THE VALUE OF STOCHASTIC PROGRAMMING FOR ENERGY SYSTEMS PLANNING

Anderson Rodrigo de Queiroz, Ph.D. Joseph F. DeCarolis, Ph.D.

November, 2016

Informs Annual Meeting, Nashville TN

Research Team

Res. Prof. A.R. de Queiroz

Prof. Joseph DeCarolis

Binghui Li, Ph.D cand.

Neha Patankar, Ph.D. student

Hadi Eshraghi, Ph.D. student

Introduction

- Energy system models should reflect the reality that planners must make decisions prior to the realization of future uncertainties
- Multi-stage stochastic linear programs (MSLP) optimize over future possibilities to yield a near-term decision strategy
- We use the expected value of perfect information (EVPI) and the value of the stochastic solution (VSS) as metrics in long-term capacity expansion of energy systems modeled as MSLP

Overview

- Introduction
- Planning Capacity Expansion for Energy Systems
 - Background
 - Modeling and Characteristics
 - Tools for Energy Model Optimization and Assessment (TEMOA)
- Energy Systems Planning Problem as a Stochastic Program (SP)
 - ESPP in a multi-stage stochastic programming scheme
 - Uncertainty representation
 - Metrics to asses the value of SP for ESPPs
- Case Study
- Remarks and Comments

Planning Capacity Expansion for Energy Systems

Background

□ The energy system planning

requires a deep knowledge from the decision maker about **commodities**, **technologies**, **demand**, **costs** and network infrastructure

- Decisions in such systems are driven by information available at the present time as well as future projections
- To expand the existent installed supply-demand energy infrastructure, one has to consider the intrinsic characteristics of each subsystem (or sector) represented in the process

Some Literature...

- Expansion planning of electricity power generation (Massé & Gibrat, 57; Jenkins & Joy, 74; Majumdar & Chattopadhyay, 99; Bistline, 15), transmission interconnections (Lee et al., 74; de la Torre et al., 08; Sauma & Oren, 07) and distribution networks (Asakura et al., 03; Hemmati et al., 15)

- Energy system planning, however, can be used in a much broader analysis including a combination of electricity, vehicle transportation, fuel supply-chains, district heating/coaling and other systems (Leung & Hsu, 84; Bhatt et al., 10; Chaudry et al., 14; Gironès et al., 15; Gómez et al., 16)
- The energy system planning problem (ESPP) is known for several decades (Kroneberg, 50) and one of the first formulations as a linear programming model is presented in (Massé and Gibrat, 57)
- Mathematical models have being extensively used to represent such problems (Jebaraj & Iniyan, 06; Connolly et al., 10), eg. Markal (Fishbone & Abilock, 81)

Uncertainty and Metrics in MSLP

- Uncertainty plays a fundamental role in the definition of strong strategies which aim to minimize the total combined expansion and operational costs over a particular time horizon using mathematical models
- Understanding uncertainty is also a pre-requisite to correctly use such information in mathematical models (Kann & Weyant, 00)
- The representation of each uncertainty type will result in different models and different results and values that can be achieved with such models
- We aim to investigate long-term ESPP under uncertainty and what is the value of a MSLP representation of the problem instead of a deterministic
- Value of the stochastic solution (VSS) (Birge, 82)

How much money the hedging strategy saves relative to the total cost obtained by an optimization model when uncertainty is ignored

Models and Characteristics

- Models for conducting energy system analysis:
 - Markal/Times
 - OSeMOSYS
 - Message

- Energy economy optimization model
- Technology assessment and policy analysis at ≠scales
- Model is implemented in a general algebraic formulation combined with
- Stochastic Programming capabilities (extensive LP and Progressive Hedging)

http://www.temoaproject.org https://github.com/TemoaProject/temoa/

TEMOA – General Purpose

- TEMOA represents a capacity expansion and operational model for energy systems
- Represents a MSLP in a network with multiple technologies and multi-commodities
- Model's objective: minimize cost of energy supply over a defined time horizon (present + expected future cost)
- Processes represented in a macro level

Commodity flow balance

Mathematical Formulation

$$\begin{split} \hline & \text{LeanCost} = \sum_{v,v} \left(\begin{bmatrix} c_{v,v} \cdot A_{v,v} \cdot \sum_{j=0}^{u} \frac{1}{(1+\text{CDR})^{v,v-k_j}} \end{bmatrix} \cdot \mathbf{CAP}_{v,v} \right) \\ \hline & \text{FixedCost} = \sum_{j,v,v} \left(\begin{bmatrix} c_{r,u,v} \cdot \sum_{j=0}^{u} \frac{1}{(1+\text{CDR})^{v,p-k_j}} \end{bmatrix} \cdot \mathbf{CAP}_{v,v} \right) \\ \hline & \text{min} \\ & \text{ACT}_{FI,FO} \\ & \text{CAP,CAPVAL} \\ \hline & \text{s.t.} \quad \mathbf{ACT}_{p,s,d,t,v} = \sum_{i,o} \mathbf{FO}_{p,s,d,i,t,v,o} \quad \forall \{p, s, d, t, v\} \in \Theta_{activity} \\ & \text{Process} \\ & \text{activity} \\ \hline & \left(CF_{s,d,t,v} \cdot C2A_t \cdot SEG_{s,d} \cdot TLF_{p,t,v} \right) \cdot \mathbf{CAP}_{t,v} \geq \mathbf{ACT}_{p,s,d,t,v} \quad \forall \{p, s, d, t, v\} \in \Theta_{activity} \\ & \sum_{i,t,v} \mathbf{FO}_{p,s,d,i,t,v,c} \geq DEM_{p,c} \cdot DSD_{s,d,c} \quad \forall \{p, s, d, i, t \in T-T^s, v, o\} \in \Theta_{flow} \\ \hline & \text{Fo}_{p,s,d,i,t,v,o} \leq EFF_{i,t,v,o} \cdot \mathbf{FI}_{p,s,d,i,t,v,o} \quad \forall \{p, s, d, i, t \in T-T^s, v, o\} \in \Theta_{balance} \\ \hline & \text{Global} \\ & \text{commodity} \\ \hline & \text{Other constraints and bounds: baseload, emissions, battery storage,...} \end{split}$$

Energy Systems Planning Problem as a Stochastic Program

ESPP as a MSLP

Uncertainty Representation

- Uncertainties may be represented by scenarios of:
 - Economic grow
 - Commodity/technology price trajectories (Van der Weijde & Hobbs, 12)
 - Demand realization (Pineda and Morales, 2016)
 - Technology reliability (Hajipour et al., 2015)
 - Policies related to greenhouse gases emissions (Bistline & Weyant, 13; Park & Baldick, 15)
 - Renewable generation penetration (Munoz et al., 14)
 - Renewable resources availability (Gil et al., 15)
 - Technological, economic, and policy-related (Bistline, 15)

EVPI & VSS Computation

What Influences Decision-making in ESPPs?

Cost vectors

- Existent capacity
- Commodities demand
- Bottlenecks in the network
- Efficiency of processes
- Reliability
- Availability of resources
- Time-delay between decisions and physical use
- Linking decisions and constraints
- Bounds that will limit investments

Discount rate

Value of Money & Time

□ Branch weighting (discount rate of 5% per 5 years)

Case Study

System Description

- How to design a power generation expansion plan for South Sudan?
- Significant size and abundant natural resources
- The country has
 ~ 30 [MW] of
 existent capacity

- Existent studies for hydropower investments
- However, is it the best option?

Problem Characteristics

Solar investment cost: 3.35 \$/kWMinimize total costHydro: 2.5 - 13.2 \$/kW, Thermal: 1.5\$/kWMinimize total costThermal variable cost: 40 - 46 \$/MWhMost information extracted from:
(Hatch Report, 2014)Curtailment cost: 300, 600 and 5000 \$/MWh(Hatch Report, 2014)Transmission lines investment cost, fixed costs, capacity factors, efficiency, etc

Problem Structure and Uncertainty

	Conflict Scenario Probabilities	
Conflict at	High	Low
Hydro	0.45	0.05
Thermal	0.25	0.05
Both	0.25	0.05
No conflict	0.05	0.85

EVPI & VSS for Different Curtailment Costs

Other Problem Instances

- We keep the instance with high probability of conflict
- Consider two annual discount rates (10% and 5%)
- Analyze problem with od fferen and humber 20 and 1 stages

EVPI & VSS (Curtailment, # of Stages and Discount Rate)

Remarks & Comments

Remarks & Comments

- We presented an overview about the ESPP and TEMOA
- We used EVPI and VSS as metrics to assess the value of representing this problem as a MSLP
- Problem's characteristics determines the optimization design (What to consider as uncertainty? How many time stages? Discount rate? Relationships with decisions from previous stages, etc)
- We briefly talked about a case study for South Sudan (explained in detail at the poster Section today at 12:30 PM by Neha Patankar)
- Future work will analyze EVPI and VSS considering other variations in model formulation as well as uncertainties

Thank You !

November 2016

Informs Annual Meeting, Nashville TN

