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Intfroduction



Motivation

1 Renewable power sources became
a key aspect around the world by

disrupting old frontiers

1 These energy sources are linked to
sustainable development that is
one of the main goals of the
modern society these days

7 The raise of renewable power
installed capacity demand studies
about its effects

- Power generation scheduling is
one of such studies and is our focus




Background & Goals

-
The main problem with renewable power is its dependence on
natural resources (may not be available when necessary)

Hydropower is an exception of these restrictions, since reservoirs
can store water and control generation

We present the idea behind the classical hydro-thermal scheduling
problem (HTSP) with # model formulations

We describe a Sampling-based Decomposition Algorithm (SBDA)

and apply it to approximately solve multi-stage stochastic programs

In this case, it is important to assess the solution quality that can
be obtained from the resulting policy applied to out-of-sample
paths and scenario trees (under # model formulations & sizes)



Power Generation Scheduling & Optimization




Hydrothermal Scheduling Problem
—

Find the sequence of hydro releases and thermal
plant dispatches for a planning horizon in order to
match system demand

Current use Future inflows
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Basic economic criterion

Minimize operational costs (present + expected future)

Multi-stage Stochastic Linear Program (SLP-t)



Variables & Parameters
1

Obijective is to minimize total expected cost to operate the system:
Fuel costs for generating thermal power
Penalties for failure to meet demand

Decision variables for each hydro plant, includes:
Storage (water or energy) Xit
Other decision variables:

Hydro generation GH;c
Spilled volumes S; F gw %m a{% -
—
ARG
Thermal generation GT} A = . g
Energy transfers between regions FE o {g? {ﬁ{% ] i I

Load curtailment GD.
Uncertainty:

Future water inflows by, by, ..., bt



HTSP Model Formulation for Stage-t
S
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Remark 1: Formulation and Model’s Size
1

The model’s size at each stage t and branch w depends on:

# of hydro plants - For each hydro plant:

e 3 sets of decision variables
H# of thermal plom’rs * 1 set of structural constraints

# of electrical regions (subsystems)

In order to reduce model’s size ‘ Aggregate Reservoir
Representation
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In Terms of HTSP with ARR:

]
Original HTSP:
Water Balance Xt + GHf + S Xf_l + Db, Viel
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Remark 2: Tree Density and Model’s Size
-9

The model’s size for the whole time horizon depends on:

# of time stages

# of scenarios (branches) per stage

t=2

t=3

t=4



HTSP as SLP-t
1

We consider a general model ‘ rr)l(in C1Xq1 t+ Eb2|b1h2 (x1,b3)
. 1
that uses water inflow forecasts s.t. Ayxq = ByX, + by

where, fort=2,...,T x; =0
H)l(itn ceXt + Ebg,,by,..bNer1 (X2, bry1)
N s.t. A¢X¢ = Bixy_q1 + bt
Piecewise linear Xy =0

approximation of the
future cost function

X¢: stage t decision variables including: hydro
generation, storage, spillage, thermal
generation, energy transfers, load curtailment

Ay: constraint matrix including mass balance,
demand satisfaction

i b¢: stochastic water inflow at each hydro plant
s S and deterministic demand

Storage (x,) BX¢—1: storage from last stage




A Sampling-based Decompostion Algorithm



Sampling-based Decomposition Algorithms
-

Introduce sampling methods into nested Benders’ decomposition
Algorithm first presented by Pereira & Pinto 1991
SDDP evolved from Pereira & Pinto 1985 work

1985: 3- and 5-stage problems with 2 inflow realizations per stage

1991: Monte Carlo sampling — create a SAA with inflow sequences and solve it.

SDDP shown for a 10-stage problem with 2 inflow realizations per stage. Total of

29 = 512 possible inflow sequences
Related algorithms (Philpott & Guan 2008, Philpott & de Matos 2010, Chen & Powell
1999, Donohue & Birge 2006); Convergence analysis (Chen & Powell 1999, Linowsky &
Philpott 2005, Philpott & Guan 2008); Cut-sharing (Infanger & Morton 1996, de Queiroz &
Morton 2013); Alternative sampling schemes (Homem-de-Mello et al. 2011); Risk
aversion (Shapiro 2010, Philpott & de Matos 2010, Guigues & Sagastizabal 2012, Komizk &
Morton 2015, Maceira et al. 2015); Solution Quality Assessment (Chiralaksanakul &

Morton 2004, de Queiroz 2011, de Mattos et al 2016), Other Modeling Issues
(Rebennack et al. 2012, Diniz & Souza 2014) ...



Stage-t Benders’ Master Problem
S —

Suppose we are at stage t under w and we have:

min CtXt + et max T[t (BtXt_l + bt) + ata
Xt,0¢ T, Ot
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SBDA Optimization Process

—




Solution Quality Assessment

We use Monte Carlo simulation to assess if a
candidate solution (i.e., policy) is near optimal

S
cannot solve the SP exactly r ‘

When optimizing a sample-mean

estimator we get an optimistic bound

for the solution

This implies a weak statement regarding quality of
a candidate solution — Estimate may have large bias

When bias is large it is not possible to be sure if a
candidate solution is near optimal



Confidence Interval Construction

Upper bound estimator (UBE)

A s LDCD
)

n, paths A
/

TR

Un

S

u

Lower bound estimator (LBE)

>

333
333
333

-doi=1,..,np

Run SBDA and compute z°

Let€p = t,,_1S¢/ M and €, = 2,5, /\ 1y
Outputone-sidedClon EU — z~, ’0 : (Unu — Ln{,)+ + €, + Eu]

Based on: Chiralaksanakul & Morton 2004, de Queiroz 2011, de Mattos et al 2016







Applied to a Portion of the Brazilian System

Optimization over 6, 12 & 24 monthly stages
Aggregated by subsystem (Cepel 2011 & de Queiroz 2011) & by

river basins (de Mattos 2008 & Pietrafesa 2015)
St/conral | souh

< _—

s > Tieté Iguagu
a g 7.2 10.1
g Q Grande Uruguai
E g 30.3 5.1
5 a Paranaiba

= 39.0

NG 21.4 11.0
Hydro Gen [GW-month] [GW-month]

64 hydro and 19 thermal plants (with 5.6 [aGW], where 8 are

located in the SE and 11 in the South)
Time- & spatial-dependent water inflow forecasts produced by a

DLM (Marangon Lima et al. 2014)
We consider different sample sizes for the same problem instance to

analyze solution results

For more details: Pietrafesa 2015



Simulation Assumptions

We run SDDP until when the LB obtained in the first
tree stabilizes or for a maximum number of iterations

We vary the number of scenarios per stage

We consider 32 cuts to be computed at each iteration
We use 15 trees to assess the LBE

We consider 12800 forward paths to evaluate UBE

Initial reservoir levels: 60%

This is also a requirement as end of time constraint



UB & LB Results

£
(<))
=
(7]
p-_S
(7]
02
=2
(7]
>
o]
O
()
=
O
o))
()]
t
O
o))
<

Aggregated by River Basin

6 stgs 12 stgs 24 stgs
1.20E+06 5.00E+04 1.40E+04
1.10E+06

4.50E+04 1.20E+04
1.00E+06
1.00E+04
4.00E+04
9.00E+05
= b % 8.00E+03
(-4 o (-4
— 8.00E+05 = 3.50E+04 =
v v v
S S S 6.00E+03
7.00E+05
3.00E+04
4.00E+
6.00E+05 O0E+03
5.00E+05 2:50E+04 2.00E+03
4.00E+05 2.00E+04 0.00E+00
1000 2000 1000 2000 1000 2000
1.20E+06 5.00E+05 2.00E+05
| 10E+06 tsorsos 1.80E+05
: 1.60E+05
1.00E+06
1.40E+
4.00E+05 OE+05
__ 9.00E+05 _ . 1.20E+05
A A A
(-3 [-4 E.
= 8.00E+05 — 3.50E+05 ~ 1.00E+05
8 8 8
7 OOE+05 oorsos 8.00E+04
: 6.00E+04
6.00E+05
4.00E+04
2.50E+05 OOE+0
5.00E+05 2.00E+04
4.00E+05 2.00E+05 0.00E+00

10 200

1000 2000

1000

2000

1000

2000



1" Tree Lower Bound Values
=

Aggregated by Subsystem Aggregated by River Basin
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Lower bound of the 15t tree stabilizes earlier in the system with ARR for each subsystem



Final Thoughts and Future Directions



Final Thoughts & Future Directions

We presented the idea behind the HTSP along with a
discussion about model formulations

The main structure of a SBDA was discussed

Solution quality assessment in SLP-t's was addressed and it is
an important research in stochastic programming

The results presented here and in the literature shows the
benefits of using such procedure to obtain better solutions

There is motivation to explore the use of SBDA and solution
quality assessment in other multi-stage stochastic
optimization problems



SDBA & Sol. Quality Assessment in Capacity
Expansion Models for Energy Systems

MARKAL/TIMES Energy System Model

Models for conducting energy system analysis:

Markal /Times, OSeMOSYS, Message . =

TEMOA (Hunter et al. 2013) | . E‘“;i
Energy economy optimization model e
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COPYRIGHT
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Represents a multi-stage problem in a
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