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Introduction

§ Hydroelectricity is inexpensive 
to produce

§ Depends on the supply of water 
(stochastic)

§ Present decisions affect future 
conditions of the system and 
also future decisions (dynamic) 

§ Multiple interconnected 
reservoirs, transmission 
constraints and multi-period 
optimization (large-scale)
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Aggregate Reservoir Representation

ARR

Controllable 
Energy (EC)

Uncontrollable 
Energy (EU)

Evaporation 
Losses (EV)

Minimal Outflow 
Energy (EM)

Water Diversion 
Energy Losses 
(EDC, EDU)

§ Aggregate hydro plants in a 
region to create unique ARRs

§ Reduce model’s size



Water Inflow Vs. Energy Inflow

§ Arguments for forecasting water inflows:

– Exploit local predictors

– Are measurable

– Unaffected by the hydro system configuration

§ Problems when forecasting energy inflows

– Ties model of a natural process to the decision process

– Harder to validate

– Affected by the hydro system configuration

• Precipitation
• El ninõ
• Soil use



Brief Survey
§ Introduce sampling methods to nested Benders’ 

decomposition algorithm → Sampling-based decomposition 
algorithm (SBDA), the SDDP (Pereira & Pinto 91)

§ Since then SBDA has received considerable attention, 
DOASA, CUPPS, Abridged Nested Decomposition

§ Cut sharing procedure for inter-stage dependency 
models (Infanger & Morton 1996) 

§ Solution quality (Chiralaksanakul & Morton 2004)

§ Statistical properties & risk measures (Shapiro 2010)

§ Alternative sampling (Homem-de-Mello et al. 2011)



A General SLP-𝑡
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𝑥%: all stage t decision variables including: hydro generation, hydro 

storage, spillage, thermal generation, energy transfers, ...

𝐴%: constraint matrix including energy balance, demand satisfaction, ... 

𝑏%: stochastic water inflow at each hydro plant

𝝆𝒕: matrix to transform water into controllable and uncontrollable energy inflows

𝐵%𝑥%'(: storage from last stage, energy parameters that depend on storage

𝒌𝒕 : deterministic demand, constant energy parameters

We consider a model that 
uses water inflow forecasts 

instead of energy 

where, for t = 2,…,T



Stage 𝑡 Benders’ Master Problem
§ Suppose we are at stage 𝑡 under 𝜔! and we have:

min
!#,.#

𝑐(𝑥( + 𝜃(
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𝑏( = 𝑅()*𝑏()* + 𝜂( where,

𝜌%: matrix with 𝑚! rows and 𝑞! columns 

𝑅%: matrix with 𝑞! rows and 𝑞! columns

𝜂%: column-vector with 𝑞! elements

𝑏%: column-vector with 𝑞! elements

(# of individual hydro plants)

𝑣𝑒𝑐(𝜂!, 𝑐!, 𝐵!, 𝐴!), 𝑡 = 2,… , 𝑇 are 

𝑔!
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Sampling-based Decomposition Algorithm

Inventory (𝐱𝐭)

Future Cost (𝛉𝐭)

Piecewise Linear 
Function

Forward Pass Backward Pass

𝒙𝟏

𝒙𝟐

-𝑮𝒕𝒙𝒕 + 𝜽𝒕 ≥ 𝒈𝒕

-𝑮𝒕𝒙𝒕 + 𝜽𝒕 ≥ 𝒈𝒕



Policy Generation Procedure
§ A solution to a multistage 

stochastic program is defined by 
a policy, which specifies what 
decision to take at each stage, 
given the history of the 
stochastic process

§ Input: Sample size 𝒏𝒖 and 
Bender’s Master Problem with 
SDDP outputs: cuts computed 
for stages 𝑡 = 2,… , 𝑇, and 1st
stage solution, 𝑥"

§ Output: Sample mean 
estimator 𝑼𝒏𝒖 and variance 𝑺𝒖𝟐
for expected cost of policy

§ 1. Let 𝑥'( = 𝑥', i = 1, … , 𝑛)
§ 2. Sample i.i.d. paths from 
Ω*, 𝑏'( , … , 𝑏*( , 𝑖 = 1, … , 𝑛)
do 𝑖 = 1,… , 𝑛)

do 𝑡 = 2,… , 𝑇
form RHS of the problem: 

𝐵!𝑥!+'( + 𝜌!𝑏!( + 𝑘!
solve and obtain 𝑥!(

end do

let 𝑧( = ∑!,'* 𝑐! 𝑥!(

end do

3. Compute 𝑼𝒏𝒖 and 𝑺𝒖𝟐



Lower Bound Estimation
§ D𝜴𝑻 denotes the sample space of a finite scenario tree and 𝜴𝑻 represents 

the sample space of the true stochastic process

§ We want to form a lower bound on 𝒛∗. In this case F𝒛∗ or  its bounds 
play an important role in achieving that 

§ As shown in Chiralaksanakul and Morton (2004), we have that 𝔼F𝒛∗ ≤
𝒛∗, which is clear when the branch size 𝑛 𝑡 = 1

1. do 𝑖 = 1,… , 𝑛ℓ
- Create a sample tree with 
𝒏7 𝒕 branches at stage 𝑡, 
independent from previous 
- Run SDDP to obtain a lower 
bound on the optimal value, 𝒛𝒊

end do
2. Compute 𝑳𝒏ℓ and  𝑺ℓ𝟐

§ Input: Instance of SLP-𝒕, 
branch size 𝒏/ 𝒕 , 𝑡 =
2,… , 𝑇, and sample size 𝒏ℓ

§ Output: Sample mean 
estimator 𝑳𝒏ℓ and variance 
𝑺ℓ𝟐 for lower bound on 
optimal value 𝑧∗



Confidence Interval Construction
§ Input: Instance of SLP-𝒕, branch size 𝒏 𝒕 , 𝑡 = 2,… , 𝑇, for policy 

construction and 𝒏7 𝒕 , 𝑡 = 2,… , 𝑇, for lower bound estimation, sample 
sizes 𝒏𝒖 and 𝒏ℓ, and 𝛼 ∈ 0,1

§ Output: Approximate 1 − 𝛼 -level confidence interval on optimality 
gap 𝔼𝑼 − 𝒛∗

1. Form a sample scenario tree with branches size 𝑛 𝑡
2. Run SDDP to approximately solve  SLP-𝒕 defined on the sampled 

scenario tree to obtain cuts for all stages, first stage solution, 𝑥"
3. Run PGP with sample size 𝒏𝒖 to obtain 𝑼𝒏𝒖 and 𝑺𝒖𝟐

4. Run LBE with branch size 𝒏7 𝒕 , 𝑡 = 2,… , 𝑇 and sample size 𝒏ℓ, 
to obtain 𝑳𝒏ℓ and 𝑺ℓ𝟐

5. Let 𝜖ℓ = 𝑡9ℓ,"𝑆ℓ/ 𝑛ℓ and 𝜖: = 𝑧;𝑆:/ 𝑛:. Output one-sided CI
on 𝔼𝑼 − 𝒛∗, 0 , 𝑈9+ − 𝐿9ℓ

+ + 𝜖ℓ + 𝜖:



Application to the Brazilian System

§ 80% of generation capacity → hydro
– 150 hydro generators, 150 thermal generators

§ Model Characteristics
– Optimization over 24 stages 

– Aggregated reservoir scheme

– Water inflow forecasts produced by a DLM 
(Marangon Lima, 2011)

§ We consider different sample sizes for the 
same problem instance
– 𝑛 𝑡 = max 𝜌!+'𝑛 1 , 𝑛2(3 for 𝑡 = 2,… , 𝑇

– 𝑛) = 12800 for PGP

– 𝑛ℓ = 15 for LBE



Upper Bound Estimator Analysis
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Upper Bound Estimator Analysis (cont.)



Lower Bound Estimator Analysis
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Lower Bound Estimator Analysis (cont.)
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Confidence Interval Analysis
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Confidence Interval Analysis (cont.)
§ The CI error reduces as the sample size becomes larger

§ The CI width shrinks as the scenario trees grow in size

§ As the scenario tree used to form the policy grows the 
point estimate associated with the upper bound tends to 
decrease

§ As the scenario trees used on the LBE grow the lower 
bound tends to grow and the sampling error reduces

§ Together this means that the gap estimate tends to 
shrink
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Final Remarks & Future Steps
§ The hydro-scheduling problem is a challenging multi-stage 

stochastic optimization problem. SBDA handles the problem 

§ We presented a procedure to assess the quality of the solution 
with respect to the true problem in a multi-stage setting

§ Assess the solution quality in multi-stage stochastic programs 
using smart sampling ideas to better select the scenarios to 
create the sampled scenario trees

§ Assessment of the policy quality as the time horizon grows

§ Employ risk measures such as CVaR within the SDDP 
algorithm. Assessing solution quality in such a setting would 
require extension of the current techniques
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