length in each
system, the magnitude of the pre-tension would change. Pre-tension is
defined as the component’s tension when no environmental loads are
acting on the unit or the mooring lines (Sauder and Tahchiev, 2020).
Mooring line pre-tensions of about 10 % and 20 % of CBS are considered
for steel chain and polyester mooring lines, respectively.

A worst-case scenario, leading to the highest mooring line tension, is
considered to arise from a combination of the current velocity and the
current velocity increment. Three different cases are considered, as
shown in Fig. 6. The time domain responses of the thrust mooring line
with a length of 610 m (including 200 m of steel chain with D= 200 mm
and 410 m of polyester rope with D = 280 mm) are shown in Fig. 7 for
the three cases studied. The device is in equilibrium with the initial
current velocity for the first 2 min, and then, the current velocity is
increased instantaneously. Initially, the device experiences higher mo-
tions with inertia, leading to dynamic amplification and higher tension
in the thrust mooring line. Then, the tension in the mooring line reaches
an equilibrium state. The final current velocities in cases 2 and 3 are
almost the same, so the equilibrium tension is the same in both cases, as
shown in Fig. 7. However, the dynamic tension is 80 % higher in case 2
than in case 3. In other words, as the current velocity increment in-
creases, higher dynamic tension in the thrust mooring line is obtained.
Moreover, the maximum tension in case 1 is approximately 3 % lower
than in case 2; accordingly, a current velocity of 1.96 m/s with an
increment of 0.46 m/s (case 1) would cause a higher dynamic tension
compared to a current velocity of 2.44 with an increment of 0.36 m/s
(case 2).

An important aspect while considering variations in the current ve-
locity and their influence on the mooring system response is the time
interval at which these speed changes occur. Since the ADCP measure-
ments are taken every 10 min, it is not clear how long it takes in each
case to ramp to the final velocity. To investigate this condition, the
current speed is increased through 5 steps in a total of 4 min. As can be
seen in Fig. 8, the final maximum mooring line tension in all three cases
is lower than the values shown in Fig. 7, where the current speed
increment is applied instantaneously. However, in the absence of
knowing the ramping time, the use of an instantaneous velocity incre-
ment is more conservative as it leads to the highest expected dynamic
effect.

Finally, for the modeling approaches presented in Figs. 7 and 8, and
considering the three different cases explored in each figure, case 2, with
a final current velocity of 2.78 m/s, is the worst case. Also, by applying
partial safety factors to the dynamic and mean components of the
mooring line tension in case 2 (Eq. (19)), it is concluded that the

mooring line with the adopted parameters can withstand the 100-year
extreme ocean current conditions. Lastly, Fig. 9 shows the 100-year
recurrence curve, and the (S, ΔS) operational limits of the mooring
line design described in Table 3, while adopting the modeling consid-
erations of Fig. 7.

4.4. Fragility curve estimate

As discussed in Section 2.5, fragility curves represent the probability
of a system exceeding its maximum operational limits. For the mooring
system examined in this study, Fig. 9 highlights several potential theo-
retical limits worth investigating.

Assuming no dynamic tension component, the maximum operating
limit of 2.81 m/s (black line in Fig. 9) corresponds to the 100-year
extreme current velocity. Conversely, if dynamic tension (including
ocean current speed and variations) is considered, the 100-year recur-
rence curve can be approximated by the blue lines in Fig. 9. These two
curves do not account for safety factors and are based solely on ocean
current statistics without incorporating mooring system simulations.
Section 2.4 discusses a standard for mooring system design (DNV, 2015),
emphasizing the need for incorporating safety factors and conducting
mechanical model simulations. Drawing on these standards, Section 4.3
defines a mooring design for the RM4 ocean current turbine, with its
operational limits presented in red in Fig. 9.

In addition to determining the operational limits, this study also
establishes the probability distribution of ocean current variables under
extreme wind speed conditions (Section 4.2). Utilizing these operational
limits and ocean current statistics, the probability of the equipment
operating outside its specified range at a given wind speed can be
computed as described in Section 2.5, thereby allowing for the deter-
mination of the mooring system fragility curves.

Fig. 10 shows the fragility curves estimated under different limits of
operation. The solid blue line shows the fragility curve of the mooring
system while considering the 100-year recurrence curve (Fig. 6) as the
limit of operation, and the red dotted curve shows the fragility curve
estimated after the mooring design specification, which creates extra
capacity in the system as seen in Fig. 9. In both these cases, the dynamic
component of the mooring system is considered not negligible, as in
Section 4.3. Lastly, the black dashed line shows the fragility curve of the
system if the dynamic component of the mooring line can be neglected.
In this case, the maximum current speed expected to repeat every 100-
year is 2.81 m/s, which is assumed as the limit of operation of the sys-
tem. Since only wind speed measurements up to 40 m/s (90mph) are
available in the dataset investigated, the fragility curve definition is
limited based on this speed.

Fig. 10. Fragility curve of the ocean current device mooring system, considering different maximum operating limits.
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From Fig. 10, it is observed that if the transient effect of the speed
variation is neglected (black line), the probability of exceeding the
system specification at high wind speeds (WS) is 2 to 3 % at 40 m/s, and
that it increases slowly with WS since the correlation between WS and
ocean current speed (S) is not as evident as the correlation betweenWS
and current speed variation (ΔS).

For the simulations that considered the transient effect related to the
speed variation, the probability of exceeding the maximum system
specification increases faster with WS as the strong positive correlation
between ΔS andWS (β2,Δs in Table 2) increases the probability of events
with larger ΔS values.

Finally, although the mooring system specification performed in
Section 4.3 results in a design capable of enduring significantly more
severe events than those estimated for the 100-year curve under low ΔS
values (see Fig. 9 for S>2.78 m/s), few samples exist in this interval, as
indirectly evidentiated by the black dashed line results in Fig. 10. This
led to a small difference between using the 100-year curve and the limits
of operation computed by the mechanical model simulation.

5. Conclusion

As offshore energy deployments increase in frequency and scale,
understanding associated risks becomes crucial. While fragility curves
exist for renewables like solar and wind energy, marine hydrokinetic
devices lack such analyses, limiting our insight into their vulnerability.
To address this gap, this study introduced a Bayesian modeling frame-
work and mechanical model simulation to construct fragility curves,
specifically for the mooring systems of marine hydrokinetic devices,
associating the probability of equipment damage to extreme wind speed
conditions (e.g., hurricanes).

The methodology proposed here is tested using acoustic current
profile measurements from a site located off the North Carolina coast,
and the RM4 ocean current device from Sandia. For this specific site, the
Bayesian statistical analysis indicated a significant correlation between
extreme wind speeds (e.g., due to hurricanes) and increases in current
speed variation. Finally, mechanical model simulations were performed
to determine the impact of this dynamic effect on the mooring line
operation, and fragility curves that associate different wind speed con-
ditions with the probability of equipment damage were constructed
considering different modeling assumptions.

Our results demonstrate a strong statistical relationship between
ocean current velocity variation and wind speed, highlighting the
increased risk posed by hurricane events to ocean current turbine
mooring systems. For instance, at 40m/s wind speeds, there’s a 12–14%
probability of equipment surpassing design specifications when
considering dynamic ocean current variation, compared to 2-3 % if the
dynamic effect is ignored.

The lack of well-established standards for designing and analyzing
ocean current devices due to their early developmental stage un-
derscores the significance of this research, as it lays the groundwork for
consolidating knowledge and potentially establishing formal mooring
system standards for these devices in the future. As such, future works
should expand the analysis presented here, investigating the influence of
extreme weather events on other components of marine energy devices.
Particularly, for the mooring system of hydrokinetic devices, the
methodology presented here should be explored while considering other
site locations in an attempt to create a generalized fragility curve (not
site-specific). Moreover, further investigation into the dynamic effects
induced on mooring lines by ocean velocity variations is crucial. This
study provided initial bounds of its impact, but a more comprehensive
analysis accounting for the effects of direction changes on current ve-
locity remains an important avenue for future research.
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