

VALUE STREAMS FOR UTILITY SCALE STORAGE PROJECTS FOR PROVIDING GENERATION ADEQUACY SERVICES

Prof. Anderson Rodrigo de Queiroz

The Research Team

Prof. Joseph DeCarolis

Eng. Dustin Soutendjik

Prof. Jeremiah Johnson

Eng. Daniel Sodano

Prof. Anderson R. de Queiroz

Overview

- Introduction
- Modeling Approach & Assumptions
- Generation Build Outs & Operations
- Cost-Benefit Analysis for Lithium-Ion Batteries
- □ Final Comments

Introduction

- The overall goal is to evaluate how storage can contribute to Generation/Resource Adequacy, more specifically:
 - Peak Capacity Deferral
 - How storage can contribute to **postpone investments in generation**

Introduction (cont.)

Bulk Energy Time Shifting

■ How storage can contribute to better **economic generation** resources

Storage Technologies to be Considered

Mechanical

- Flywheels
- Pumped storage
- Compressed Air

Electrochemical

- Lithium-ion batteries
- Lead-acid batteries
- High T sodium batteries
- Flow batteries

Thermal

- Chilled water
- □ Ice storage
- Phase change materials
- Water heaters

Electrical

- Supercapacitors
- Superconducting magnetic energy storage

Chemical

 \square H₂ electrolysis + storage + fuel cells

Optimization Model Overview

We will run an energy system optimization model (**Temoa**) for two purposes:

https://github.com/TemoaProject
http://temoaproject.org

- Capacity expansion planning (CEP)
 for the area in analysis under
 different scenario configurations
- Operational dispatch considering system configurations from CEP and different deployment of storage technologies

Analysis Scenarios

- 2017 Carolinas Power generation system Base case
 - HB589 solar PV deployments (5.9 GW by 2022)
 - Fixed representation of the exchanges
- Duke IRP Scenario matches the build-outs proposed by Duke's 2018 IRP
- RPS expanded to 2030 with a target of 40% for **Expanded RPS** renewables (solar, wind, biomass, small hydro)
- Clean Energy Standard 60% target of clean energy sources by 2030
- Duke's 2017 Climate Report to Shareholders: 40% Carbon Cap reduction in 2005 CO₂ emissions levels by 2030
- Natural Gas Prices High Projection from EIA AEO 2018
- Deployment of Plug-in Electric Vehicles

Approach, Data and Assumptions

Data & Assumptions

- Existing power generators represented as individual power plants
- Future generators grouped by their respective generation class
- □ Sources: □

EIA Annual Electric Generator data, form <u>EIA-860</u>
EIA electric utility data survey, form <u>EIA-923</u>
<u>EIA's U.S. Electric System Operating Data Tool</u>
NREL Annual Technology Baseline - <u>ATB</u>
NREL Solar and Wind Energy Resource Assessment - <u>SWERA</u>

Cost-Benefits Assessment

□ Energy Savings \longrightarrow Operational dispatch costs with storage $ES_i^k = TC_{NS} - TC_i \quad \forall i \in I_k, \forall k \in K$ □ Operational dispatch costs without storage \longrightarrow Capacity Value \longrightarrow Cost of new entry Gas CT (\$/kW-year) $CV_i^k = (ECP_i \times P_i)CONE \quad \forall i \in I_k, \forall k \in K$ □ Capacity (kW) \bigcirc Capacity credit (%)

□ Total Benefits $SB_i^k = ES_i^k + CV_i^k \quad \forall i \in I_k, \forall k \in K$

□ Finding the best storage configuration $argmax{SB_i^k - (P_i \times RR_i^k)}$

→ Storage revenue requirement (\$/kW-year)

Energy Storage Sizes

- The analysis presented here considers only the base case scenario and lithium-ion batteries
- The following energy storage configurations are considered:

Power/Duration	1 hour	2 hours	4 hours		
0.3 GW	LI-0.3GW/0.3GWh	LI-0.3GW/0.6GWh	LI-0.3GW/1.2GWh		
1 GW	LI-1GW/1GWh	LI-1GW/2GWh	LI-1GW/4GWh		
3 GW	LI-3GW/3GWh	LI-3GW/6GWh	LI-3GW/12GWh		
5 GW	LI-5GW/5GWh	LI-5GW/10GWh	LI-5GW/20GWh		

Base Case – Installed Capacity

2030 Installed Capacity Across Scenarios

Charging/Discharging Profile - LI-1GW/4GWh

Example of a charging profile for a LI-1GW/4GWh during the course of 8760 hours in the operational model run

DISCHARGING

CHARGING

Energy Savings & Capacity Value

Operational Dispatch

Note that results consider the base case scenario and lithium-ion batteries only

Analysis

Scenario **Simulation Case** Total Costs (M\$/year) (M\$/year) S01: NS \$12,004.65 S01: LI-0.3GW/0.3GWh \$11,999.22 \$5.43 S01: LI-0.3GW/0.6GWh \$11,994.29 \$10.36 S01: LI-0.3GW/1.2GWh \$11,985.13 \$19.52 S01: LI-1GW/1GWh \$11,987.31 \$17.34 S01: LI-1GW/2GWh \$11,971.39 \$33.26 **Base Case** S01: LI-1GW/4GWh \$11,942.05 \$62.60 S01: LI-3GW/3GWh \$11,955.69 \$48.96 S01: LI-3GW/6GWh \$11,911.99 \$92.66 S01: LI-3GW/12GWh \$11,835.64 \$169.01 S01: LI-5GW/5GWh \$11,912.40 \$92.25 S01: LI-5GW/10GWh \$11,859.36 \$145.29 S01: LI-5GW/20GWh \$11,753.79 \$250.86

Operational Dispatch

Energy Savings

(Sioshansi et al., 2010)

Duratio	Ouration ECD (0/)		, Co	Capacity Credit (GW) 0.3GW 1GW 3GW 5GW				Capacity Value (M\$/year)				
(hours)	ECP (%)	0.3GW	1GW	3GW	5GW	0.3GW	1GW	3GW	5GW		
1.0		41%	0.123	0.41	1.23	2.05	13.90	46.33	138.99	231.65		
2.0		56%	0.168	0.56	1.68	2.8	18.98	63.28	189.84	316.40		
4.0		75%	0.225	0.75	2.25	3.75	25.43	84.75	254.25	423.75		

Total Benefits vs Revenue Requirements

Duration	Total Benefits (M\$/year)								
(hours)	0.3 GW	1GW	3GW	5GW					
1.0	19.3	63.7	188.0	323.9					
2.0	29.3	96.5	282.5	461.7					
4.0	45.0	147.4	423.3	674.6					

Note that results consider the base case scenario and lithiumion batteries only

			Total Revenue Requirements (M\$/year)							
Duration	RRi (\$/	kW-year)	2019				2030			
(hours)	2019	2030	0.3GW	1GW	3GW	5GW	0.3 GV	/ 1GW	3GW	5GW
1.0	1 <i>57</i> .4	74.3	47.2	157.4	472.2	787.0	22.	3 74.3	222.9	371.5
2.0	175.0	84.5	52.5	175.0	525.0	875.0	25.	4 84.5	253.5	422.5
4.0	266.4	144.7	79.9	266.4	799.2	1332.0	43.	4 144.7	434.1	723.5

With the base case assumptions, the 2019 costs associated with Li-ion batteries are not fully recovered through energy and capacity benefits

Using 2030 assumptions, however, we observe energy storage configurations that approach or exceed cost parity

Final Comments

- This is the first comprehensive open source modeling effort to develop projections for the Carolinas power system
- It can be used to assess economic, technical, and policy futures and provide valuable insights to decision makers
- We are currently working to complete the other scenario runs
- Model and analyze other scenarios, e.g.:
 - Bidirectional capabilities for EVs
 - 100% of clean energy
 - Wider range of future fuel prices
 - Policies under consideration
- Analyze storage deployment directly in the capacity expansion

Thank You!

adequeiroz@nccu.edu ar_queiroz@yahoo.com.br https://arqueiroz.wordpress.ncsu.edu

