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Hydrothermal Scheduling Problem

§ Hydroelectricity is inexpensive 
to produce, yet depends on the 
supply of water (stochastic)

§ Present decisions affect future 
conditions of the system and 
also future decisions (dynamic) 

§ Multiple interconnected 
reservoirs need to be scheduled 
for multi-period optimization 
(large-scale)
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Hydrothermal Scheduling: 
Brazilian Interconnected Power System

§ 85% of electricity capacity comes from hydro

§ Current model
– optimization over 60 stages to determine the generator dispatch

– agregated reservoir scheme

– Forecast energy instead of inflow

– Stochastic Dual Dynamic Programming

§ Because of the big hydro dependency the inflows at the 
reservoirs are very important input parameters to the model



Probabilistic Model for the 
Inflows
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Probabilistic Model for the Inflows
§ We want to forecast future inflows to the system of reservoirs and rivers 

§ Model requirements to suit the optimization problem

– Additive 

– Markov property

§ We have the historical data for the monthly inflows per reservoir from 1931 to 
2009

§ 140 reservoirs 140 variables
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Generation Power Plants Geographically
§ The colored regions 

delineate the river basin 
boundaries 

§ The reservoirs operate in 
a cascade scheme

§ To reduce problem size 
we aggregate reservoirs, 
and incremental inflows 
by basin

§ Incremental inflow is the 
difference between a 
reservoir’s natural inflow 
and that if the reservoir 
immediately upstream

𝑥!"#$ 𝑥!!"% = 𝑥!"#$

𝑥&!"% = 𝑥&"#$ − 𝑥!"#$𝑥&"#$
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Trend and Correlation Analysis

§ Seasonality more or less 
pronounced depending on 
the basin

§ Basins with greater 
seasonality exhibit non-
stationary behavior

§ Difference series at lag 12 
does not completely 
eliminate seasonality 

Amazon

Paranaiba

Uruguay
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Univariate Model

§ We fitted an ARMA model for each basin using the twice 
differenced series

§ Conclusion

– The log of the inflows give a better fit, but it leads to a non-additive 
model

– The tails of the residual normality check do not look good even for 
the log model

– There is correlation between the basins, so a multivariate analysis 
would be better to forecast the inflows.
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Principal Component Analysis

First Component     (9 basins)

Second Component (5 basins)

Third Component    (1 basin)

The results show that 
geography explains 80% of 

the variability!
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Future Goals
§ Create a multivariate model for each component using 

Dynamic Linear Models

§ Incorporate climate variables such as: 
– Precipitation

– El Nino

– Ocean temperature

§ Generate scenario tree with the forecasted inflows as input for 
the optimization model.



Optimization Model



14

Hydrothermal Scheduling

§ Objective is to minimize total expected cost 
to operate the system:
– Fuel costs for generating thermal power

– Penalties for failure to meet demand

§ Decision variables: for each hydro plant, 
decision vector includes:
– turbined outflow volumes GHt

– spilled volumes St
– reservoir storage level Vt   

§ Uncertainty: future inflows bt , bt+1 , ... bT
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Stage t Problem Formulation
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Stage t Benders Decomposition Master Program

min
$!,&!

c'x' + θ'
s. t. A'x' = B'x'() + b' ∶ π'

-G'x' +e θ' ≥ g' ∶ α'
x' ≥ 0

Where,

x*: all stage t decision variables including: hydro generation, 
hydro storage, spillage, thermal generation...

A*: constraint matrix including water balance, meet 
demand, ... 

b*: stochastic inflow and deterministic demand

B*x*+,: is storage from last stage

θ*: future cost function

§ In a Benders’ (or SDDP) decomposition algorithm, the stage t problem for each 
scenario is capture by the following master program
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Sampling-Based Decomposition Algorithm

Inventory (𝐕𝐭)

Future Cost (𝛉𝐭)

Piecewise Linear 
Function

Forward Pass Backward Pass

𝒙𝟏

𝒙𝟐

-𝑮𝒕𝒙𝒕 +𝒆 𝜽𝒕 ≥ 𝒈𝒕

-𝑮𝒕𝒙𝒕 +𝒆 𝜽𝒕 ≥ 𝒈𝒕
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Algorithm Parallelization

Select Forward 
Paths

Solve first-stage  
node at the root 

core

MPI_Bcast
State Variables 
from 1st stage 

solution

Compute 
Lower Bound

MPI_Reduce
Obtain global 

upper bound at 
the root

Stop

MPI Finalize

Backward Pass

Forward Pass

Starting
Point

Yes

Bounds
are within 
stopping
criteria?

No

§ This type of algorithm can be parallelized, in both steps.

§ MPI to communicate with the different cores.

§ Synchronize using blocking collective communication calls.
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For each stage t = T-1,…, 1 Backward Step

For each stage t = 2,...,T Forward Pass

Algorithm Parallelization (cont.)

Check # of 
scenarios to 

solve

MPI_Scatterv
Send scenarios 
to other cores

Solve each scen
Store state vars

Compute average 
upper bound

MPI_Gatherv
Get the state 

vars at the root

MPI_Bcast
State vars from 

root to other

At each 
core

Check # of scen to 
solve based on # 

of cores at the stage

MPI_Scatterv
Send scenarios
to other cores

Solve each scen
Store obj func value
Store Dual Prices

MPI_Gatherv
Get obj func values & 

dual prices at root

Form cuts to use
in the next stage

MPI_Bcast
cuts from root

to others

At each 
core
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Where are we right now?
§ We have a univariate ARIMA model for the incremental inflows at 

each basin

§ We have the serial and parallel version of the decomposition 
algorithm tested for a simple case with 3 stages and 2 possible 
scenarios at each stage

§ The model considers inter-stage independency for inflows

§ We are moving toward using real data and testing the algorithm on 
real-size instances

§ Incorporate inflow forecasting into the optimization model

§ Modify the algorithm to handle inter-stage dependency
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Future Research Questions

§ How the inflow forecasting model behaves with the addition of 
climate data for the river basins?

§ Does the aggregated reservoir scheme behave well compared to 
a model with less aggregation or individual hydro plants?

§ What is an adequate number of stages? 
§ Is monthly discretization appropriate? 
§ How does the algorithm scale with many processors available?
§ Can we characterize the algorithm’s solution quality?
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