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Tools for Energy Model Optimization and Assessment




Capacity Expansion Models — Energy Systems

Models for conducting energy system analysis:
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TEMOA — General Purpose

45\ The TEMOA Project
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Represents a multi-stage problem in a network
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Processes represented in a macro level

Commodity flow balance




TEMOA Mathematical Formulation
S

MLLI'.V 1 MTLF.!.V 1 LENP

. . 1
LoanCost = Z ( [ICW 1A, - Z it GDR)Y*V—Po} .CAPLV) FixedCost = Z ( [FCN_V g yz; T GDR)Y""PD] .CAP“,) VariableCost = ( {vcpm : ZO m} ZACT,, d”)
= pree

tv y=0 p.tv psdty

min Total Cost = LoanCost + FixedCost + VariableCost

ACT,FI,FO
CAP,CAPVAL

P
s.1. ACI‘p.s.d.t,v = Z Fop,s,d,i,t,v.o V{p,s,d,t,v}E 8activity q:::\:,e“s;
i,0

(CFoaey - C2A, - SEG, 4 - TLF

P,t.V) ; CAPt.V = Acrp,s,d,t,v V{pa S, d: t; V}E eactivity TeChnOIOQY

capacity

Z Fop.s.d.i.t.v.c ZDEIWD,-C . DSDs,d,c V{p, s,d, CECd }E 6 demand Supply-

: demand
itv

Process-level
l-:Op.s.d,i.,t.v,o < EFFi,t,v,o : Flp,s,d,i,t,v,o V{p, s, d,i,teT—T, v, O}E Onow  cOmmodity

flow

Global
Z Fop,s,d,i,t,v,c = Z Hp.s,d.c.t.v,o V{p,s, d, C} €Opjance cOmMmodity
it,v t.v,0 balance

Other constraints and bounds: baseload, emissions, battery storage,...




From Capacity Expansion to Power Generation Scheduling




Modeling Goals
S

Represent a short-term problem with monthly
discretization for time periods

Improve the representation of the system dynamics

Include randomness in terms of resource availability
at each time period



Modeling Goals (cont.)
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Notation and Previous Model
=

o A little about notation:
We will index time periods by p
HP and HP represents minimum and maximum bounds for hydro power in [aMW]
Sp storage values at time period p and S and S are min and max bounds on storage [hm?]

b,' represents the water inflows in [hm®] over the course of time period p at hydro plant 1
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Enhancing TEMOA Formulation
—

Let’s talk about a stochastic representation

For each scenario WE(), the forecasting model model should provide: b,*
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Enhancing TEMOA Formulation (cont.)
-

Model needs to carry out information from one month to the other

A new decision vector is needed:

S, : end of period storage for hydro plants Water inflows
New constraints are needed: /

(Mass balance constraint) S, = S_; + b, - 3 FO, —, Water

(Storage bounds) S, <S, S_Sp releases

By adding that the model has the possibility to make operational

recourse actions —> Multi-stage stochastic linear program (SLP-p)
b,
oy

Scenario
tree

b3] b32 b33 b3] b32 b33b3] b32 b33



General TEMOA Model

min Total Cost = FixedCost + VariableCost
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Power Generation Scheduling as SLP-p

min - ¢3X; + Ep, b, D2 (X1, b2)
1

S. L. A1X1 = B1X0 + b1

A general model for power
generation scheduling would be

where, forp = 2,...,P x; =0

mm CpXp + Epiby,.bp hp+1(Xp, bp+1)
st ApXp = Bpxp_q + by

X, =0

p
Xp: stage p decision variables including: technologies activity (hydro generation, thermal
generation), resources activity, water storage at reservoirs

Cp: cost vector related to technology and resource usage

Ap: constraint matrix including supply-demand, process-level commodity flow, global
commodity water balance, ...

bp: stochastic water inflow at each hydro plant and deterministic demand

ByXp_q: storage from last stage









TEMOA Input Parameters Specs

We are interested in problems for short horizons
Time horizon: 3 months — P* = {1,2,3,4}
Seasons: 4 weeks — S = {W,,W,,W,;,W,}

Time of the day: 3 slices — D =
{day,night,peak}

Discount rate 1% per month — GDR = 0.01

Capacity-activity conversion factor 31.536 (year) —
2.628 (month)



HydroStorage Case Study — Instances

Case Hydro:
DEM,. = 110 [PJ] DEM,. =130 [PJ] DEM;. = 150 [PJ]
Coal thermal plant MAX, = 36[GW] Wind Farm MAX, = 100[GW]
Hydropower installed capacity = 20[GW]
Efficiency: Hydro — ELC = 0.9
Case HydroStorage:
Hydropower installed capacity = 20[GW]
Initial Storage = 10 Water Inflows = [10, 10, 50]

Efficiency: Reservoir — TurbWater = 1.0
Thermal Cost in Pf = 3 increased from 3 — 3.5 [M$/PJ]

Case HydroStorage+:
Hydropower installed capacity = 25[GW]



Network Representation

Python script — graphical representation (Graphviz) E
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Deterministic Case Study - Results
S

Power Generation Dispatches - Three Techs Case Study
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- North Carolina Case Study



North Carolina State — Case Study
S

7 Input information adapted from EIA database

?) Biomass Power Plant

© coal Power Plant

\n © Geothermal Power Plant
S ) Hydroelectric Power Plant
O Natural Gas Power Plant

B v i .' : e { Wy @ Nuclear Power Plant
= * -ﬂ- r o ; g @ Other Power Plant
*PDQ L"\ - O Petroleum Power Plant
3 -t- # Fimigtpy
- i

, _,f" |

0

Onslow @ Pumped Storage Power Plant

Bay * Solar Power Plant

1 We consider only the installed capacity in year 1

01 For this case study we aim to solve 4-stage problems



Installed Capacity — NC Case Study
-4

2% - 1% 2%

35%
M Ngas

™ Nuclear
B Coal

M Hydro
36% “ Solar

Diesel

Biomass

Cap G - 30.17 [GW]
17%
copy foger _/_
capacity factor I —— —



TEMOA Input Parameters Specs

T
Time horizon: 4 months — P* = {1,2,3,4,5}
Seasons: 4 weeks — S = {W;,\W,,W; W, }
Time of the day: 4 slices — D = {am,pm,peak,night}

Discount rate 1% per month — GDR = 0.01 1 [PJ]
. .. . |
Capacity-activity conversion factor 2.628 (month) 277.8[GWh]

Demand at each stage:

DEM,. = 30.75 [PJ], DEM,. =30.75 [PJ], DEM,. = 30.75 [PJ], DEM,. = 30.75 [PJ]
Base case:

Coal MAX,=10.8[GW], NGas MAX,=10.7[GW], Nuclear MAX;=5.1[GW]
Hydropower installed capacity +/- 2[GW] & Other = 1.5[GW]

Other cases: DEM,. = 15.375 [PJ] / DEM,, = 4.3 [PJ] / Reduced water
inflows at scenario low



Scenario Tree for NC Instance
=
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from generation data
[103hm3-month]
(2.78 —820.71[aMW])

Probabilities M_H/A_H 0251 H/M_H 0.75
estimated using M_A/A_H 0.625|J_A/M_H 0.2
M_L/A_H 0125/J L/M_H 0.5

EIA monthly

generaﬁon data |[A_H/M_A 02|M_H/A_A  0.25|J_H/M_A 0.08
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M H/AL  o01|liH/ML 006 230 S 2485
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North Carolina Case Study — Results (cont.)
=

Power Generation Dispatches and Storage [PJ] - NC Case Study
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North Carolina Case Study — Results (cont.)
S S

Hydro Generation Dispatch and Storage [PJ] - NC Case Study
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Nexts Steps & Final Comments



Next Steps & Final Comments
=

Define a balanced study case in terms of a hydro and thermal
generation in a system with reservoir storage

Formulation of a combined framework in a closed-loop form to
solve scheduling problem and & unit commitment

Add climate information to resource supply availability and
electricity demand — generate future scenarios

Represent large-size problems and provide a solution
methodology using Sampling-based Decomposition Algorithms

TEMOA Unle il

Power Generation Scheduling

Forecasting
Models

= Climate
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