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Hydrothermal Scheduling Problem

= Hydroelectricity 1s inexpensive
to produce, yet depends on the
supply of water (stochastic)

= Present decisions affect future
conditions of the system and
also future decisions (dynamic)

= Multiple interconnected
reservoirs need to be scheduled
for multi-period optimization
(large-scale)




Decision Tree

Current Use

Use the
water

Store the
water

Future Inflows

)

Normal ok|

A

Energy d

f

icit

Drought OK

Drought

Normal < Spill




Hydrothermal Scheduling:
Brazilian Interconnected Power System

= 85% of electricity capacity comes from hydro .. 3/l gs 2

* Current model
— optimization over 60 stages to determine the generator dispatch
— agregated reservoir scheme
— Forecast energy instead of inflow

— Stochastic Dual Dynamic Programming

= Because of the big hydro dependency the inflows at the
reservoirs are very important input parameters to the model



Probabilistic Model for the
Inflows



Probabilistic Model for the Inflows

= We want to forecast future inflows to the system of reservoirs and rivers

= Model requirements to suit the optimization problem
— Additive

— Markov property

= We have the historical data for the monthly inflows per reservoir from 1931 to
2009

1931 178 371 326 479 332 226 125 89> 112 192 153 215
1932 449 344 214 72 68 98 81 71 73 92 102 240
1933 287 161 147 108 84 72 69 64 63 67 72 141
1934 196 96 112 79 60 49 44 38 40 48 57 216
1935 242 381 134 169: 121 98 73 73 69 86 86 92
1936 84 108 229 128 90 67 57 58 65 60 87 200
1937 349 231 170 121 128 95 74 62 57 136 158 378
1938 265 298 227 154 133 105 88 85 97 125 135 256

RFRERRRRR

2005 254 208 176 114 119 93 84 65 64 65 106 176
2006 129 153 150 86 68 60 53 45 54 69 112 170
2007 363 274 132 100 81 70 59 54 42 50 83 88
2008 113 221 195 141 88 75 60 51 53 68 119 254
2009 255 268 225 177 114 93 90 75 88 129 00 00

e

= 140 reservoirs ™=  14() variables



Generation Power Plants Geographically

The colored regions
delineate the river basin
boundaries

The reservoirs operate in
a cascade scheme

To reduce problem size
we aggregate reservoirs,
and incremental inflows
by basin

Incremental inflow is the
difference between a
reservoir’s natural inflow
and that if the reservoir
immediately upstream
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Trend and Correlation Analysis
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Seasonality more or less
pronounced depending on
the basin

Basins with greater
seasonality exhibit non-
stationary behavior

Difference series at lag 12
does not completely
eliminate seasonality



Univariate Model

* We fitted an ARMA model for each basin using the twice
differenced series

= Conclusion

— The log of the inflows give a better fit, but it leads to a non-additive
model

— The tails of the residual normality check do not look good even for
the log model

— There 1s correlation between the basins, so a multivariate analysis
would be better to forecast the inflows.

10



Principal Component Analysis

First Component (9 basins)

Second Component (5 basins)

Third Component (1 basin)

The results show that
geography explains 80% of
the variability!
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Future Goals

= Create a multivariate model for each component using
Dynamic Linear Models

* Incorporate climate variables such as:
— Precipitation
— EIl Nino

— Ocean temperature

= (Generate scenario tree with the forecasted inflows as mput for
the optimization model.
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Optimization Model



Hydrothermal Scheduling

1
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Stage t Problem Formulation

Present Cost Future cost function
A A

| | !
ht(vt—l»b}c/v) = min z ctGTyy + z uy (GDyy + Z pt’ ht+1(VtW , by

€L keK w’eW;
(Water Balance) s.t.  ViY+GH}Y{ + S{{ — Z (GHY +S{) = Vie—y +bj} Vi€l
JEM;
(Meet Demand) z pi GH;{ + 2 GT\} + Z GDyy = Dy
i€l IeL keK
0=V =< VY Vi€l

0 <GHY < GHY Vi€l
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0 < St viel
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Stage t Benders Decomposition Master Program

= In a Benders’ (or SDDP) decomposition algorithm, the stage t problem for each
scenario is capture by the following master program

min c¢x¢ + 0
Xt,0¢
S.t. AiX¢ = BixX—q + bt Wy
‘GtXt +e et 2 gt . O(t
Xy =0

Where,

x¢: all stage t decision variables including: hydro generation,
hydro storage, spillage, thermal generation...

Aq: constraint matrix including water balance, meet
demand, ...

b;: stochastic inflow and deterministic demand
Bx¢_q: 1s storage from last stage

0;: future cost function 6



Sampling-Based Decomposition Algorithm
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Algorithm Parallelization

= This type of algorithm can be parallelized, in both steps.
= MPI to communicate with the different cores.

= Synchronize using blocking collective communication calls.

Starting
o

v
Select Forward
Paths
l Forward Pass Bounds
Solve first-stage are within
node at the root

stopping
core
Compute ’

criteria?
Lower Bound




Algorithm Parallelization (cons,)

o @ ‘ 0 ° ‘ @ ’ ‘ For each stage t = 2,...,T Forward Pass

MPI_Scatterv
Send scenarios

Q () O e Q @ <> ° Q to other cores
MPI_Gatherv
At each Get the state
CICICRCICICESISIE

core vars at the root
For each stage t = T-1,..., 1 Backward Step

MPI_Bcast
State vars from

MPI_Scatte.rv root to other

- Send scenarios
to other cores
At each 1
MPI_Gatherv
Get obj func values &
dual prices at rog

MPI_Bcast
‘ cuts from root

to others




Where are we right now?

We have a univariate ARIMA model for the incremental inflows at
each basin

We have the serial and parallel version of the decomposition
algorithm tested for a simple case with 3 stages and 2 possible
scenarios at each stage

The model considers inter-stage independency for inflows

We are moving toward using real data and testing the algorithm on
real-size instances

Incorporate inflow forecasting into the optimization model

Modify the algorithm to handle inter-stage dependency
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Future Research Questions

How the inflow forecasting model behaves with the addition of
climate data for the river basins?

Does the aggregated reservoir scheme behave well compared to
a model with less aggregation or individual hydro plants?

What 1s an adequate number of stages?
Is monthly discretization appropriate?
How does the algorithm scale with many processors available?

Can we characterize the algorithm’s solution quality?
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