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Power Generation 
Scheduling Model¨ Multiple operational aspects

¨ Multi-stage problem

¨ Underlying uncertainties

¨ Complex decision process
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Tools for Energy Model Optimization and Assessment



Capacity Expansion Models – Energy Systems

¨ Models for conducting energy system analysis:
¤ Markal/Times
¤ OSeMOSYS
¤ Message

¨ TEMOA
¤ Energy economy optimization model
¤ Technology assessment and policy analysis at ≠scales
¤ Model is implemented in a general                               

algebraic formulation combined with
¤ Stochastic Programming capabilities                                

(extensive LP and Progressive Hedging)

http://www.temoaproject.org



TEMOA – General Purpose

¨ TEMOA represents a capacity                
expansion and operational model                     
for energy systems

¨ Represents a multi-stage problem in a network 
with multiple technologies and multi-commodities

¨ Model’s objective: minimize cost of 
energy supply over a defined time             
horizon (present + expected future cost)

¨ Processes represented in a macro level

a
b

c

Commodity flow balance

Satisfying



TEMOA Mathematical Formulation

Process 
activity

s.t.

Technology 
capacity

Supply-
demand

Process-level 
commodity 

flow
Global 

commodity 
balance

Other constraints and bounds: baseload, emissions, battery storage,…

min    Total Cost = LoanCost + FixedCost + VariableCost
ACT,FI,FO
CAP,CAPVAL



From Capacity Expansion to Power Generation Scheduling



Modeling Goals

¨ Represent a short-term problem with monthly 
discretization for time periods

¨ Improve the representation of the system dynamics
¨ Include randomness in terms of resource availability 

at each time period



Modeling Goals (cont.)
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Notation and Previous Model

Water 
inflows

Hydro 
power

¨ A little about notation:
¤ We will index time periods by p

¤ HP and HP represents minimum and maximum bounds for hydro power in [aMW]

¤ S! storage values at time period p and S and S are min and max bounds on storage [hm3]
¤ bp

1 represents the water inflows in [hm3] over the course of time period p at hydro plant 1

HP1 , HP1 HP2 , HP2 HP3 , HP3

Electricity 
Generation 

Electricity 
Demand 

Electricity 
Generation 

Electricity 
Demand 

Electricity 
Generation 

Electricity 
Demand 

p = 0 p = 1 p = 2 p = 3



Enhancing TEMOA Formulation

Water 
inflows

Hydro 
power

¨ Let’s talk about a stochastic representation
¤ For each scenario ω∈Ω, the forecasting model model should provide: bp

ω

… … …
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p = 0 p = 1 p = 2 p = 3 

Electricity 
Generation 

Electricity 
Demand 

Electricity 
Generation 

Electricity 
Demand 

Electricity 
Generation 

Electricity 
Demand 

p = 0 p = 1 p = 2 p = 3 

… …

bp
1 $1

$2

$|Ω|

Total cost

bp
2

bp
|Ω|

S1 , S1 S2 , S2 S3 , S3Bounds on storage

Water inflows or 
energy inflows 

ensembles

S1 S2 S3S0dynamics



Enhancing TEMOA Formulation (cont.)

¨ Model needs to carry out information from one month to the other
¤ A new decision vector is needed:

Sp : end of period storage for hydro plants
¤ New constraints are needed:

(Mass balance constraint) Sp = Sp-1 + bp - ∑ FOp
(Storage bounds)   Sp ≤ Sp ≤ Sp

¤ By adding that the model has the possibility to make operational 
recourse actions

Water 
releases

Multi-stage stochastic linear program (SLP-p)

Water inflows

Scenario 
tree b2

1 b2
2 b2

3

b3
1 b3

2 b3
3 b3

1 b3
2 b3

3b3
1 b3

2 b3
3

b1
1



General TEMOA Model

Process 
activity

s.t.

Technology 
capacity

Supply-
demand

Process-level 
commodity 

flow
Global 

commodity 
balance

Other constraints and bounds,…

min         Total Cost = FixedCost + VariableCost
ACT,FI,FO

Sp = Sp-1 + !𝐛p - ∑ FOp Sp ≤ Sp ≤ Sp Water balance 
and bounds

Random 
water inflows



Power Generation Scheduling as SLP-p

min
!!

c"x" + Ε#"|#!h% x", b%
s. t. A"x" = B"x& + b"

x" ≥ 0
min
!#

c'x' + Ε##$!|#!,…,##h'*" x', b'*"
s. t. A'x' = B'x'+" + b'

x' ≥ 0

A general model for power 
generation scheduling would be

where, for p	=	2,…,P

x%: stage p	decision variables including: technologies activity (hydro generation, thermal 
generation), resources activity, water storage at reservoirs
c%: cost vector related to technology and resource usage
A%: constraint matrix including supply-demand, process-level commodity flow, global 
commodity water balance, ...
b%: stochastic water inflow at each hydro plant and deterministic demand
B%x%&': storage from last stage



Case Study



Deterministic Case Study



TEMOA Input Parameters Specs

¨ We are interested in problems for short horizons
¨ Time horizon: 3 months → Pf = {1,2,3,4}
¨ Seasons: 4 weeks → S = {W1,W2,W3,W4}
¨ Time of the day: 3 slices → D = 

{day,night,peak}
¨ Discount rate 1% per month → GDR = 0.01
¨ Capacity-activity conversion factor 31.536 (year) →

2.628 (month)



HydroStorage Case Study – Instances

¨ Case Hydro:
¤ DEM1c = 110 [PJ]       DEM2c =130 [PJ]       DEM3c = 150 [PJ]

¤ Coal thermal plant MAX1 =  36[GW]    Wind Farm MAX2 = 100[GW]

¤ Hydropower installed capacity = 20[GW]

¤ Efficiency: Hydro → ELC = 0.9

¨ Case HydroStorage:
¤ Hydropower installed capacity = 20[GW]

¤ Initial Storage = 10 Water Inflows = [10, 10, 50]

¤ Efficiency: Reservoir → TurbWater = 1.0

¤ Thermal Cost in Pf = 3 increased from 3 → 3.5 [M$/PJ]

¨ Case HydroStorage+:
¤ Hydropower installed capacity = 25[GW]



Network Representation

¨ Python script → graphical representation (Graphviz)



Deterministic Case Study - Results
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North Carolina Case Study



North Carolina State – Case Study

¨ Input information adapted from EIA database

¨ We consider only the installed capacity in year 1
¨ For this case study we aim to solve 4-stage problems
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Installed Capacity – NC Case Study

35%	

17%	

36%	

7%	
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Installed	Power	Genera/on	Capacity	-	NC		

Ngas	

Nuclear	
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D - 11.70 [GW]

Cap G - 30.17 [GW]

Cap G - 14. 70 [GW]
* After efficiency and 
capacity factor



TEMOA Input Parameters Specs

¨ Time horizon: 4 months → Pf = {1,2,3,4,5}

¨ Seasons: 4 weeks → S = {W1,W2,W3, W4}
¨ Time of the day: 4 slices → D = {am,pm,peak,night}

¨ Discount rate 1% per month → GDR = 0.01

¨ Capacity-activity conversion factor 2.628 (month)

¨ Demand at each stage: 
DEM1c = 30.75 [PJ], DEM2c =30.75 [PJ], DEM3c = 30.75 [PJ], DEM4c = 30.75 [PJ]

¨ Base case:
¤ Coal MAX1=10.8[GW], NGas MAX2=10.7[GW], Nuclear MAX3=5.1[GW]

¤ Hydropower installed capacity +/- 2[GW] & Other = 1.5[GW]

¨ Other cases: DEM1c = 15.375 [PJ] / DEM1c = 4.3 [PJ] / Reduced water 
inflows at scenario low

1 [PJ]
↓

277.8[GWh] 



Scenario Tree for NC Instance

Probabilities 
estimated using 

EIA monthly 
generation data 

since 2000

Artificial water 
inflows produced 

from generation data
[103hm3-month]                 

(2.78 →820.71[aMW])



North Carolina Case Study – Results (cont.)
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North Carolina Case Study – Results (cont.)
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Nexts Steps & Final Comments



Next Steps & Final Comments

¨ Define a balanced study case in terms of a hydro and thermal 
generation in a system with reservoir storage

¨ Formulation of a combined framework in a closed-loop form to 
solve scheduling problem and & unit commitment

¨ Add climate information to resource supply availability and 
electricity demand → generate future scenarios

¨ Represent large-size problems and provide a solution 
methodology using Sampling-based Decomposition Algorithms

Forecasting 
Models

Climate
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