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Introduction



Motivation

¨ Renewable power sources became 
a key aspect around the world by 
disrupting old frontiers 

¨ These energy sources are linked to 
sustainable development that is 
one of the main goals of the 
modern society these days

¨ The raise of renewable power 
installed capacity demand studies 
about its effects

¨ Power generation scheduling is 
one of such studies and is our focus



Background & Goals

¨ The main problem with renewable power is its dependence on 
natural resources (may not be available when necessary)

¨ Hydropower is an exception of these restrictions, since reservoirs 
can store water and control generation

¨ We present the idea behind the classical hydro-thermal scheduling 
problem (HTSP) with ≠ model formulations 

¨ We  describe a Sampling-based Decomposition Algorithm (SBDA)
and apply it to approximately solve multi-stage stochastic programs 

¨ In this case, it is important to assess the solution quality that can 
be obtained from the resulting policy applied to out-of-sample 
paths and scenario trees (under ≠ model formulations & sizes)



Power Generation Scheduling & Optimization



Hydrothermal Scheduling Problem

¨ Find the sequence of hydro releases and thermal 
plant dispatches for a planning horizon in order to 
match system demand
§ Resource management

§ Input variable forecasting

§ Operational aspects

¨ Basic economic criterion 
§ Minimize operational costs (present + expected future)

¨ Multi-stage Stochastic Linear Program (SLP-t)



Variables & Parameters

¨ Objective is to minimize total expected cost to operate the system:
¤ Fuel costs for generating thermal power
¤ Penalties for failure to meet demand

¨ Decision variables for each hydro plant, includes:
¤ Hydro generation GH!"
¤ Spilled volumes S!"
¤ Storage (water or energy) x!"

¨ Other decision variables:
¤ Thermal generation GTℓ"

¤ Energy transfers between regions F$ $!
"

¤ Load curtailment GD%
"

¨ Uncertainty: 
¤ Future water inflows b", b"&', … , b(
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Remark 1: Formulation and Model’s Size

¨ The model’s size at each stage t and branch ω depends on:

¤ # of hydro plants

¤ # of thermal plants
¤ # of electrical regions (subsystems)

¨ In order to reduce model’s size

For each hydro plant: 
• 3 sets of decision variables
• 1 set of structural constraints 

Aggregate Reservoir 
Representation



In Terms of HTSP with ARR:

¨ ARR by Subsystem:
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¨ ARR by River basin:
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¨ Original HTSP:



Remark 2: Tree Density and Model’s Size

¨ The model’s size for the whole time horizon depends on:

¤ # of time stages

¤ # of scenarios (branches) per stage
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HTSP as SLP-t
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We consider a general model 
that uses water inflow forecasts

where, for t	=	2,…,T

x,: stage t	decision variables including: hydro 
generation, storage, spillage, thermal 
generation, energy transfers, load curtailment
A,: constraint matrix including mass balance, 
demand satisfaction
b,: stochastic water inflow at each hydro plant
and deterministic demand
B,x,-.: storage from last stageStorage (𝐱𝐭)

Cost ($)

Piecewise linear 
approximation of the 
future cost function



A Sampling-based Decompostion Algorithm



Sampling-based Decomposition Algorithms

¨ Introduce sampling methods into nested Benders’ decomposition
¨ Algorithm first presented by Pereira & Pinto 1991
¨ SDDP evolved from Pereira & Pinto 1985 work

¤ 1985: 3- and 5-stage problems with 2 inflow realizations per stage

¤ 1991: Monte Carlo sampling → create a SAA with inflow sequences and solve it. 
SDDP shown for a 10-stage problem with 2 inflow realizations per stage. Total of 
29 = 512 possible inflow sequences 

¨ Related algorithms (Philpott & Guan 2008, Philpott & de Matos 2010, Chen & Powell 

1999, Donohue & Birge 2006); Convergence analysis (Chen & Powell 1999, Linowsky & 

Philpott 2005, Philpott & Guan 2008); Cut-sharing (Infanger & Morton 1996, de Queiroz & 

Morton 2013); Alternative sampling schemes (Homem-de-Mello et al. 2011); Risk 
aversion (Shapiro 2010, Philpott & de Matos 2010, Guigues & Sagastizabal 2012, Komizk & 

Morton 2015, Maceira et al. 2015); Solution Quality Assessment (Chiralaksanakul & 

Morton 2004, de Queiroz 2011, de Mattos et al 2016), Other Modeling Issues 
(Rebennack et al. 2012, Diniz & Souza 2014) … 



Stage-t Benders’ Master Problem

¨ Suppose we are at stage t under ω and we have:
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SBDA Optimization Process

`



Solution Quality Assessment

¨ We use Monte Carlo simulation to assess if a 
candidate solution (i.e., policy) is near optimal

¨ When optimizing a sample-mean 
estimator we get an optimistic bound                    
for the solution

¨ This implies a weak statement regarding quality of 
a candidate solution

¨ When bias is large it is not possible to be sure if a 
candidate solution is near optimal

cannot solve the SP exactly

Estimate may have large bias



Confidence Interval Construction

Lower bound estimator (LBE) Upper bound estimator (UBE) 

Based on: Chiralaksanakul & Morton 2004, de Queiroz 2011, de Mattos et al 2016



Case Study



¨ Optimization over 6, 12 & 24 monthly stages
¨ Aggregated by subsystem (Cepel 2011 & de Queiroz 2011) & by

river basins (de Mattos 2008 & Pietrafesa 2015)

¨ 64 hydro and 19 thermal plants (with 5.6 [aGW], where 8 are 
located in the SE and 11 in the South) 

¨ Time- & spatial-dependent water inflow forecasts produced by a 
DLM (Marangon Lima et al. 2014)

¨ We consider different sample sizes for the same problem instance to 
analyze solution results

Applied to a Portion of the Brazilian System
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Simulation Assumptions

¨ We run SDDP until when the LB obtained in the first 
tree stabilizes or for a maximum number of iterations

¨ We vary the number of scenarios per stage
¨ We consider 32 cuts to be computed at each iteration
¨ We use 15 trees to assess the LBE
¨ We consider 12800 forward paths to evaluate UBE
¨ Initial reservoir levels: 60%

¤ This is also a requirement as end of time constraint



UB & LB Results
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1st Tree Lower Bound Values

Aggregated by Subsystem Aggregated by River Basin
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Final Thoughts and Future Directions



Final Thoughts & Future Directions

¨ We presented the idea behind the HTSP along with a 
discussion about model formulations

¨ The main structure of a SBDA was discussed 

¨ Solution quality assessment in SLP-t’s was addressed and it is 
an important research in stochastic programming

¨ The results presented here and in the literature shows the 
benefits of using such procedure to obtain better solutions

¨ There is motivation to explore the use of SBDA and solution 
quality assessment in other multi-stage stochastic 
optimization problems



SDBA & Sol. Quality Assessment in Capacity 
Expansion Models for Energy Systems

¨ Models for conducting energy system analysis:
¤ Markal/Times, OSeMOSYS, Message

¨ TEMOA (Hunter et al. 2013)

¤ Energy economy optimization model
¤ Technology assessment and policy analysis at ≠scales

¤ Model is implemented in a general                               
algebraic formulation combined with

¤ Stochastic Programming capabilities                                
(extensive LP and Progressive Hedging)

¤ Represents a multi-stage problem in a                                          
network with multiple technologies and 
multi-commodities

http://www.temoaproject.org
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