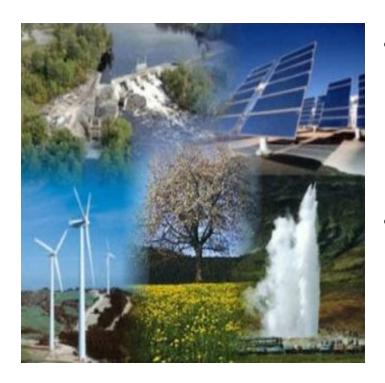
Paper No: 14PESGM0783

Effects of Wind Penetration in the Scheduling of a Hydro-Dominant Power System


Saulo R. Silva Anderson Rodrigo de Queiroz Luana M. Marangon Lima José W. Marangon Lima

Federal University of Itajubá arqueiroz@unifei.edu.br

Introduction

- Renewable power sources
 became a key aspect around the
 world by disrupting old frontiers
 in power systems
- These energy sources are linked to sustainable development that is one of the main goals of the modern society these days
- The raise of wind power installed capacity around the world constantly demand studies about its effects

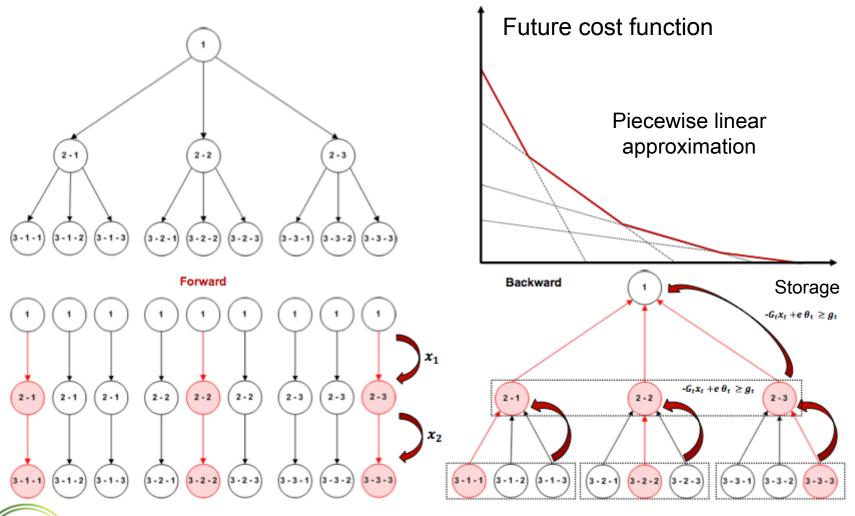
Background

- The main problem with renewable power is its dependence on natural resources (may not be available when necessary)
- Hydropower is an exception of these restrictions, since reservoirs can store water and control generation
- Brazil presents a highly dominant renewable generation matrix (mostly Hydro)
- This work presents a model formulation for the stochastic wind-hydrothermal scheduling problem and we attempt to solve it using SDDP

Stochastic Wind-Hydrothermal Scheduling Problem

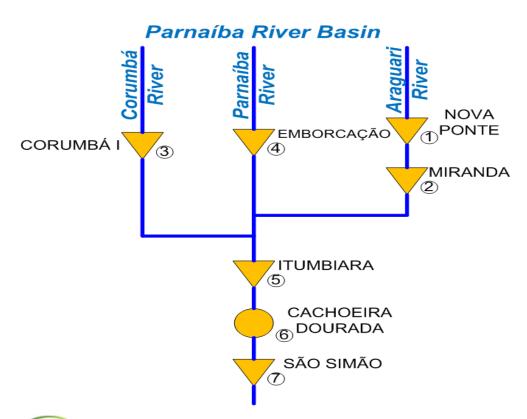
- Wind power plants considered such as run-of-the river hydro
- Objective: Minimize production costs of electricity to supply system electricity demand considering the operation of hydro, thermal and wind power generators
- Constraints:
 - Water balance
 - Electricity demand satisfaction
 - Max wind power generation
 - Electricity exchanges between regions
 - Other operational bounds

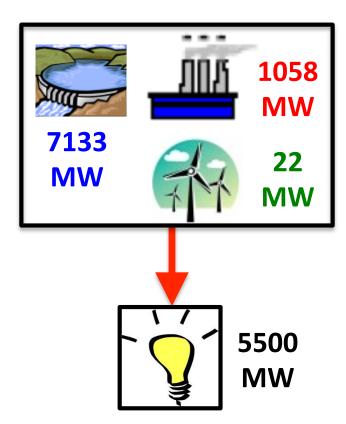
Model Formulation for Stage t


$$\begin{split} z &= \min \sum_{i \in I} \left[\sum_{k \in G_i} c_k^t g t_k^t + \rho^t u^t \right] + \mathbb{E}_{b_{t+1}} h_{t+1}(x^t, b_{t+1}^\omega) \\ &\text{s.t.} \quad x_h^t = x_h^{t-1} + \tau b_{h,t}^\omega - v t_h^t + s_h^t + \sum_{m \in M_h} (v t_m^t + s_m^t) \\ &\sum_{h \in H_i} \frac{\delta_h}{\tau} v t_h^t + \sum_{k \in G_i} g t_k^t + \sum_{v \in V_i} w_v^t + \sum_{j: (i,j) \in E} p_{i,j}^t - \sum_{j: (i,j) \in E} p_{j,i}^t + u^t = d_i^t \\ &\sum_{i: (i,j) \in E} (p_{i,j}^t - p_{j,i}^t) = 0 \quad \forall j \in I \\ &w_v^t \leq n \, \frac{1}{2} \sigma. \, A. \, w s_{v,t}^\omega \, ^3 C_p^t \ \forall v \in V_i \end{split}$$

Sampling-based Decomposition

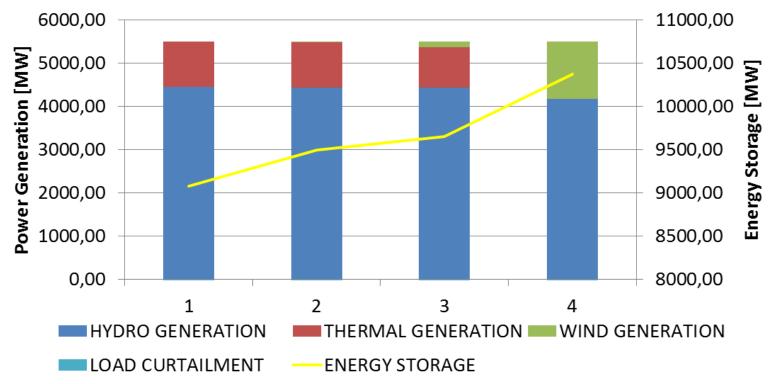
Wind Speed & Water Inflow Scenario Generation


- We consider water inflows and wind speed to be stochastic and we sample from a probability distribution in order to construct a sample tree with different scenarios
- First stage problem the water inflows and wind speed are assumed to be deterministically known
- Interstage independent scenario tree
- Scenarios are drawn from independent normal distributions $N[\mu,\sigma 2]$ and correlation is passed through Cholesky decomposition



Study Case

Deterministic Wind X Stochastic Wind



Results

- Deterministic approach tends to overestimate wind generation
- Complementarity Behavior Hydro-Wind

Average Expected Costs

 Although the behavior in both situations is similar, the average wind power generation obtained in the stochastic case is smaller than the historical average

Wind Generation	Stochastic	Deterministic
None	\$ 446,281.02	
1x	\$ 404,797.17	\$ 412,934.21
10x	\$ 320.660,31	\$ 376,306.90
100x	\$ 6,680.58	\$ 2,458.73

Conclusions & Future Work


- The impacts of the wind in the context of the power generation scheduling problem is relevant when installed capacity scales up better models
- We have created a sampled scenario tree capable of representing stochastic and seasonal characteristics of wind and water inflows
- We aim to Improve our model:
 - Interstage dependency between time stages
 - Include climate variables

Thank you!!!

arqueiroz@unifei.edu.br

