

Hydroelectric Scheduling: Inflow Forecasting and Parallel Decomposition

Anderson Rodrigo de Queiroz	ORIE
Luana Medeiros Marangon Lima	ORIE
David P. Morton	ORIE
Elmira Popova	ORIE

Outline

- Hydro Scheduling Problem Description
- Stochastic Models that Govern Inflows
- Problem Formulation
- Parallelization of the Decomposition Algorithm
- Future Research Goals

Hydrothermal Scheduling Problem

- Hydroelectricity is inexpensive to produce, yet depends on the supply of water (stochastic)
- Present decisions affect future conditions of the system and also future decisions (dynamic)
- Multiple interconnected reservoirs need to be scheduled for multi-period optimization (large-scale)

Decision Tree

Hydrothermal Scheduling: Brazilian Interconnected Power System

- 85% of electricity capacity comes from hydro
- Current model
 - optimization over 60 stages to determine the generator dispatch
 - agregated reservoir scheme
 - Forecast energy instead of inflow
 - Stochastic Dual Dynamic Programming
- Because of the big hydro dependency the inflows at the reservoirs are very important input parameters to the model

Probabilistic Model for the Inflows

Probabilistic Model for the Inflows

- We want to forecast future inflows to the system of reservoirs and rivers
- Model requirements to suit the optimization problem
 - Additive
 - Markov property
- We have the historical data for the monthly inflows per reservoir from 1931 to 2009

1 1931	178	371	326	479	332	226	125	89	112	192	153	215
1 1932	449	344	214	72	68	98	81	71	73	92	102	240
1 1933	287	161	147	108	84	72	69	64	63	67	72	141
1 1934	196	96	112	79	60	49	44	38	40	48	57	216
1 1935	242	381	184	169	121	98	73	73	69	86	86	92
1 1936	84	108	229	128	90	67	57	58	65	60	87	200
1 1937	349	231	170	121	128	95	74	62	57	136	158	378
1 1938	265	298	227	154	133	105	88	85	97	125	135	256
1 2005	254	208	176	114	119	93	84	65	64	65	106	176
1 2006	129	153	150	86	68	60	53	45	54	69	112	170
1 2007	363	274	132	100	81	70	59	54	42	50	83	88
1 2008	113	221	195	141	88	75	60	51	53	68	119	254
1 2009	255	268	225	177	114	93	90	75	88	129	00	00

140 reservoirs

irs 🗖

140 variables

Generation Power Plants Geographically

- The colored regions delineate the river basin boundaries
- The reservoirs operate in a cascade scheme
- To reduce problem size we aggregate reservoirs, and incremental inflows by basin
- Incremental inflow is the difference between a reservoir's natural inflow and that if the reservoir immediately upstream

Trend and Correlation Analysis

- Seasonality more or less pronounced depending on the basin
- Basins with greater seasonality exhibit nonstationary behavior
- Difference series at lag 12 does not completely eliminate seasonality

Univariate Model

- We fitted an ARMA model for each basin using the twice differenced series
- Conclusion
 - The log of the inflows give a better fit, but it leads to a non-additive model
 - The tails of the residual normality check do not look good even for the log model
 - There is correlation between the basins, so a multivariate analysis would be better to forecast the inflows.

Principal Component Analysis

First Component (9 basins)Second Component (5 basins)Third Component (1 basin)

The results show that geography explains 80% of the variability!

Future Goals

- Create a multivariate model for each component using Dynamic Linear Models
- Incorporate climate variables such as:
 - Precipitation
 - El Nino
 - Ocean temperature
- Generate scenario tree with the forecasted inflows as input for the optimization model.

Optimization Model

Hydrothermal Scheduling

- Objective is to minimize total expected cost to operate the system:
 - Fuel costs for generating thermal power
 - Penalties for failure to meet demand
- Decision variables: for each hydro plant, decision vector includes:
 - turbined outflow volumes GH_t
 - spilled volumes S_t
 - reservoir storage level Vt
- Uncertainty: future inflows b_t , b_{t+1} , ..., b_T

Stage t Problem Formulation

$$\begin{aligned} h_t(V_{t-1}, b_t^w) &= \min \sum_{l \in L} c_{l,t} GT_{l,t}^w + \sum_{k \in K} u_{k,t} GD_{k,t}^w + \sum_{w' \in W_t} p_t^{w'} h_{t+1}(V_t^w, b_{t+1}^{w'}) \\ \text{(Water Balance) s.t.} \quad V_{i,t}^w + GH_{i,t}^w + S_{i,t}^w - \sum_{j \in M_i} \left(GH_{j,t}^w + S_{j,t}^w \right) = V_{i,t-1} + b_{i,t}^w \quad \forall i \in I \\ \text{(Meet Demand)} \quad \sum_{i \in I} \rho_i \ GH_{i,t}^w + \sum_{l \in L} \ GT_{l,t}^w + \sum_{k \in K} \ GD_{k,t}^w = D_t \\ 0 \leq V_{i,t}^w \leq \overline{GH_{i,t}^w} \quad \forall i \in I \\ 0 \leq GH_{i,t}^w \leq \overline{GH_{i,t}^w} \quad \forall i \in I \\ 0 \leq GT_{l,t}^w \leq \overline{GT_{l,t}^w} \quad \forall l \in L \\ 0 \leq GD_{k,t}^w \quad \forall k \in K \end{aligned}$$

 In a Benders' (or SDDP) decomposition algorithm, the stage t problem for each scenario is capture by the following master program

$$\begin{array}{ll} \min_{x_t,\theta_t} & c_t x_t \,+\, \theta_t \\ \text{s.t.} & A_t x_t = B_t x_{t-1} + b_t : \pi_t \\ & -G_t x_t \,+ e \, \theta_t \,\geq g_t \quad : \alpha_t \\ & x_t \,\geq 0 \end{array}$$

Where,

- x_t: all stage t decision variables including: hydro generation, hydro storage, spillage, thermal generation...
- At: constraint matrix including water balance, meet demand, ...

bt: stochastic inflow and deterministic demand

 $B_t x_{t-1}$: is storage from last stage

 θ_t : future cost function

Sampling-Based Decomposition Algorithm

Algorithm Parallelization

- This type of algorithm can be parallelized, in both steps.
- MPI to communicate with the different cores.
- Synchronize using blocking collective communication calls.

Algorithm Parallelization (cont.)

Where are we right now?

- We have a univariate ARIMA model for the incremental inflows at each basin
- We have the serial and parallel version of the decomposition algorithm tested for a simple case with 3 stages and 2 possible scenarios at each stage
- The model considers inter-stage independency for inflows
- We are moving toward using real data and testing the algorithm on real-size instances
- Incorporate inflow forecasting into the optimization model
- Modify the algorithm to handle inter-stage dependency

Future Research Questions

- How the inflow forecasting model behaves with the addition of climate data for the river basins?
- Does the aggregated reservoir scheme behave well compared to a model with less aggregation or individual hydro plants?
- What is an adequate number of stages?
- Is monthly discretization appropriate?
- How does the algorithm scale with many processors available?
- Can we characterize the algorithm's solution quality?

References

- Birge, J.R., Donohue, C.J., Holmes, D.F., Svintsitski, O.G., "A parallel implementation of the nested decomposition algorithm for multistage stochastic linear programs", Mathematical Programming 75 (1996) 327-352.
- Flach, B.C., Barroso, L.A., Pereira, M.V.F., "Long-term optimal allocation of hydrogeneration for a price-maker company in a competitive market: latestdevelopments and a stochastic dual dynamic programming approach", IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 2, pp. 299–314
- Infanger, G., Morton, D.P., "Cut sharing for multistage stochastic linear programs with interstage dependency", Mathematical Programming 75 (1996) 241-256.
- Pacheco, P.S. "Parallel Programming with MPI", Morgan Kaufmann Publishers, 1997.
- Pereira, M.V.F., Pinto, L.M.V.G. "Multi-Stage Stochastic Optimization Applied to Energy Planning", Mathematical Programming, No. 52, 1991.
- Pereira, M.V.F., Pinto, L.M.V.G. "Stochastic Optimization of a Multi-reservoir Hydroelectric System: A Decomposition Approach", Water Resources Research, Vol.21, No. 6, Pages 779-792, June 1985.
- Philpott, A.B. and Guan, Z., "On the convergence of stochastic dual dynamic programming and related methods, Operations Research Letters, 36, 2008.
- Silva, E.L., Finardi, E.C., "Parallel Processing Applied to the Planning of Hydrothermal Systems" IEEE Transactions on Parallel and Distributed Systems, Vol. 14, No. 8, August 2003.
- Shapiro, A., "Analysis of Stochastic Dual Dynamic Programming Method", European Journal of Operational Research, to appear.
- West, M., Harrison, J., "Bayesian Forecasting and Dynamic Models", Springer Series in Statistics, Second Edition 1997.
- Tsay, R.S., "Analysis of Financial Time Series", Wiley-Interscience, Second Edition 2005.

Thank you!