STOCHASTIC POWER GENERATION SCHEDULING USING TEMOA

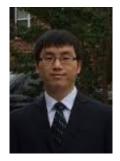
Anderson Rodrigo de Queiroz, Ph.D. Joseph F. DeCarolis, Ph.D. Binghui Li, Msc.

INFORMS OPTIMIZATION SOCIETY CONFERENCE 2016

Princeton University, Department of Operations Research and Financial Engineering, Princeton, NJ, March 17–19

March, 2016

Department of Civil, Construction & Environmental Engineering


Research Project Team

A.R. de Queiroz, Ph.D.

Prof. Joseph DeCarolis

Binghui Li, Ph.D cand.

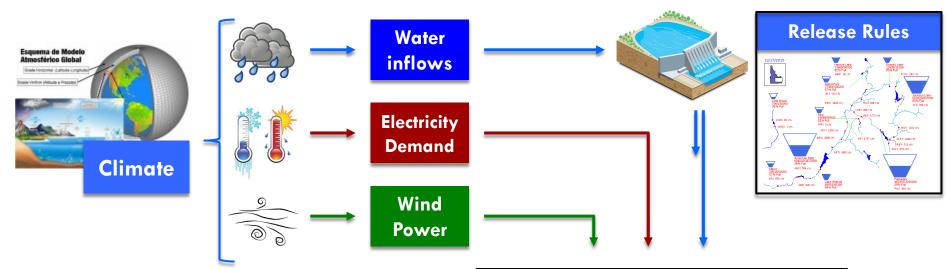
People of our team that we thank...

Prof. S. Arumugam

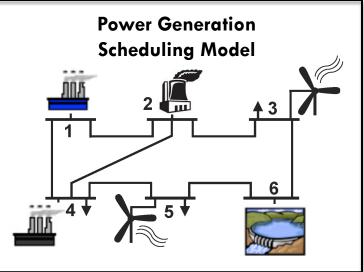
Prof. K. Mahinthakumar

Prof. Ning Lu

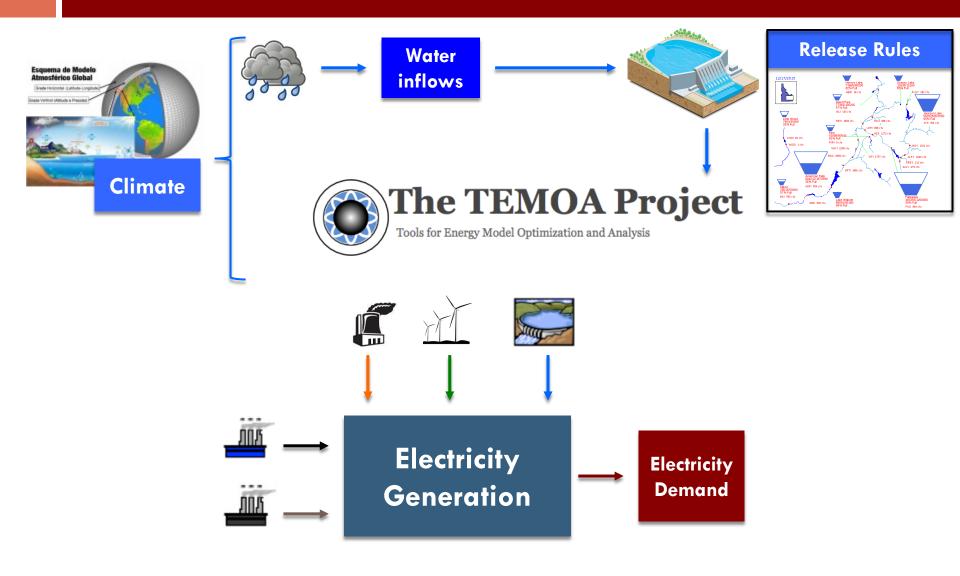
J. Patskoski, S. Mukhopadhyay, Ph.D. Ph.D. cand. Yi Xuan, Ph.D. student H. Eshraghi, D. Mulcah, Ph.D. student Ph.D. student


, W. Li, nt Ph.D. student

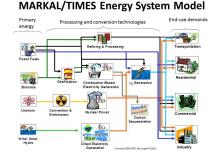
Overview

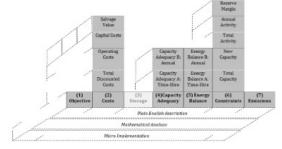

- Introduction
- Tools for Energy Model Optimization and Assessment (TEMOA)
 TEMOA's Purposes
 - General Mathematical Formulation
- From Capacity Expansion to Power Generation Scheduling
 - Modeling Goals
 - Enhancing TEMOA Formulation
 - Stochastic Power Generation Scheduling with TEMOA
- Case Study
- Next Steps & Final Comments

Introduction


Introduction

- Multiple operational aspects
- Multi-stage problem
- Underlying uncertainties
- Complex decision process


Introduction

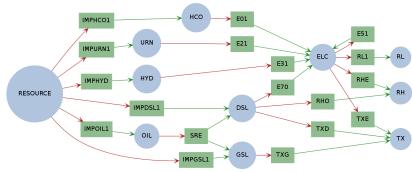


Tools for Energy Model Optimization and Assessment

Capacity Expansion Models – Energy Systems

- Models for conducting energy system analysis:
 - Markal/Times
 - OSeMOSYS
 - Message

PYOMO


- Energy economy optimization model
- Technology assessment and policy analysis at ≠scales
- Model is implemented in a general algebraic formulation combined with
- Stochastic Programming capabilities (extensive LP and Progressive Hedging)

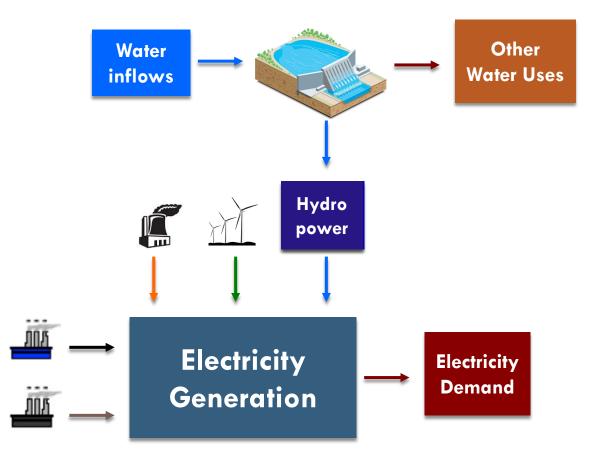
http://www.temoaproject.org

TEMOA – General Purpose

- TEMOA represents a capacity expansion and operational model for energy systems
- Represents a multi-stage problem in a network with multiple technologies and multi-commodities
- Model's objective: minimize cost of energy supply over a defined time horizon (present + expected future cost)
- Processes represented in a macro level

Commodity flow balance

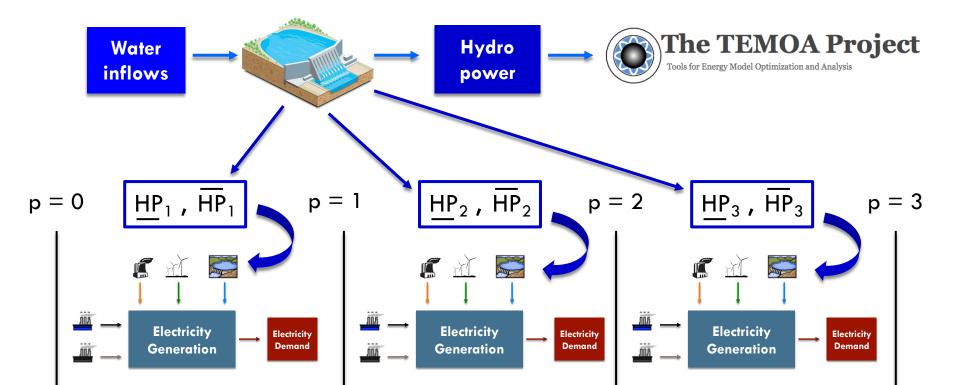
TEMOA Mathematical Formulation


$$\begin{split} & \begin{bmatrix} \text{LoanCost} = \sum_{i,r} \left(\begin{bmatrix} [\mathcal{L}_{i,r} & \mathcal{L}_{i,r}, \sum_{j=0}^{M} \frac{1}{(1 + CDR)^{r,p-F_i}} \end{bmatrix} \cdot CAP_{i,r} \right) \\ & \text{FixedCost} = \sum_{j,r} \left(\begin{bmatrix} \mathcal{L}_{i,r} & \mathcal{L}_{i,r}, \sum_{j=0}^{M} \frac{1}{(1 + CDR)^{r,p-F_i}} \end{bmatrix} \cdot CAP_{i,r} \right) \\ & \text{min} \\ & \text{ACT}_{F,I,I,O} \\ & \text{CAP,CAPVAL} \end{bmatrix} \\ \hline \begin{array}{c} \text{Total Cost} = \text{LoanCost} + \text{FixedCost} + \text{VariableCost} \\ & \text{S.t.} \\ & \text{ACT}_{p,s,d,t,v} = \sum_{i,o} \mathbf{FO}_{p,s,d,i,t,v,o} \quad \forall \{p, s, d, t, v\} \in \Theta_{activity} \\ & \text{CF}_{s,d,t,v} \cdot C2A_t \cdot SEG_{s,d} \cdot TLF_{p,t,v} \\ & \sum_{i,t,v} \mathbf{FO}_{p,s,d,i,t,v,c} \geq DEM_{p,c} \cdot DSD_{s,d,c} \quad \forall \{p, s, d, t, v\} \in \Theta_{activity} \\ & \sum_{i,t,v} \mathbf{FO}_{p,s,d,i,t,v,c} \geq DEM_{p,c} \cdot DSD_{s,d,c} \quad \forall \{p, s, d, i, t \in T - T^s, v, o\} \in \Theta_{flow} \\ & \text{Focused} \\ \hline \begin{array}{c} \mathbf{FO}_{p,s,d,i,t,v,c} \in \mathbf{FF}_{i,t,v,o} \cdot \mathbf{FI}_{p,s,d,i,t,v,o} \quad \forall \{p, s, d, c\} \in \Theta_{balance} \\ & \sum_{i,t,v} \mathbf{FO}_{p,s,d,i,t,v,c} \geq \sum_{t,v,o} \mathbf{FI}_{p,s,d,c,t,v,o} \quad \forall \{p, s, d, c\} \in \Theta_{balance} \\ & \sum_{i,t,v} \mathbf{FO}_{p,s,d,i,t,v,c} \geq \sum_{t,v,o} \mathbf{FI}_{p,s,d,c,t,v,o} \quad \forall \{p, s, d, c\} \in \Theta_{balance} \\ & Commodity \\ & C$$

From Capacity Expansion to Power Generation Scheduling

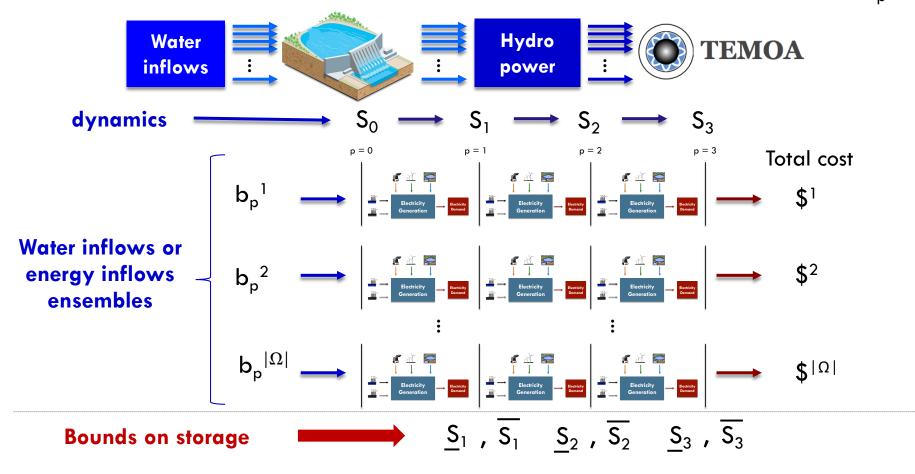
Modeling Goals

- Represent a short-term problem with monthly discretization for time periods
- Improve the representation of the system dynamics
- Include randomness in terms of resource availability at each time period


Modeling Goals (cont.)

Notation and Previous Model

A little about notation:

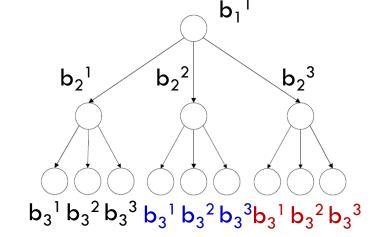

- We will index time periods by p
- <u>HP</u> and <u>HP</u> represents minimum and maximum bounds for hydro power in [aMW]
- **S**_p storage values at time period p and \underline{S} and \overline{S} are min and max bounds on storage [hm³]
- **D** b_p^1 represents the water inflows in [hm³] over the course of time period p at hydro plant 1

Enhancing TEMOA Formulation

Let's talk about a stochastic representation

Γ For each scenario $\omega \in \Omega$, the forecasting model model should provide: b_{μ}^{ω}

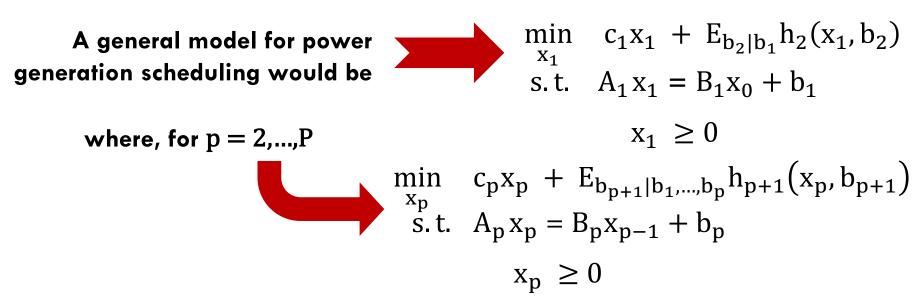
Enhancing TEMOA Formulation (cont.)


Model needs to carry out information from one month to the other

A new decision vector is needed:

S_p : end of period storage for hydro plants
 Water inflows
 New constraints are needed:

 $\begin{array}{ll} \textit{(Mass balance constraint)} & \textbf{S}_{p} = \textbf{S}_{p-1} + \textbf{b}_{p} - \sum \textbf{FO}_{p} & \qquad & \\ \textit{(Storage bounds)} & \underline{\textbf{S}}_{p} \leq \textbf{S}_{p} \leq \overline{\textbf{S}}_{p} & \qquad & \\ \textbf{releases} \end{array}$


> Scenario tree

General TEMOA Model

$$\begin{array}{c|c} \displaystyle \min_{A \in \mathsf{T},\mathsf{F},\mathsf{F},\mathsf{O}} & \mathsf{Total}\; \mathsf{Cost} = \mathsf{Fixed}\mathsf{Cost} + \mathsf{Variable}\mathsf{Cost} \\ & \mathsf{s.t.} & \mathsf{ACT}_{p,s,d,t,v} = \sum_{i,o} \mathsf{FO}_{p,s,d,i,t,v,o} \;\; \forall \{p,s,d,t,v\} \in \Theta_{\mathsf{activity}} & \operatorname{Process}_{\mathsf{activity}} \\ & \left((CF_{s,d,t,v} \cdot C2A_t \cdot SEG_{s,d} \cdot TlF_{p,t,v} \right) \cdot \mathsf{CAP}_{t,v} \geq \mathsf{ACT}_{p,s,d,t,v} \;\; \forall \{p,s,d,t,v\} \in \Theta_{\mathsf{activity}} & \operatorname{Technology}_{\mathsf{capacity}} \\ & \sum_{i,t,v} \mathsf{FO}_{p,s,d,i,t,v,c} \geq DEM_{p,c} \cdot DSD_{s,d,c} \;\;\; \forall \{p,s,d,c \in \mathsf{C}^d\} \in \Theta_{\mathsf{demand}} & \operatorname{Supply-demand}_{\mathsf{demand}} \\ & \mathsf{FO}_{p,s,d,i,t,v,o} \leq EFF_{i,t,v,o} \cdot \mathsf{FI}_{p,s,d,i,t,v,o} \;\; \forall \{p,s,d,i,t \in T-T^s,v,o\} \in \Theta_{\mathsf{flow}} & \operatorname{Flow}_{\mathsf{commodity}} \\ & \sum_{i,t,v} \mathsf{FO}_{p,s,d,i,t,v,c} \geq \sum_{t,v,o} \mathsf{FI}_{p,s,d,c,t,v,o} \;\;\; \forall \{p,s,d,c\} \in \Theta_{\mathsf{balance}} & \operatorname{Global}_{\mathsf{commodity}} \\ & \mathsf{Global}_{\mathsf{commodity}} \\ & \mathsf{Sp} = \mathsf{S}_{\mathsf{p}-\mathsf{1}} + \tilde{\mathsf{b}}_{\mathsf{p}} - \sum \mathsf{FO}_{\mathsf{p}} & \underline{\mathsf{Sp}} \leq \overline{\mathsf{Sp}} & \operatorname{Water} \mathsf{balance}_{\mathsf{and}} \\ & \mathsf{Water} \;\; \mathsf{other constraints} \; \mathsf{and} \;\; \mathsf{bounds}, \ldots \end{array}$$

Power Generation Scheduling as SLP-p

 x_p : stage p decision variables including: technologies activity (hydro generation, thermal generation), resources activity, water storage at reservoirs

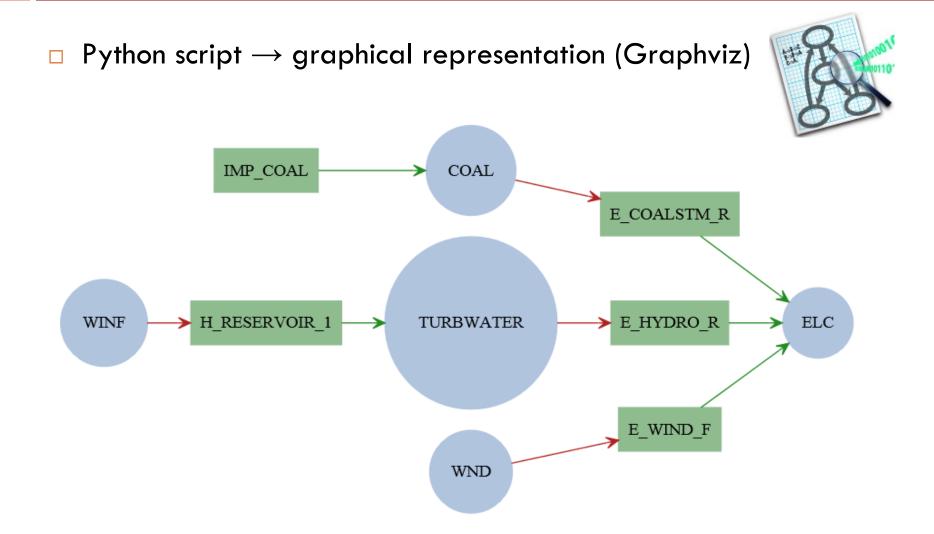
c_p: cost vector related to technology and resource usage

 A_p : constraint matrix including supply-demand, process-level commodity flow, global commodity water balance, ...

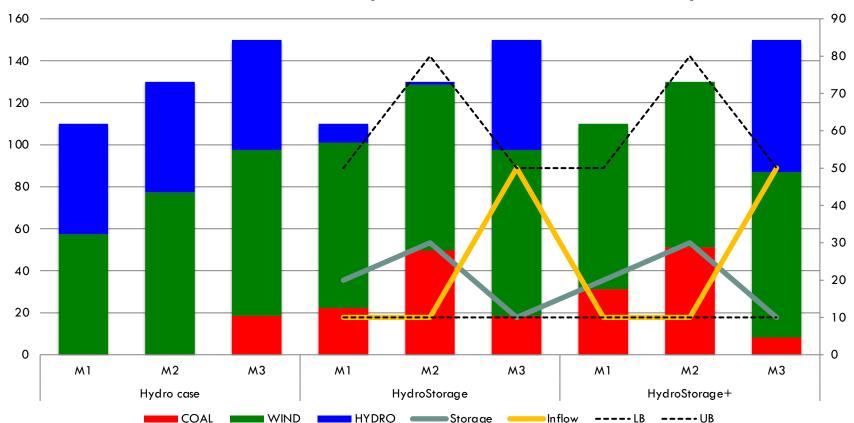
 b_p : stochastic water inflow at each hydro plant and deterministic demand $B_p x_{p-1}$: storage from last stage

Case Study

TEMOA Input Parameters Specs


- We are interested in problems for short horizons
- □ Time horizon: 3 months $\rightarrow P^{f} = \{1, 2, 3, 4\}$
- $\Box \text{ Seasons: 4 weeks} \rightarrow S = \{W_1, W_2, W_3, W_4\}$
- □ Time of the day: 3 slices → D = {day,night,peak}
- \Box Discount rate 1% per month \rightarrow GDR = 0.01
- □ Capacity-activity conversion factor 31.536 (year) → 2.628 (month)

HydroStorage Case Study – Instances

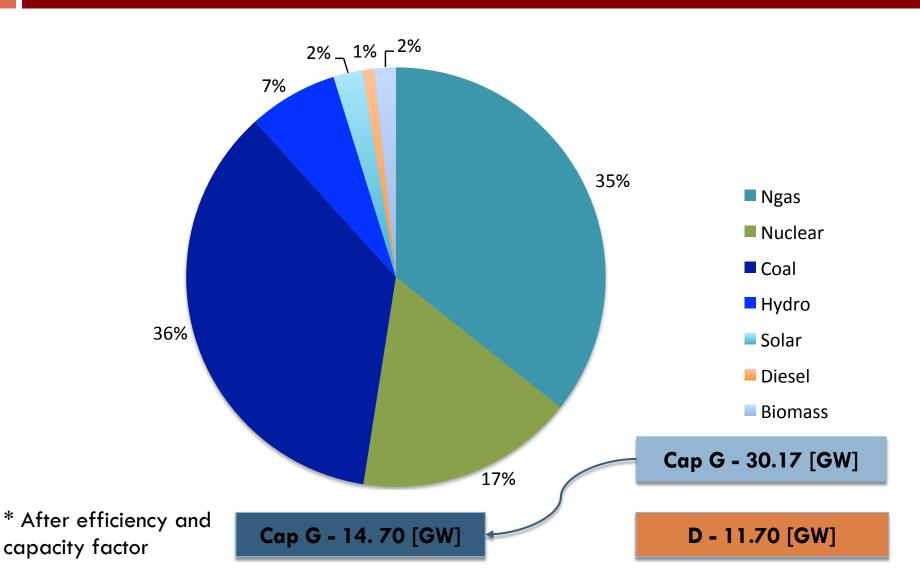

Case Hydro:

- DEM_{1c} = 110 [PJ] DEM_{2c} = 130 [PJ] DEM_{3c} = 150 [PJ]
- **Coal thermal plant** $MAX_1 = 36[GW]$ Wind Farm $MAX_2 = 100[GW]$
- Hydropower installed capacity = 20[GW]
- **Efficiency:** Hydro \rightarrow ELC = 0.9
- Case HydroStorage:
 - Hydropower installed capacity = 20[GW]
 - Initial Storage = 10 Water Inflows = [10, 10, 50]
 - **Efficiency:** Reservoir \rightarrow TurbWater = 1.0
 - **Thermal Cost in P^f = 3 increased from 3 \rightarrow 3.5 [M\$/PJ]**
- Case HydroStorage+:
 - Hydropower installed capacity = 25[GW]

Network Representation

Deterministic Case Study - Results

Power Generation Dispatches - Three Techs Case Study


North Carolina State – Case Study

Input information adapted from EIA database

We consider only the installed capacity in year 1
 For this case study we aim to solve 4-stage problems

Installed Capacity – NC Case Study



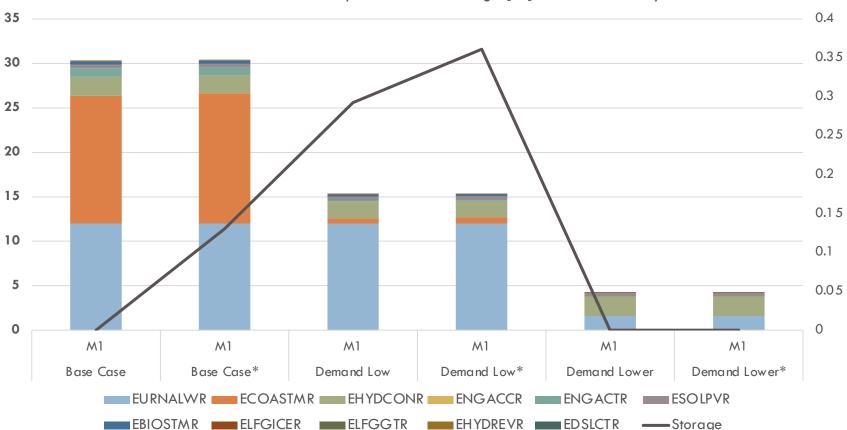
TEMOA Input Parameters Specs

- □ Time horizon: 4 months $\rightarrow P^{f} = \{1, 2, 3, 4, 5\}$
- □ Seasons: 4 weeks \rightarrow S = {W₁, W₂, W₃, W₄}
- □ Time of the day: 4 slices \rightarrow D = {am,pm,peak,night}
- □ Discount rate 1% per month \rightarrow GDR = 0.01
- Capacity-activity conversion factor 2.628 (month)
- Demand at each stage:

 $DEM_{1c} = 30.75 \text{ [PJ]}, DEM_{2c} = 30.75 \text{ [PJ]}, DEM_{3c} = 30.75 \text{ [PJ]}, DEM_{4c} = 30.75 \text{ [PJ]}$

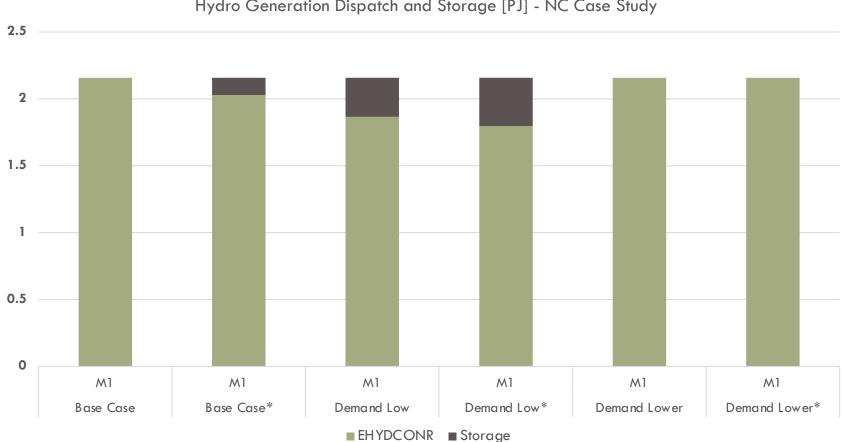
- Base case:
 - **Coal** $MAX_1 = 10.8[GW]$, NGas $MAX_2 = 10.7[GW]$, Nuclear $MAX_3 = 5.1[GW]$
 - Hydropower installed capacity +/- 2[GW] & Other = 1.5[GW]
- Other cases: DEM_{1c} = 15.375 [PJ] / DEM_{1c} = 4.3 [PJ] / Reduced water inflows at scenario low

Scenario Tree for NC Instance


Probabilities estimated using EIA monthly generation data since 2000

		M_H/A_H	0.25	J_H/M_H	0.75
		M_A/A_H	0.625	J_A/M_H	0.2
		M_L/A_H	0.125	J_L/M_H	0.05
A_H/M_A	0.2	M_H/A_A	0.25	J_H/M_A	0.08
A_A/M_A	0.70	M_A/A_A	0.58	J_A/M_A	0.58
A_L/M_A	0.10	M_L/A_A	0.17	J_L/M_A	0.34
		M_H/A_L	0.1	J_H/M_L	0.06
		M_A/A_L	0.5	J_A/M_L	0.56
		M_L/A_L	0.4	J_L/M_L	0.38

Artificial water inflows produced from generation data [10³hm³-month] (2.78 →820.71[aMW])

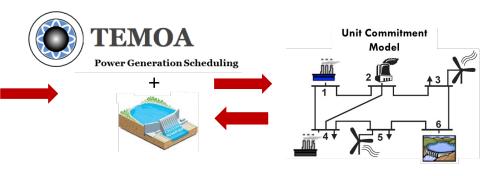

March	April	May	June
2.78	3.30	3.13	3.65
	2.44	2.04	2.13
	1.92	1.70	1.74

North Carolina Case Study – Results (cont.)

Power Generation Dispatches and Storage [PJ] - NC Case Study

North Carolina Case Study – Results (cont.)

Hydro Generation Dispatch and Storage [PJ] - NC Case Study


Nexts Steps & Final Comments

Next Steps & Final Comments

- Define a balanced study case in terms of a hydro and thermal generation in a system with reservoir storage
- Formulation of a combined framework in a closed-loop form to solve scheduling problem and & unit commitment
- □ Add climate information to resource supply availability and electricity demand → generate future scenarios
- Represent large-size problems and provide a solution methodology using Sampling-based Decomposition Algorithms

References

- Hunter, K., Sreepathi, S., and DeCarolis, J., "Modeling for insight Tools for Energy Model Optimization and Analysis (Temoa)", Energy Economics, 40, 339-349, 2013
- Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J., Bazillian, M., Roehrl, A., "OSeMOSYS: the open source energy modeling system" Energy Policy 39, 5850–5870, 2011
- Hart, W.E., Laird, C., Watson, J.-P., Woodruff, D.L., "Pyomo Optimization Modeling in Python", first ed. Springer, Berlin, 2012
- Pereira, M.V.F., and Pinto, L.M.V.G., "Stochastic Optimization of a Multi-reservoir Hydroelectric System: A Decomposition Approach", Water Resources Research, Vol.21, No. 6, Pages 779-792, June 1985
- De Queiroz, A.R., "On a Sampling-based Decomposition Algorithm with Application to Hydrothermal Scheduling: Cut Formation and Solution Quality", PhD dissertation, The University of Texas at Austin, 2011
- Sankarasubramanian, A., Lall, U., Souza Filho, F.A., and Sharma, A., "Improved water allocation utilizing probabilistic climate forecasts: Short-term water contracts in a risk management framework", Water Resources Research, v. 45, 1-18, 2009

THANK YOU !

ar_queiroz@yahoo.com.br https://arqueiroz.wordpress.ncsu.edu

INFORMS OPTIMIZATION SOCIETY CONFERENCE 2016 Princeton University, Department of Operations Research and Financial Engineering, Princeton, NJ, March 17–19

Princeton, March 2016

Department of Civil, Construction & Environmental Engineering

