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I N T R O D U C T I O N

• Renewable power sources became a key aspect 
around the world by disrupting old frontiers 

• These energy sources are linked to sustainable 
development that is one of the main goals of 
the modern society these days

• The raise of renewable power installed capacity 
demands new studies about its effects

• Analytics and decision-making techniques are 
essential for operational and planning actions 



B A C K G R O U N D

• Brazil presents a highly dominant renewable 

generation matrix (mostly Hydro)

• Wind is a promising renewable source in 

the country, reaching installed capacity of 

14.5 GW

• Often represented as uncertainty sources for decision-making models in power systems
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H Y D R O -T H E R M A L  C O O R D I N A T I O N
• Find the sequence of hydro releases and thermal plant dispatches for a planning 

horizon to match system demand

§ Resource management

§ Input variable forecasting

§ Operational aspects

• Basic economic criterion 

§ Minimize operational costs (present + expected future)

• Usually modeled and solved using stochastic programming (optimization) 
techniques

de Queiroz, A.R., (2016) Stochastic Hydro-thermal Scheduling Optimization: An 
Overview, Renewable and Sustainable Energy Reviews, 62: 382-395



H T C P  M O D E L  &  H O R I Z O N S
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de Queiroz, A.R., Morton, D.P., (2013) Sharing Cuts under 
Aggregated Forecasts when Decomposing Multi-stage 

Stochastic Programs, Operations Research Lett, 41(3): 311-316
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T H E  F O R E C A S T I N G  
P R O B L E M



C L I M A T E  &  W E A T H E R  E F F E C T S

Paul Nicklen, 2017 – National GeographicNASA, Global Climate Change



T H E  F O R E C A S T I N G  P R O B L E M

• As a large portion of the generation system is provided by hydro, the LMPs are 
extremely affected by the water inflows at the hydro plants reservoirs

• Therefore, it is necessary to establish accurate inflow forecasts in order to obtain proper 
predictions of the LMPs that are the market clearing prices called PLDs

• As weather/climate is significantly affecting water                                                             
inflows & hydropower in the country we consider                                                           
associated variables as predictors in a potential model

• The amount of data available is significant and we use machine learning techniques, 
more specifically artificial neural networks (ANNs), in order to obtain data-driven and 
robust forecasting models for the problem at hand

de Queiroz, A. R., Faria, V. A., Lima, L. M., & 
Lima, J. W. (2019). Hydropower revenues 

under the threat of climate change in 
Brazil. Renewable Energy, 133, 873-882



E L E C T R I C I T Y  S P O T  P R I C E S  
F O R E C A S T I N G  F R A M E W O R K
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• We were able to create ANNs that use millions of internal parameters using Deep 
Neural Network training algorithms, concepts and other things:

• Input variable selection; Filling missing data

• RELU, Tanh & sigmoid used as activation functions in training; ADAM, RMS prop and 
gradient descent with momentum (GDM) considered in the optimization process

• Different Models were established:

A R T I F I C I A L  N E U R A L  N E T W O R K S

ANN for each river basin

Water inflows

Water Inflows + historical rainfall

Water Inflows + historical rainfall
+ future rainfall forecasts (climate models)ANNs for each hydro plant



C A S E  S T U D Y



D A T A  A N D  M O D E L S
• Historical water inflow data from 2000 to 2019, as well as precipitation forecasts from 

climate models (GEFS, ETA-40 km) are used to train ANNs

• More than 7000 examples used in the ANNs training                                                             
process, and we normalize and segment the dataset                                                                          
in: 60% - train, 20% - dev and   20% - test 

• Historical water inflows, historical precipitation data                                                                  
from pluviometric stations, calendar data and                                                                           
climate variable forecasts are used

• ANNs using different configurations were tested

• MLPs and results from models used  by the Brazilian                                                                      
ISO (hydrological model SMAP and PREVIVAZ)                                                                                       
are compared
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C A S E  S T U D Y
• ANNs were trained to forecast water inflows 14 days ahead 

for 55 hydro plants

• Results are compared with the performance of the models 
currently used by the Brazilian ISO from 2014 up to 2016 

• All ANNs trained are fully connected, and the number of 
neurons in each hidden layer is equal to the number of 
neurons in the input layer

• Each ANN uses as input 30 days of lag with respect to the 
water inflow information from the first downstream plant up 
to the 5th level of upstream hydro plants

• Computational experiments performed using a PC i7-
7700k CPU (4 cores, 4.2 GHz), 16 GB RAM, and a GPU 
NVIDIA GTX 1070 (8 GB). The TensorFlow (TensorFlow, 
2019) framework was used with GPU parallelization



R E S U LT S  A N D  C O M P A R I S O N I

Optimization 
Algorithm

Activation 
Function

Error Test Set Error Dev Set
Avg Epoch

Total Wall 
Time [h]MSE MAPE MSE MAPE

Adam

ReLU 0.2729 18.71 0.3821 14.92 2598 5.09

Tanh 0.2574 17.76 0.3762 14.78 1668 4.26

Sigmoid 0.2577 18.43 0.3883 14.72 1680 4.24

RMSprop

ReLU 0.2668 19.52 0.3700 15.15 2700 5.10

Tanh 0.2647 18.21 0.3941 15.22 2516 4.67

Sigmoid 0.2647 20.33 0.3945 15.88 4024 5.35

GDM

ReLU 0.2809 19.37 0.3959 15.50 15862 14.37

Tanh 0.2605 17.64 0.3785 15.05 19488 16.48

Sigmoid 0.2749 18.92 0.4011 15.11 15918 13.76



H Y D R O G R A P H S :  A N N  E S T I M A T E  V S  
M E A S U R E D  S T R E A M  F L O W

Furnas hydropower plant 
Capacity: 1312 [MW]

Ilha Solteira hydropower plant
Capacity: 3444 [MW]



R E S U L T S  A N D  C O M P A R I S O N  I I

Mean Absolute Percent Error Nash–Sutcliffe



E L E C T R I C I T Y  
P R I C E S  
F O R E C A S T I N G  
I N  B R A Z I L ONS
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E L E C T R I C I T Y  P R I C E S  
F O R E C A S T I N G  I N  B R A Z I L
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C O N C L U S I O N S  &  F I N A L  
R E M A R K S



C O N C L U S I O N S  &  R E M A R K S
• We introduced the process of the electricity prices formation in the Brazilian spot 

market and pointed out to the importance of water inflows for the process

• We have presented the use of ANN for water inflows forecasting using state-of-the art 
techniques used to train deep neural networks

• We presented comparison results of the proposed approach with the Brazilian ISO as 
well as some results of the integrated framework developed for PLDs forecasts

• Future works should evaluate the performance of other ANN techniques such as 
convolutional and recurrent when compared to the MLP models in the forecasting of 
streamflow and electricity demand for large interconnected hydro systems
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