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A B S T R A C T

The use of hybrid power generation systems is an attractive alternative to conventional fossil fuel generation
since they may assist in mitigating the emission of gases that are harmful to the atmosphere when using clean
and renewable sources of energy. However, finding the ideal configuration for the installation of a hybrid system
composed of solar photovoltaic (PV)-diesel generation is a complex task. In this sense, the objective of this study
is to develop an approach to select the optimal configuration of hybrid power generation systems for isolated
regions by means of combining the techniques of Mixing Design of Experiments, Normal Boundary Intersection
and analysis of super efficiency using Data Envelopment Analysis. The proposed approach is applied to a set of
four isolated regions in the northern region of Brazil, more specifically in the state of Amazonas. The results
show that for each region a different configuration is selected but with large shares of diesel generation at first.
On the other hand, all these cases represent points in the Pareto frontier that are the most inefficient due to the
high volume of CO2 emissions. From the application of the proposed approach, significant CO2 emission re-
ductions are obtained by selecting the optimal configurations represented as the most efficient points in the
Pareto frontier. Our results show that due to conflicting characteristics of the selected objectives, the installation
of such hybrid power generation systems produces an increase in LCOE, mainly related to the high costs of the
batteries, although less accentuated than the reductions in emissions.

1. Introduction

In isolated regions, where there is no access to interconnected
power systems, the service to provide and ensure a reliable electricity
supply while satisfying the load at all times is a critical task for system
operators and planners (Roy and Kulkarni, 2016). According to
Mohammed et al. (2015), the integration of renewable energy re-
sources, especially in remote areas where the network connection is not
available, has been widely used all over the world due to economic and
technical aspects. In addition, as highlighted by Rezzouk and Mellit
(2015), Renewable Energy Sources (RESs) are considered a good al-
ternative to fossil fuels since they assist in mitigating the emission of
gases that are harmful to the atmosphere as they use clean and regularly
regenerative energy (sun, wind, water, etc.). In this context, several
RES-related projects have been developed in the last two decades

(Yahiaoui et al., 2016).
Regarding isolated regions, hybrid systems, which combine more

than one generation source, have often been an attractive alternative to
the supply of electricity. A hybrid system can be formed by two or more
sources, either renewable or conventional forms of generation.
Mohammed et al. (2015) highlight the use of solar photovoltaic (PV)
systems with a diesel generator in hybrid power generation system to
supply demand in isolated areas. According to Kaabeche and Ibtiouen
(2014), the use of renewable energy systems based on solar energy has
been showing high growth rates in recent years. According to Silveira
et al. (2013), the use of solar PV generation has gradually presented
itself as an important alternative because it is economically feasible,
environmentally accepted and well adapted to isolated areas, where the
installation costs of conventional systems are relatively high.

Trepani and Millar (2016) report that because of the variability and
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intermittence of the electricity generated from solar PV systems, these
will probably not replace a definitive diesel generator set in isolated
systems without the aid of energy storage systems. However, the solar
PV system will have to operate in parallel with diesel engines and po-
tentially with other plants that can store electricity, forming the so-
called hybrid systems. It is worth emphasizing, that it is important to
guarantee the diversity of hybrid PV-diesel systems, since such con-
figuration implies in greater reliability, robustness and supply quality.

Nevertheless, finding the ideal configuration for the installation of
PV-diesel hybrid systems is a complex task, since the use of diesel
generators, which is a less costly decision nowadays for remote areas,
implies increasing pollutant emissions. According to Bernal-Agustín
et al. (2006), considering cost and emission minimization in this type of
system is a conflicting problem, since cost reduction implies an increase
in pollutant emissions and vice versa. This fact is due to the char-
acteristics of the decision variables associated with the hybrid system
(share of production from diesel generators and from solar PV systems).

Several studies in the literature present the use of optimization
techniques applied to create designs of hybrid systems (Kaabeche and
Ibtiouen, 2014). Due to often conflicting goals, some studies have been
employing multi-objective optimization methods to verify the best
configuration of hybrid systems by analyzing different trade-offs be-
tween objectives. We can highlight the work of Bernal-Agustín et al.
(2006), Dufo-López et al. (2011), Izadbakhsh et al. (2015), Gitizadeh
et al. (2013), which use multi-objective programming in the context
addressed. Bernal-Agustín et al. (2006) apply a Pareto Evolutionary
Algorithm (SPEA) for the multi-objective optimization of an isolated
PV-wind-diesel system in which the objectives to be minimized are the

total cost and the CO2 emissions. Like Bernal-Agustín et al. (2006),
Dufo-López et al. (2011) describe an application of SPEA to perform
multi-objective optimization of an autonomous PV-wind-diesel system
with storage using batteries. Nevertheless, in this case, the objectives to
be minimized are the levelized cost of electricity (LCOE) and the
equivalent life-cycle emissions of carbon dioxide (LCE).

Among the several multi-objective optimization methods that are
able to construct the Pareto frontier, the Normal Boundary Intersection
method (NBI), developed by Das and Dennis (1998), is one of the most
promising methods available in the literature (Naves et al., 2017).
Izadbakhsh et al. (2015) analyze the scheduling of energy sources in a
microgrid consisting of micro-turbines, solar PV panels, fuel cells,
battery storage and wind turbines. The authors use multi-objective
optimization with the NBI method to simultaneously deal with mini-
mization of total operational costs and gas emissions minimization. The
main objective is to enable the system operator to adopt the most de-
sired operating strategy considering economic and environmental
strategies. Through the technique Modified Normal Boundary Inter-
section (MNBI), Gitizadeh et al. (2013) solve a problem of Generation
Expansion Planning considering three objectives (maximization of
economic returns, minimization of CO2 emissions and minimization of
the risk related fuel consumption due to the use of non-renewable en-
ergy sources). To our knowledge, there is a gap in the literature to
explore a combined approach using Mixture Design of Experiments
(MDOE) (Montgomery, 2013), NBI and super-efficiency Data envelop-
ment analysis (super-efficiency DEA) (Andersen and Petersen, 1993;
Charnes et al., 1978) to support and enhance decision-making in multi-
objective programming problems.

Nomenclature

Ct total energy consumed
D the fraction of debt in the investment
E the fraction of equity in the investment
Et total energy produced
E(x) response variable function
f x( )i objective function
f x( ) normalized value of the objective function
FU utopia points
FN nadir points
g(x) inequality constraints
h(x) equality constraints
h number of decision variables
Kd the cost of debt
Ke the cost of equity
m polynomial degree
m number of objective functions
n number of DMU’s
N number of points of a simplex lattice
q number of technology of energy generation
rf the risk-free rate
rc the credit risk premium
rb the country risk premium
r number of DEA inputs
s number of DEA outputs
S x( ) entropy function
t the income tax
uj decision variable (multiplier of the output Y)
vi decision variable (multiplier of the input X)
w vector of weights of each objective function
xi fraction of each technology of the system total generation

capacity
X DEA input
Y Response Variable Function

Y DEA output
β leveraged beta

∗βi contribution of each component in the response variable
θk efficiency of DMU k
∅ payoff matrix
δij the effect of the combination of components i and j

Abbreviations

ANEEL Brazilian Electricity Regulatory Agency
BCC Banker, Charnes e Cooper
CAPEX Capital Expenditure (Investments)
CCR Charnes, Cooper e Rhodes
DEA Data Envelopment Analysis
DMU Decision Making Unit
DOE Design of Experiments
EPE Brazilian Energy Planning Company
EPG Global Percentage Error
GRG Generalized Reduced Gradient
LCE Equivalent Carbon Dioxide Life Cycle Emissions
LCOE Levelized Cost of Electricity
MCS Monte Carlo Simulation
MDOE Mixture Design of Experiments
MME Ministry of Mines and Energy
MNBI Modified Normal Boundary Intersection
NBI Normal Boundary Intersection
OPEX Operational Expenditure
PV Photovoltaic
RES Renewable Energy Source
SPEA The Strength Pareto Evolutionary Algorithm
TOPSIS Technique for Order Performance by Similarity to Ideal

Solution
TOTEX Total Expenditure
VRS Variable Returns of Scale
WACC Weighted Average Cost of Capital
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In this context, the objective of this study is to develop an approach
to select the optimal configuration of hybrid power generation systems
for isolated regions by means of integrating MDOE, multi-objective
programming via NBI and supper-efficiency DEA in a single decision-
making framework. The main contribution of this work is to present
and use this structured framework to define the optimal configuration
of the power generation system considering the LCOE and greenhouse
gas emissions as target metrics. Firstly, the MDOE technique is em-
ployed to estimate the model of objective functions. The NBI approach
is used to establish the optimal Pareto frontier considering different
power generation system configurations. Then, the super-efficiency
DEA method is employed in the decision-making process, considering
the diversity of hybrid systems by using entropy as a DEA product.
Finally, the approach is applied to analyze a set of 4 isolated regions in
Brazil located in the state of Amazonas.

The remainder of this article is organized as follows: Section 2
presents the mathematical tools used in this article to comply with the
proposed method. Section 3 presents the proposed method for optimal
configuration of a hybrid system as well as the “problem variables”.
Section 4 then presents the case study and the results with detailed
discussion. Finally, some relevant conclusions are drawn in Section 5.

2. Project of experiments and mathematical optimization

As discussed by Gomes (2013), in order to promote the optimization
of various processes, the analyst must follow a sequence of steps for
mathematical formulation and problem analysis, consisting of the de-
finition of decision variables, structural constraints and limits, objective
functions, allocation of weights for the objective functions and identi-
fication of the optimal solutions and the analysis of the results. In this
context, the objective of this Section is to present the mathematical
tools used in this work to fulfill the aforementioned steps.

2.1. Design and analysis of experiments

The design of experiments (DOE) is a form of experimental design
that uses statistical methods to plan and execute experiments
(Montgomery, 2013 and Box et al., 1978). According to Solvason et al.
(2009), for a model to represent the response surface, the experimental
design points are placed in areas where observations can be collected
and the model can be assembled. For Montgomery (2013) and Myers
and Montgomery (2002), with respect to experimental projects, the
most used techniques are the complete factorial planning, fractional
factorial planning, the Taguchi arrangements, the response surface
methodology and the mixing experiments.

In the present study, it is desired to find the optimal configuration of
a hybrid system from a multi-objective formulation. That is, we seek to
find the ideal quantity of each component that will compose this
system. In this way, the use of the MDOE is indicated, since this type of
design input variables are components of a mixture and the responses
are functions of the proportions of each component (Coronado et al.,
2015). Thus, for a problem involving q components, the sum of the
fractions of each component y( )i is equal to one, as shown in (1).

∑ = ⩾ = …
=

x x i q1, 0 ( 1, , )
i i

q

i i
(1)

Thus, the feasible region of the two-component mixture is represented
by a straight segment shown in Fig. 1.

The vertices of this convex region represent the pure mixture, the
points within the region are mixtures in which none of the components
is absent and the centroid (point in the center of the simplex) is the
mixture with equal proportions of each component (Oliveira, 2009).
From these characteristics, it becomes necessary to plan and conduct
the mixing experiments through specific arrangements and, in this case,
simplex arrangements have been the most used (Cornell, 2002).

According to Montgomery (2013), simplex lattice design is used to
study the effects of the mixture components in the response variable. A
m-degree polynomial for a mixture of components, denoted by q m{ , },
consists of points defined by the following proportions:

= … = …x
m m

i q0, 1 , 2 , ,1 1,2, ,i (2)

For example, if the number of mixture components (q) is equal to 2 and
the polynomial degree (m) is equal to 5, then:
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5
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5

,1 1,2i (3)

Thus, the {2, 5} simplex lattice consists of six points in the boundary, as
presented in 4.
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In (4) it is possible to observe that the first two components are pure
mixtures (triangle vertex) and the other components are binary mix-
tures

In general, the number of points of a simplex lattice is given by:

=
+ −

−
N

q m
m q

( 1)!
! ( 1)! (5)

However, Montgomery (2013) notes that simplex lattice arrangements
are border point projects. Thus, if the analyst wants to make predictions
about the properties of complete mixtures, it would be highly desirable
to have more experiments inside the simplex. In this case, it is re-
commended to add the axial points and the center point (if the centroid
is not already a design point) to the simplex lattice. For example,
Montgomery (2013) recommends that the axial point should be be-
tween the central point and the vertex, that is, = −q q( 1)/2 . Thus, con-
sidering the previous example {2, 5} simplex lattice, adding the axial
points and the centroid would result in the following form:
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(6)

where, the seventh and the eighth points are the axial points and the
last point is the centroid.

As for the mathematical models used to represent the answers, ac-
cording to Oliveira (2009) from this technique it is possible to establish
a relation between the response variables and the relative proportion of
components in terms of a mathematical equation, usually a polynomial
model, which provides the identification of the influence associated
with each component proportion and its combination with other com-
ponents in the response variable. Generally, the polynomial can be
linear, quadratic or cubic, however, in (7) the formulation is presented
for a complete cubic model.

Fig. 1. Restricted factor space for blends with 2 components.
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The coefficient ∗βi represents how much each component contributes to
the response variable (f (x)). The terms ∗βij and δij indicate the effect of
the combination of components i and j. According to Cornell (2002),
the algorithm Ordinary Least Square can be used to find these coeffi-
cients.

2.2. Normal Boundary Intersection

Given the approximate functions resulting from the experiments
performed with the MDOE, the optimization model can be formulated
as (8).

= …
∊ ⩽ =

F x f x f x
x R g x h x

min ( ) ( ( ), , ( ))
s.t. : { | ( ) 0, ( ) 0}

i m
T

(8)

In (8), f x( )i represents the objective function to be minimized (these
objective functions correspond to the response variable measured using
the MDOE) and m corresponds to the index representing the last ob-
jective function of the set, i = 1, 2,… , m; g(x) are inequality con-
straints and h(x) are equality constraints related to each problem in-
stance to be analyzed. According to Ahmadi et al. (2015) and
Izadbakhsh et al. (2015), for the NBI method, the payoff matrix (∅) has
to be generated first. In general, each objective function must be
minimized to develop the payoff matrix with m competing objective
functions. The solution that minimizes the objective function f x( )i ,
denoted ∗xi , indicates the minimum value of the function represented by

∗ ∗f x( )i i . The values associated with other evaluated objective functions
are indicated as ∗f x( )i1 ,… , −

∗f x( )i i1 , +
∗f x( )i i1 ,… , ∗f x( )m i . Thus, the i-th

column of the payoff matrix is written as follows:

… …
∊ ⩽ =

∗
−

∗
+

∗ ∗f x f x f x f x
x R g x h x

[ ( ), , ( ), ( ), , ( )]
s.t. { | ( ) 0, ( ) 0}

i i i i i m i
T

1 1 1

(9)

where ∗xi is the optimal value that minimizes fi.
Thus, all columns of the payoff matrix are calculated and re-

presented as follows:
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m
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From this matrix, it is possible to highlight two specific points, the
utopia point and the nadir point. According to Naves et al. (2017), the
utopia point corresponds to all the best possible values of the objective
functions. In contrast, according to the aforementioned authors, the
nadir point corresponds to all of the worst possible values associated
with the objective functions. Thus, one can represent the utopia and
nadir points as:

= … …∗ ∗ ∗ ∗ ∗ ∗x f xF [f ( ), ,f (x ), , ( )]m m
U

1 1 i i
T (11)

= … …F f f f[ , , , , ]N N
i
N

m
N T

1 (12)

Given, FU defined as the utopia points and FN defined as the nadir
points,

=
∊ ⩽ =

f f x
x R g x h x
max ( ).

s.t. : { | ( ) 0, ( ) 0}
i
N

i

(13)

The points defined by (12) refer to the pseudo nadir points, since in (13)
it is used to define f N . The pseudo nadir point is defined as the vector
that contains the worst values of each objective function. Despite this,

in order to obtain a fairly representative set of Pareto solutions, in si-
tuations where the objective functions have different magnitudes or
physical meanings, the objectives must first be normalized. To calculate
the normalized value of the objective function ( f x( )), we use the utopia
points and the pseudo nadir points, defined by (11) and (12).
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−
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f x f
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i
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From the normalized values, the normalized payoff matrix (∅), pre-
sented by (15), is developed.
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Thus, in possession of the vector f x( ) in association with the vector of
weights w, a classic NBI formulation of two objectives can be described
as follows (COSTA et al., 2016).

− + − =
⩾ ∀

⩽ ⩽

f
f x f x w

g x j
w

min
s.t. ( ) ( ) 2 1 0

( ) 0 ,
0 1

j

1

1 2

(16)

f xwhere ( )1 and f x( )2 are used to define the constraint set for the ex-
perimental regions. In the present study, the objective functions con-
sider the LCOE and CO2 emissions, g x( )j and 0≤w≤ 1 are the con-
straint sets for the experimental region and the cuboidal region,
respectively. Thus, the optimization problem is solved for different
weight values (w) and the Pareto frontier is developed.

According to Ahmadi et al. (2015), the next step after finding Pareto
optimal solutions is to find the best frontier solution, i.e., it is necessary
to choose among the possible efficient solutions (from the Pareto
frontier) the one that has the best performance considering the selected
metrics. From a decision maker’s point of view, the choice of a solution
among the Pareto frontier optimal solutions is called a posteriori
method and the use of a mathematical technique is necessary. Several
tools are used for this purpose in the literature, with emphasis to the
Technique for Order Performance by Similarity to Ideal Solution
(TOPSIS) can be highlighted in Ahmadi et al. (2015), the fuzzy method
presented by Izadbakhsh et al. (2015), the Percentage Error Global
(EPG) and the entropy applied by Rocha et al. (2015a,b). In this paper,
the super-efficiency DEA method is proposed as the method responsible
for choosing the optimal solution after the Pareto frontier is established.

2.3. Super-efficiency data envelopment analysis

DEA corresponds to a nonparametric technique that allows one to
evaluate the relative efficiency between decision making units (DMU’s)
that perform the same operations and, therefore, use multiple similar
inputs to generate multiple similar products (Banker et al., 2011).

Based on the concepts of productivity and efficiency present in
Farrell (1957), the initial DEA model was originally developed by
Charnes et al. (1978). In relation to the existing models, two are con-
sidered classic: the Constant Returns of Scale (CCR), originally pre-
sented by Charnes et al. (1978) and the Variable Scale Returns (BCC),
proposed by Banker et al. (1984). The latter model is also known as
Variable Returns to Scale (VRS). Both the CCR model and the BCC
model can be input or output oriented. Basically, in the input-oriented
model, the objective is to change the inputs in order to achieve max-
imum productivity, keeping the observed product constant. Already in
the product-oriented model is based on a vertical projection in the ef-
ficient frontier, in order to achieve maximum productivity from the
alteration of products, while preserving the inputs unchanged.
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However, the models presented show a limitation that is evident
when the objective is to rank the most efficient productive units, since it
is possible that more than one DMU present similar efficiency levels,
making it impossible to determine the most efficient DMU (Xue and
Harker, 2002). In order to circumvent this limitation Andersen and
Petersen (1993) developed a modified version of DEA based on the
comparison of efficient DMU’s. Basically, the procedure provides a
framework for classifying efficient units and facilitates comparison with
rankings. Since our goal is to rank the DMU and choose the most effi-
cient one from the Pareto frontier, we rely on the super-efficiency DEA
technique. Next, the super-efficiency DEA model formulation developed
in the input-oriented DEA CCR model is presented.
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∑ ∑
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(17)

Given that θk as the efficiency of DMU k under analysis, the exemplified
case considers the existence of DMU’s, = …z n1,2, , , which use r inputs,

= …i r1,2, , to produce s products, = …j s1,2, , . The weighting multipliers
of the input quantities X and Y outputs, i.e. the decision variables of the
problem, are represented by vi and uj, respectively. For more informa-
tion about the supper-efficiency DEA technique see (Andersen and
Petersen, 1993).

3. Proposed method

This section is intended to describe the proposed method, which as
mentioned previously consists in a combination of the techniques of
MDOE, NBI and supper-efficiency DEA. This approach is intended to
support decision-making by providing optimal configuration designs for
hybrid power generation systems in isolated regions. Fig. 2 presents a
structured framework for decision-making process.

As can be seen in Fig. 2, the first phase consists of the problem
definition. That is, at this stage the decision variables (proportion of
each energy source to be installed hydro power generation system) and
the response variables of the problem are defined. The optimal sizing of
an isolated system is directly conditioned by the response variables to
be optimized. In this phase, the decision maker must first select which
characteristics need to be optimized. It is critical to emphasize the
importance of this procedure, since the optimal configuration of the
hybrid system depends on the appropriate choice of the response
variables and, therefore, a choice made in the wrong way can produce
undesirable consequences for the decision maker.

The second phase of the method consists of the model design, where
a mathematical model is estimated for each response variable as a
function of the decision variables. In the present study, the estimated
response variables used are the LCOE and the CO2 emissions as a
product of the shares of diesel and PV in the composition of the total
system generation capacity. In this step, the MDOE is used, since for this
type of project the input variables are components of a mixture and the
answers are functions of the proportions of each component. Thus, in
this phase, the objective is to estimate the approximate function that
relates the response of interest to the process variables.

Thus, considering the estimated functions, the third phase consists
of the development of the Pareto frontier to determine the optimal
hybrid power generation system configurations using the NBI method.
After the development of Pareto frontier, the decision maker will have
at his disposal the optimal configurations of the hybrid power genera-
tion system. However, which configuration should be selected? In other

words, what is the most efficient border solution? To find this answer,
the DEA supper-efficiency method is used in the last phase.

3.1. Stage I – problem definition

According to Roy and Kulkarni (2016), supplying all energy demand
with the diesel or PV generation group may not be viable, thus high-
lighting the importance of integrating these sources. Generally, the
combination of renewable and conventional energy sources allows the
optimization of energy generation systems from technical, economic
and environmental points of view, providing continuous and stable
energy, reducing the operation and maintenance costs of diesel gen-
erators, minimizing fuel dependency and pollutant emissions (Rehman
and Al-Hadhrami, 2010). In this sense, for the application of the pro-
posed method, three possible subsystems are considered for the isolated
hybrid system: solar PV system, battery storage and diesel generators.
The energy demand profile, as well as the general technical char-
acteristics of commercially available equipment, are selected. The goal
is the ideal system configuration that minimizes LCOE and CO2 emis-
sions. More specifically, it aims to determine the installed capacity of
solar PV panels, diesel generators and batteries (that provide the sto-
rage capacity needed to increase the utilization of solar PV energy).
Fig. 3 shows the model to be optimized.

3.2. Phase II – Objective function modeling

The second phase of the proposed method aims to provide objective
functions formulations. Within the context of this study, in which it is
desired to find the optimum configuration of the hybrid power gen-
eration system, we use MDOE since for this type of project the input
variables are components of a mixture and the responses are functions
of the proportions of each component. Therefore, in this step, the ob-
jective is to estimate the approximate function that relates the response
of interest to the process variables. For this, a structure composed of 3
steps is highlighted next.

3.2.1. A. Planning the experiments
The experiments were planned following a {2,5} simplex lattice

with two axial points and a central point, defined in (6), which resulted
in nine experiments using the variables e. The responses analyzed in-
clude LCOE and CO2 emission.

Fig. 2. Proposed method.
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3.2.2. B. Experimental procedure and data collection
After the experimental planning stage, the second stage consists of

the implementation of the experiments, performed through the sizing of
the hybrid system for each point defined by (6). To perform the ex-
periments, it is necessary to size the hybrid system for each point se-
lected in the application of the mixing experiments. Thus, LCOE and
CO2 emission are estimated for the points
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the experimental planning.
For this problem, a number of uncertainties can be represented to-

gether. Thus, for the experimental procedure we use Monte Carlo
Simulation (MCS) combined with the optimization process to define
different values for the response variables. In the MCS implementation,
the uncertainties inherent to the determinant variables for the response
variables calculation (LCOE and CO2 emissions) must first be inserted
through probability distributions attributed to the variables. The next
step is to simulate scenarios and collect the response variables average
values. The response variables averages, simulated through the MCS
compose the experimental matrix that is used as data source for the
modeling and optimization process.

3.2.3. C. Modeling objective functions
The objective functions modeling associated with LCOE and CO2

emissions are determined from the model defined by (7). Thus, using
two decision variables we can obtain the polynomial represented by
(18). The coefficients ∗β1 ,

∗β2 ,
∗β12 and ∗δ12 values are estimated using the

Ordinary Least Squares method using the Minitab® software (Monticeli
et al., 2016).

= + + + −∗ ∗ ∗ ∗Y β x β x β x x δ x x x x( )1 1 2 2 12 1 2 12 1 2 1 2 (18)

3.3. Step III – Pareto frontier

Once the approximate functions resulting from the experiments are
obtained, the optimization problem can be formulated. With this, it is
possible to develop a multi-objective formulation for the problem at
hand, as described in Section 2.2. To construct the Pareto frontier, it is
worth noting that we opted to make changes in the order of 0.1 in the
weights (w) used in the objective functions. In addition, it is possible to
identify constraints that will be considered in the formulation of the
optimization models. These constraints are presented in (19):

⩽ ⩽
⩽ ⩽

+ =

x
x

x x

0 ( ) 1
0 ( ) 1
( ) 1

1

2

1 2 (19)

where x1 and x2 represent, respectively, the percentage of solar PV
generation and the percentage of diesel generation in the composition
of the total hybrid power generation system capacity in the isolated
region under analysis. The nonlinear programming models developed
here were computationally implemented and solved using an existent
solver that employs the Generalized Reduced Gradient (GRG) method,
for more details about the GRG method see (Lasdon et al., 1974).

Fig. 3. Problem definition.

Fig. 4. Optimization method.
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After the Pareto frontier is elaborated, the decision maker will have
the optimal configurations of the hybrid system at their disposal.
However, which configuration should be chosen? That is, what is the
most efficient frontier solution for the objectives in question? The next
session describes the use of the DEA method as a posteriori analysis to
make the choice of the most efficient Pareto frontier solution.

3.4. Step IV – identifying the optimal design

The super-efficiency DEA model, developed from the input-oriented
DEA CCR model, is used to rank optimal Pareto frontier configurations
as discussed in Section 2.3. For the formulation of the problem to be
solved by the DEA model, it is worth mentioning that the selected
DMUs are the Pareto frontier solutions generated from the use of the
NBI method applied to the multi-objective optimization model. In ad-
dition, it is necessary to determine the inputs and outputs of the process
under analysis. In this sense, a series of variables can be selected, such
as TOTEX, CAPEX, OPEX, LCOE, emission, area for installation and
entropy, among others.

Besides the variables used in the NBI method (LCOE and emissions),
we aim to find designs that diversify the generation system using the
entropy as a product of the DEA analysis. Thus, the variables selected
for efficiency analysis are LCOE, configured as input, avoided emission
and entropy, configured as process products (or outputs). Finally, the
proposed optimization model, developed according to the described
approach, is schematized according to Fig. 4.

3.5. Problem variables

3.5.1. A. Levelized cost of electricity
LCOE is an investment analysis metric often used in the literature as

a method to evaluate power generation costs from different types of
technology and sources (Singh and McFarland, 2015). This metric is
widely used by policymakers (Irena, 2015; Borenstein, 2012). Ac-
cording to Singh and McFarland (2015), the LCOE is calculated by
amortizing capital and operating cost over the lifetime of the system.
The use of LCOE allows the direct comparison of different technologies.
Following the definition of Rezzouk and Mellit (2015), (20) presents
how the LCOE is computed.

=LCOE TOTEX
Et (20)

where TOTEX (or Total Expendidure) represents the sum of the present
values of the costs associated with each system component, including
investment, replacement, operation and maintenance, as well as fuel
costs. Et is the total energy produced by the system. However, in iso-
lated systems the total consumption (Ct) is considered as the denomi-
nator instead of Et, and (20) can be adapted to (21) (Dufo-López et al.,
2011), shown below.

=LCOE TOTEX
Ct (21)

It is worth noting that both the calculation of TOTEX and the estimation
of total consumption should be discounted from the annual values by
the Weighted Average Capital Cost (WACC) as can be seen in Flowers
et al. (2016). In this study, the WACC calculation follows the for-
mulation presented in Aquila et al. (2016), and defined herein by (22).

= − +K D t K EWACC (1 )d e (22)

Given that Kd represents the cost of debt, D denotes the portion of debt
in the investment (%), t is the income tax, Ke is the cost of equity and E
denotes the fraction of total capital represented by equity (%). For the
calculation of the cost of third-party capital (K )d the methodology in-
dicated by ANEEL (2016) stands out. This methodology considers the
sum between the risk-free rate, the credit risk premium and the country
risk premium, as presented in (23).

= + +K r r rd f c b (23)

Given rf as the risk-free rate, rc the credit risk premium, rb the country
risk premium. In the calculation of equity (Ke), a widely used approach
in the literature is the Capital Asset Pricing Model (CAPM), presented
by Sharpe (1964) .The formulation proposed by Sharpe is represented
in (24). Where, the risk of the project in relation to the market (le-
veraged beta) is represented by β and rm denotes the expected return of
the market.

= + − +K r βx r r r( )e f m f b (24)

3.5.2. B. CO2 emissions
CO2 is the main greenhouse gas that has contributed to the ag-

gravation of the problem related to global warming (Seddighi and
Ahmadi-Javid, 2015) which affects society in several spheres such as
health (McMichael et al., 2007), energy (Pereira et al., 2013; De
Queiroz et al., 2016), economy (Mendelsohn and Neumann, 2004),
sustainability (MacDonald, 2010), and many others (De Carvalho et al.,
2015). CO2 emissions are also an important source of ocean acidifica-
tion when CO2 dissolves in water to form carbonic acid (National
Research Council, 2010). Razykov et al. (2011) reports that around 20
TW of non-CO2-emitting energy will be needed worldwide to stabilize
the volume of this gas present in the atmosphere by the middle of the
century, highlighting the use of renewable energy sources such as the
solar PV system. It is worth noting that the present work presents the
variable CO2 emission as being exclusively derived from the burning of
the fuel, in the same way as it was proposed by Bernal-Agustín et al.
(2006).

3.5.3. C. Entropy
According to Rocha et al. (2015b), the entropy proposed by

Shannon (1948), can be defined as a measure of probabilistic un-
certainty and its use is indicated in situations where probability dis-
tributions are unknown, in search of diversification. According to the
above-mentioned author, the entropy S x( ) is calculated using the re-
sponses generated by the Pareto frontier, as shown in (25).

∑= −
=

S x x x( ) ln( )
i

h

i i
1 (25)

Given h as the number of decision variables and the values of these
variables that are part of the system to be diversified, assuming that the
sum of these values must be equal to 1. From the entropy measure it is
possible to find an optimal point with the maximum diversification in a
system with different components. For the calculation of the entropy
defined in (25), h is the number of decision variables. That is, in the
case presented =h 2 and, as presented above, xi represents the fraction
of each technology in the composition of the system total generation
capacity.

4. Case study and simulation results

This Section present the application of the proposed methodology to
a real system representation.

4.1. Case study

The application of the proposed methodology is performed using
real data for an isolated system in the Northern region of Brazil
(Eletrobras, 2016 and EPE, 2016). In Brazil, a significant portion of the
population does not have access to electricity (CGEE, 2010). This pro-
blem is even more pronounced in rural areas or in isolated systems.
According to Silveira et al. (2013) for part of the population living in
these areas the cost of access to energy distribution systems can be
extremely high and often economically unfeasible. As an example, the
aforementioned authors cite the small villages of the Amazon region,
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because they do not have access to power distribution networks, they
rely on diesel generating systems for electricity production, since in-
vestments in energy transport systems to connect to interconnected
networks are not economically attractive.

According to the MME (2009), in the Amazon region, an area that
represents 61% of the Brazilian national territory and encompasses nine
states in Brazil belonging to the Amazon Basin, it is estimated that
around 300,000 isolated communities do not have access to electricity,
harming both the provision of essential services such as health, com-
munication and education, as well as local living conditions, social
development and the regional economy. The generation of energy
through small diesel generators is the main source of electric power for
the communities in this region. However, this type of generation
technology imposes serious restrictions on the operating conditions, in
which the frequent occurrences service interruptions, low quality per-
formance and high maintenance costs can be observed (Silva et al.,
2013).

For the application of the proposed methodology, four isolated
systems from the state of Amazonas (Araras, Boca do Acre, Canutama
and Tapauá) in Brazil were selected that were the focus of the gov-
ernment technical planning report in 2016 (EPE, 2016). The choice of
these four regions seeks to represent different sizes, characteristics of
consumption and resources, as well as logistic complexity. In addition,
the work uses data from these regions presented by Eletrobras (2016),
as can be seen in Table 1. The time horizon considered for the analysis
is 15 years, consistent with the information provided in Eletrobras
(2016).

The location of these regions, represented by the latitude and
longitude of each site, as well as the energy demand, are presented in
Table 1.

According to Seddighi and Ahmadi-Javid (2015), in addition to gas
emission levels, uncertainty over fuel costs has a major impact on en-
ergy generation and transmission planning, resulting in a complex,
multi-dimensional problem. In this model, the information considered
as uncertainties and treated as stochastic parameters are fuel con-
sumption (related to CO2 emissions), fuel cost and cost of solar PV
systems (related to LCOE). The choice of fuel costs and costs of solar PV
systems is based on the findings of the sensitivity analysis developed for
the regions under analysis obtained from EPE (2016). According to this
analysis, this information can suffer significant variations, mainly due
to the logistic complexity and difficulty of access to the regions.

With respect to fuel and solar PV generation costs, a triangular
probability distribution is attributed. According to Aouni et al. (2009),
triangular pertinence functions can be used to insert uncertainty into
the input and output parameters of a model, since they represent well
the human expertise in correctly judging the behavior of common
variables in various practical situations. Thus, the parameters of the
triangular distribution (optimistic value, probable value and pessimistic
value) are established based on the increase in diesel costs, indicated in
Table A.5, by 25% and a cost reduction of 25% according to (EPE,
2016). This procedure is justified due to the uncertainty of fuel costs
during the contractual period and the fact that it is an expense that
persists throughout the period. With regard to the costs of the solar PV
systems, the most probable cost value is defined at 1.73 US $/Wp, and
the optimistic and pessimistic values are equal to 1.38 US $/Wp and
2.07 US $/Wp respectively.

Dufo-López et al. (2011) point out that a typical diesel generator
consumes around 0.32 and 0.53 [l/kWh]. Thus, to calculate CO2

emissions, the fuel consumption is considered to vary according to a
uniform probability distribution in the range [0.32, 0.53]. Thus, from
the MCS, 1000 scenarios were simulated using Crystal Ball® software,
since according to Kushary et al. (2000) this amount is enough to
eliminate the estimator bias.

4.2. Results

With the application of the proposed methodology, a Pareto frontier
is obtained based on the optimal configurations, in each of the analyzed
systems. Then, using the super-efficiency DEA model, the best hybrid
system configuration for each location is analyzed. The Pareto bound-
aries, formed in 11 optimal configurations in each system, are presented
in Fig. 5.

It can be seen from Fig. 5 that there is a tendency for the most
inefficient configurations for each system to be located at the ends. This
effect is observed due to the use of entropy as a product of the supper-
efficiency DEA analysis, since this variable allows the diversification of
hybrid systems. In association, it can be observed that in all cases the
Pareto frontier indicates the highest shares of diesel in the composition
are the most inefficient of the Pareto frontier, due to the high volume of
CO2 emissions in these scenarios. In addition, it can be seen from
Table 2 that although these points are selected as points of the Pareto
frontier the supper-efficiency DEA define them as inefficient points,
since they have efficiency values lower than one. Finally, as can be seen
in Table 2, for each region a different configuration was selected and in
all cases presented predominant shares of diesel generation are ob-
served in the selected configurations.

After selecting the optimal configurations for each region, the LCOE
values and the CO2 emission volumes referring to the optimal config-
urations are compared with the system composed only of diesel gen-
erators, as presented in Table 3.

It can be seen from Table 3 that there is a significant reduction of
CO2 emissions with the optimal configurations selected, since the in-
stallation of these hybrid systems provides savings of approximately
43.60% when compared to 100% diesel systems. On the other hand,
since the use of solar PV systems is a more expensive solution due
mainly to the high costs involved for the allocation of batteries that are
considered. The installation of such hybrid systems generates a 36.32%
increase in LCOE. These answers highlight the conflicting effect of
changes in the decision variables on the objectives of the problem, since
an increase in the share of solar PV systems reduces CO2 emissions and
increases the TOTEX that directly influences the LCOE. Therefore, it is
possible to establish the trade-off between the objective functions when
these settings are changed. In Fig. 6, the straight lines represent the
different trade-offs for the four regions in study.

In Fig. 6, the value 100 is assigned for CO2 emissions and LCOE
values in the 100% diesel configuration (base case). The point at the
other end of the line represents CO2 emissions and LCOE values of the
optimal configuration obtained in proportion to the 100% diesel con-
figuration. The slope of the lines presented by indicates that a reduction
of the CO2 emissions are more significant than the increase in LCOE
when selecting the optimal configuration obtained from the proposed
method. In addition, it is possible to infer that the improvement in the
results is more pronounced for the Araras region than for other lo-
calities, since it achieves a larger CO2 emission reduction associated to a
smaller LCOE increase.

4.3. Discussion of results

It is important to emphasize that the main objective of applying the
proposed method is the emission reduction characteristic of diesel

Table 1
Location and energy demand.

Region Latitude Longitude Energy market (kWh/day)

Araras 03°24′58″S 61°21′53″W 2419
Boca do Acre 08°46′05″S 67°19′08″W 139,071
Canutama 06°32′04″S 64°23′01″W 27,575
Tapauá 05°37′17″S 63°11′16″W 51,016
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Fig. 5. Pareto frontier and optimum setting in each location.

Table 2
Optimum allocations and efficiencies of each DMU.

Araras Boca do Acre Canutama Tapauá

Order x1 (PV) x2 (Diesel) DEA efficiency (PV) x2 (Diesel) DEA efficiency x1 (PV) x2 (Diesel) DEA efficiency x1 (PV) x2 (Diesel) DEA efficiency

1 46% 54% 1.042 38% 62% 1.043 49% 51% 1.052 37% 63% 1.034
2 56% 44% 1.023 48% 52% 1.023 61% 39% 1.031 48% 52% 1.031
3 65% 35% 1.021 57% 43% 1.014 71% 29% 1.024 59% 41% 1.024
4 73% 27% 1.014 66% 34% 1.013 80% 20% 1.022 68% 32% 1.023
5 80% 20% 1.013 74% 26% 1.013 36% 64% 1.001 77% 23% 1.012
6 87% 13% 1.004 83% 17% 1.012 87% 13% 0.992 85% 15% 1.001
7 35% 65% 1.002 91% 9% 1.001 94% 6% 0.961 93% 7% 0.983
8 94% 6% 0.993 27% 73% 0.993 100% 0% 0.923 100% 0% 0.951
9 100% 0% 0.972 100% 0% 0.992 23% 77% 0.884 25% 75% 0.934
10 21% 79% 0.831 15% 85% 0.801 11% 89% 0.611 12% 88% 0.691
11 0% 100% 0.064 0% 100% 0.074 0% 100% 0.064 0% 100% 0.062

Table 3
Comparison of optimum configuration with 100% diesel solution.

Region LCOE [US$/MWh] Emissionde CO2 [t/ano]

Opt. Config. Config. 100% Diesel Difference Opt. Config. Config. 100% Diesel Difference

Araras 683.67 584.32 17.00% 611.69 1,163.03 −47.41%
Boca do Acre 553.24 392.68 40.88% 41,019.28 66,865.72 −38.65%
Canutama 678.77 457.35 48.41% 6,558.02 13,258.58 −50.54%
Tapauá 618.86 445.29 38.98% 15,264.25 24,531.32 −37.78%

Average 36.32% −43.60%
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systems currently used for power generation in isolated areas in the
Amazon region. In this sense, the investment decision-making is ne-
cessarily related to the regulations established by the regulatory agen-
cies that have the responsibility to ensure the quality of energy services.
In another sense, investors will opt for diesel-only systems, if this option
is available, since the emission reductions from the installation of hy-
brid systems (PV & Diesel) occurs to the detriment of the investment
cost increase and, therefore, of LCOE, reducing the project profitability.
This is due to the high costs related to solar PV systems in Brazil, since
most of the equipment is imported.

Therefore, it is plausible to analyze the importance of fiscal in-
centives by the government while focusing on reducing the greenhouse
gas emissions. In this context, according to Aquila et al. (2016), Brazil
seeks to promote special lines of credit for contracting renewable en-
ergy generation projects in long term auctions. Since such incentives
can override the additional costs, it is possible to motivate producers to
invest in hybrid projects, with the insertion of renewable energy
sources, even if they will present higher TOTEX.

In addition, it is important to note that although LCOE increases
considerably in pure photovoltaic systems, other financial mechanisms
beyond government-subsidized credit lines can improve the economic
viability of such projects, such as possible carbon credit markets that
would correspond to alternative sources of revenue. Corroborating this
claim, Aquila et al. (2016) states that it is possible for the renewable
energy producer to apply for participation from the Clean Development
Mechanism, a program in which it is possible to receive carbon credits
from the avoided emission.

Despite the application of the method in hybrid PV-diesel systems in
regions of the Brazilian state of Amazonas, it is expected that the pro-
posal presented in this article may be applicable to different hybrid
systems, contributing, through their results, to the optimal configura-
tion analysis in different situations. In addition, the proposed metho-
dology could be used by government agencies that manage the energy
auction processes in the definition of possible incentives that will mi-
tigate the emission of gases associated with the most efficient points of
the Pareto frontier. This would increase the competitiveness of hybrid
generation systems with respect to pure diesel systems to supply de-
mand in isolated regions.

Possibilities for future work include the use of other methods to
generate the Pareto frontier and to select the optimal configuration. It is
also suggested the use of other a posteriori methods to select the

optimal configuration providing a possible comparison with the results
obtained here from the use of the super-efficiency DEA model. In ad-
dition, it is worth mentioning that there is a possibility for using other
inputs and other products in the super-efficiency DEA model to de-
termine the most efficient configurations based in other criteria. As a
suggestion one can consider the optimization of the area required for
the installation of hybrid power generation systems and include other
generation sources such as wind power. Also, the possibility of using
other experimental arrangements for the planning and realization of the
experiments should be an interesting area of work.

In this paper, uncertainty was considered with respect to investment
and fuel costs through MCS, however, other kinds of uncertainty could
be further incorporated in the model such as electricity demand, solar
PV generation and reliability of power generators. That would require
further enhancements in the decision-making framework established in
this work. Also, with respect to the use of batteries in combination with
renewables one important problem that arises is how to control the
scheduling of such devices as noted in (Hafiz et al., 2017), this idea
could be extended to this context where investment decisions could be
combined with the optimal operation of the system. In this case, other
operational issues related to voltage violations, active and reactive
power flows could be included in the analysis.

5. Conclusion

With regard to the multi-objective optimization techniques, espe-
cially with respect to the application in hybrid power generation sys-
tems with renewable energy sources, the present study proposed a
structured framework to determine the best compositions for the sys-
tems in isolated communities. The present work uses the NBI method,
presenting a proposal that stands out in relation to others because it
indicates as a solution equidistant points of the optimal configuration.
In addition, the present methodology presents a method to select the
optimum configuration of the system a posteriori, which allows the
decision maker to selected the most efficient point in the Pareto fron-
tier. Thus, comparisons of the optimal configuration results with a
100% diesel system were feasible through the development and appli-
cation of the super-efficiency DEA model in the Pareto frontier.

In relation to the results obtained from the practical application, it is
possible to infer that, because they presented high volumes of CO2

emissions, the 100% diesel configurations were considered the least

Fig. 6. Trade-off (gas emissions and LCOE).
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efficient in the Pareto frontiers. Nevertheless, it can be noticed that in
both cases the optimal configuration prevails that composed pre-
dominantly by diesel generators. Also, as one should expected, the use
of entropy as a product of the DEA model allowed the diversification of
the hybrid power generation systems. Moreover, it is clear that there is
a trade-off between the LCOE and CO2 emissions, since the increase in
LCOE implies more emission reductions and vice versa.
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Appendix A

Radiation data were collected from the NASA surface and solar energy data set with the aid of PVSYST® software. In order to determine the
incidence of solar radiation in the inclined plane, it is necessary to consider the inclination value of the photovoltaic modules as input data in said
software. As indicated by Villalva (2015), the slope value for sites with a latitude of less than 10°, which is the case for study object regions, should be
considered as 10°. Since, for system design, it is considered the lowest value of solar availability (G )w , only the lowest value of solar radiation
incidence in the inclined plane is presented in Table A.1.

The technical note provided by EPE (2016) presents the cost and investment assumptions for photovoltaic systems, inverters and batteries, which
are presented in Tables A.2 and A.3

As can be seen in Table A.3, the cost of replacing the batteries after the service life was 50% higher, due to the need to remove the old batteries
from the place and to arrange an adequate disposal, according to the current legislation.

The following data are presented regarding the diesel generation technology used for system design, according to the values presented by EPE
(2016). While Table A.4 presents the normal cost assumptions for the regions, Table A.5 shows the estimates of CAPEX (investments in generators

Table A1
Solar radiation.
Source: PVSYST® software.

Region Gw (kWh/m2/day)

Araras 4.28
Boca do Acre 5.24
Canutama 4.69
Tapauá 4.48

Table A2
Cost assumptions (PV).
Source: EPE (2016).

Cost Assumption

Annual Fixed Cost Photovoltaic Modules 2% do CAPEXm

Fixed Cost Investors - Annual 1% do CAPEXi

Fixed Cost Batteries - Annual 1% do CAPEXi

Cost of Battery Substitution 150% battery value

Table A3
Investment assumptions (PV).
Source: EPE (2016).

Investment Value

Photovoltaic Systems in USD /Wp - (CAPEXm) 1.73
Investors in USD//W - (CAPEXi) 0.63
Battery in USD/kWh - (CAPEXb) 471.70

Table A4
Cost assumptions (diesel generator).
Source: EPE (2016).

Cost Assumption

Annual Fixed Cost 5% do CAPEX
Variable Cost US$ 7.90/MWh
General Maintenance Costa 60% of generator value

a It is estimated that every 15,000 operating hours require the general main-
tenance of the equipment.
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and system installation) and the cost of fuel, which will vary according to each region, mainly because of access to the region and fuel storage. It
should be noted that the values of investments in generators correspond to 35% of CAPEX and the rest refers to the system installation values.

To calculate the LCOE it is necessary to estimate the WACC. In this context, Eletrobras' reference project (2016) provides the values of cost of
third-party capital, cost of equity, third-party capital and share of capital (Table A.6) to calculate WACC.
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