

On a Sampling-based Decomposition Algorithm Applied to Hydrothermal Scheduling: Solution Quality and Bounds

Anderson Rodrigo de QueirozORIEDavid P. MortonORIE

November 16th, 2011

Outline

- Hydrothemal Scheduling Problem
- Model Formulation
- SBDA Multi-stage Scheme
- Solution Quality Evaluation in a Multistage
 Stochastic Program
- Future Work

Introduction

- Hydroelectricity is inexpensive to produce
- Depends on the supply of water (stochastic)
- Present decisions affect future conditions of the system and also future decisions (dynamic)
- Multiple interconnected reservoirs, transmission constraints and multi-period optimization (large-scale)

Decision Tree

Aggregate Reservoir Representation

Water Inflow Vs. Energy Inflow

- Arguments for forecasting water inflows:
 - Exploit local predictors
 Precipitation
 El ninõ
 Soil use
 - Are measurable

- Unaffected by the hydro system configuration
- Problems when forecasting energy inflows
 - Ties model of a natural process to the decision process
 - Harder to validate
 - Affected by the hydro system configuration

Brief Survey

- Introduce sampling methods to nested Benders' decomposition algorithm → Sampling-based decomposition algorithm (SBDA), the SDDP (Pereira & Pinto 91)
- Since then SBDA has received considerable attention,
 DOASA, CUPPS, Abridged Nested Decomposition
- Cut sharing procedure for inter-stage dependency models (Infanger & Morton 1996)
- Solution quality (Chiralaksanakul & Morton 2004)
- Statistical properties & risk measures (Shapiro 2010)
- Alternative sampling (Homem-de-Mello et al. 2011)

A General SLP-t

We consider a model that uses water inflow forecasts instead of energy where, for t = 2, ..., Twhere, for t = 2, ..., T $min_{x_t} c_t x_t + E_{b_{t+1}|b_1,...,b_t} h_{t+1}(x_2, b_{t+1})$ $s.t. A_t x_t = B_t x_{t-1} + \rho_t b_t + k_t$ $x_t \ge 0$

 x_t : all stage t decision variables including: hydro generation, hydro storage, spillage, thermal generation, energy transfers, ...

 A_t : constraint matrix including energy balance, demand satisfaction, ...

 b_t : stochastic water inflow at each hydro plant

 ρ_t : matrix to transform water into controllable and uncontrollable energy inflows $B_t x_{t-1}$: storage from last stage, energy parameters that depend on storage k_t : deterministic demand, constant energy parameters

Stage t Benders' Master Problem

• Suppose we are at stage t under ω_t and we have:

$$b_{t} = R_{t-1}b_{t-1} + \eta_{t}$$

$$\min_{\substack{x_{t},\theta_{t} \\ s.t.}} c_{t}x_{t} + \theta_{t}$$

$$s.t. \quad A_{t}x_{t} = B_{t}x_{t-1} + \rho_{t}b_{t} + k_{t} : \pi_{t}$$

$$-\vec{G}_{t}x_{t} + e \theta_{t} \ge \vec{g}_{t} \qquad : \alpha_{t}$$

$$x_{t} \ge 0$$

where, ρ_t : matrix with m_t rows and q_t columns R_t : matrix with q_t rows and q_t columns η_t : column-vector with q_t elements b_t : column-vector with q_t elements

 $vec(\eta_t, c_t, B_t, A_t), t = 2, \dots, T$ are \coprod

cut-intercept

vector

$$G_{t} = \sum_{\omega_{t+1} \in \Delta(\omega_{t})} p^{\omega_{t+1}|\omega_{t}} \pi_{t+1}^{\omega_{t+1}} B_{t+1} \longrightarrow \text{cut-gradient matrix}$$

$$g_{t}^{\omega_{t}} = \sum_{\omega_{t+1} \in \Delta(\omega_{t})} p^{\omega_{t+1}|\omega_{t}} \pi_{t+1}^{\omega_{t+1}} (\rho_{t+1} b_{t+1}^{\omega_{t+1}}) + k_{t+1}) + \sum_{\omega_{t+1} \in \Delta(\omega_{t})} p^{\omega_{t+1}|\omega_{t}} \alpha_{t+1}^{\omega_{t+1}} g_{t+1}^{\omega_{t+1}}$$
may have interstage depedency

Sampling-based Decomposition Algorithm

Policy Generation Procedure

- A solution to a multistage stochastic program is defined by a policy, which specifies what decision to take at each stage, given the history of the stochastic process
- Input: Sample size n_u and Bender's Master Problem with
 SDDP outputs: cuts computed for stages t = 2, ..., T, and 1st stage solution, x₁
- Output: Sample mean estimator U_{n_u} and variance S_u^2 for expected cost of policy

1. Let
$$x_1^i = x_1$$
, $i = 1, ..., n_u$

• 2. Sample i.i.d. paths from

$$\Omega_T, b_1^i, \dots, b_T^i, i = 1, \dots, n_u$$

do $i = 1, \dots, n_u$

do
$$t = 2, ..., T$$

form RHS of the problem: $B_t x_{t-1}^i + \rho_t b_t^i + k_t$

solve and obtain x_t^i

end do

let
$$z^i = \sum_{t=1}^T c_t x_t^i$$

end do

3. Compute U_{n_u} and S_u^2

Lower Bound Estimation

- $\hat{\Omega}_T$ denotes the sample space of a finite scenario tree and $\hat{\Omega}_T$ represents the sample space of the true stochastic process
- We want to form a lower bound on z*. In this case 2^{*} or its bounds play an important role in achieving that
- As shown in Chiralaksanakul and Morton (2004), we have that $\mathbb{E}\hat{z}^* \leq z^*$, which is clear when the branch size n(t) = 1
- Input: Instance of SLP-t, branch size n'(t), t = 2, ..., T, and sample size n_l
- Output: Sample mean estimator $L_{n_{\ell}}$ and variance S_{ℓ}^2 for lower bound on optimal value z^*

1. **do** $i = 1, ..., n_{\ell}$

- Create a sample tree with n'(t) branches at stage t, independent from previous
- Run SDDP to obtain a lower bound on the optimal value, \underline{z}^i

end do

2. Compute $L_{n_{\ell}}$ and S_{ℓ}^2

Confidence Interval Construction

- Input: Instance of SLP-t, branch size n(t), t = 2, ..., T, for policy construction and n'(t), t = 2, ..., T, for lower bound estimation, sample sizes n_u and n_ℓ, and α ∈ (0,1)
- Output: Approximate (1α) -level confidence interval on optimality gap $\mathbb{E}U z^*$
 - 1. Form a sample scenario tree with branches size n(t)
 - 2. Run SDDP to approximately solve SLP-t defined on the sampled scenario tree to obtain cuts for all stages, first stage solution, x_1
 - 3. Run PGP with sample size n_u to obtain U_{n_u} and S_u^2
 - 4. Run LBE with branch size n'(t), t = 2, ..., T and sample size n_{ℓ} , to obtain $L_{n_{\ell}}$ and S_{ℓ}^2

5. Let
$$\epsilon_{\ell} = t_{n_{\ell}-1}S_{\ell}/\sqrt{n_{\ell}}$$
 and $\epsilon_u = z_{\alpha}S_u/\sqrt{n_u}$. Output one-sided **CI**
on $\mathbb{E}\boldsymbol{U} - \boldsymbol{z}^*$, $\left[0, \left(U_{n_u} - L_{n_{\ell}}\right)^+ + \epsilon_{\ell} + \epsilon_u\right]$

Application to the Brazilian System

- 80% of generation capacity \rightarrow hydro
 - 150 hydro generators, 150 thermal generators
- Model Characteristics
 - Optimization over 24 stages
 - Aggregated reservoir scheme
 - Water inflow forecasts produced by a DLM (Marangon Lima, 2011)
- We consider different sample sizes for the same problem instance
 - $n(t) = \max\{\rho^{t-1}n(1), n_{min}\}$ for t = 2, ..., T
 - $n_u = 12800$ for PGP
 - $n_{\ell} = 15$ for LBE

Upper Bound Estimator Analysis

Upper Bound Estimator Analysis (cont.)

Branches		10	20	60	100	200	1000
20	Pt	572910.9					
	HW	23540.8					
60	\mathbf{Pt}	498688.8	-74222.1				
	HW	17604.6	13660.4				
100	Pt	583446.1	10535.1	84757.3			
	HW	23811.1	9626.8	13067.4			
200	Pt	634653.2	61742.2	135964.4	51207.1		
	HW	23365.3	10191.1	10923.7	7531.9		
1000	Pt	664716.3	91805.4	166027.5	81270.2	30063.1	
	HW	23698.3	11212.3	10373.0	9103.9	5905.1	
2000	\mathbf{Pt}	678566.1	105655.2	179877.3	95120.1	43913.0	13849.8
	HW	24116.9	11058.8	10742.0	8959.6	6019.8	4668.8

Table 4.2: Paired Student-*t* Test for PGP with Different Scenario-Tree Sizes Paired Student-*t* tests using common random numbers and a 90% level with a sample size of 12800. The table contains confidence intervals for the column entry less the row entry; e.g., the first entry is 572910.9 \pm 23540.8 is a confidence interval for $U_{n_u}(10) - U_{n_u}(20)$, where $U_{n_u}(10)$ and $U_{n_u}(20)$ denote the point estimates from scenario trees with n(1) = 10 and n(1) = 20branches at each stage, respectively.

Lower Bound Estimator Analysis

Lower Bound Estimator Analysis (cont.)

Confidence Interval Analysis

Confidence Interval Analysis (cont.)

- The **CI error reduces** as the sample size becomes larger
- The **CI width shrinks** as the scenario trees grow in size
- As the scenario tree used to form the policy grows the point estimate associated with the upper bound tends to decrease
- As the scenario trees used on the LBE grow the lower bound tends to grow and the sampling error reduces
- Together this means that the gap estimate tends to shrink

Total Time in Minutes

Final Remarks & Future Steps

- The hydro-scheduling problem is a challenging multi-stage stochastic optimization problem. SBDA handles the problem
- We presented a procedure to assess the quality of the solution with respect to the true problem in a multi-stage setting
- Assess the solution quality in multi-stage stochastic programs using smart sampling ideas to better select the scenarios to create the sampled scenario trees
- Assessment of the policy quality as the time horizon grows
- Employ risk measures such as CVaR within the SDDP algorithm. Assessing solution quality in such a setting would require extension of the current techniques

References

- Z.L. Chen and W.B. Powell, "Covergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse", Journal of Optimization Theory and Applications, Vol.102, Nº.3, pp. 497-524, 1999.
- A. Chiralaksanakul and D.P. Morton, "Assessing policy quality in multi-stage stochastic programming", Stochastic Programming E-Print Series 2004.
- C.J. Donohue and J.R. Birge. "The abridged nested decomposition method for multistage stochastic linear programs with relatively complete recourse", Algorithmic Operations Research, 1:20-30, 2006.
- B.C. Flach, L.A. Barroso and M.V.F. Pereira, "Long-term optimal allocation of hydrogeneration for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approach", IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 2, pp. 299–314.
- Z. Guan and A.B. Philpott, "A multistage stochastic programming model for the New Zealand dairy industry", International Journal in Production Economics, 2009.
- T. Homem de Mello, V. de Matos and E. Finardi, "Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling", Energy Syst (2011) 2: 1–31.
- G. Infanger and D.P. Morton, "Cut sharing for multistage stochastic linear programs with interstage dependency", Mathematical Programming 75 (1996) 241-256.
- L.M. Marangon Lima, "Modeling and forecast of Brazilian reservoir inflows via dynamic linear models under climate change scenarios", PhD thesis, The University of Texas at Austin, 2011
- M.V.F. Pereira and L.M.V.G. Pinto, "Stochastic Optimization of a Multi-reservoir Hydroelectric System: A Decomposition Approach", Water Resources Research, Vol.21, No. 6, Pages 779-792, June 1985.
- M.V.F. Pereira and L.M.V.G. Pinto, "Multi-Stage Stochastic Optimization Applied to Energy Planning", Mathematical Programming, N. 52, 1991.
- A.B. Philpott and Z. Guan, "On the convergence of stochastic dual dynamic programming and related methods", Operations Research Letters, 36, 2008
- A.B. Philpott and V. de Matos, "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion", Available at http://www.optimization-online.org/DB HTML/2010/12/2861.html, 2010.
- M. Raby, S. Ríos, S. Jerardino, J.C. Araneda, and R. Raineri, "Hydrothermal System Operation and Transmission Planning Considering Large Wind Farm Connection", Proceedings of the 2009 IEEE Power Tech Conference, Bucharest.
- S. Rebennack, "A unified state-space and scenario tree framework for multi-stage stochastic optimization: An application to emission-constrained hydro-thermal scheduling", PhD Dissertation, University of Florida, 2010
- A. Shapiro, "Analysis of Stochastic Dual Dynamic Programming Method", European Journal of Operational Research, to appear

Thank you!