

ENERGY MANAGEMENT FOR A COMMUNITY SHARED SOLAR PV-STORAGE SYSTEM UNDER UNCERTAINTIES

Anderson Rodrigo de Queiroz, Ph.D.

April 10th, 2018

Department of Decision Sciences, School of Business

Research Team

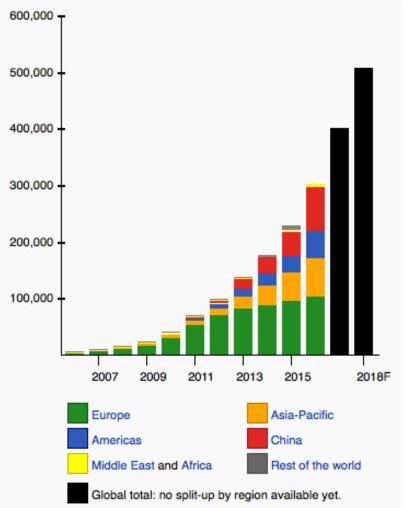
Faeza Hafiz, Ph.D. candidate

Prof. Iqbal Husain, Ph.D. Director of the FREEDM Center

Anderson R. de Queiroz, Ph.D. Assistant Professor

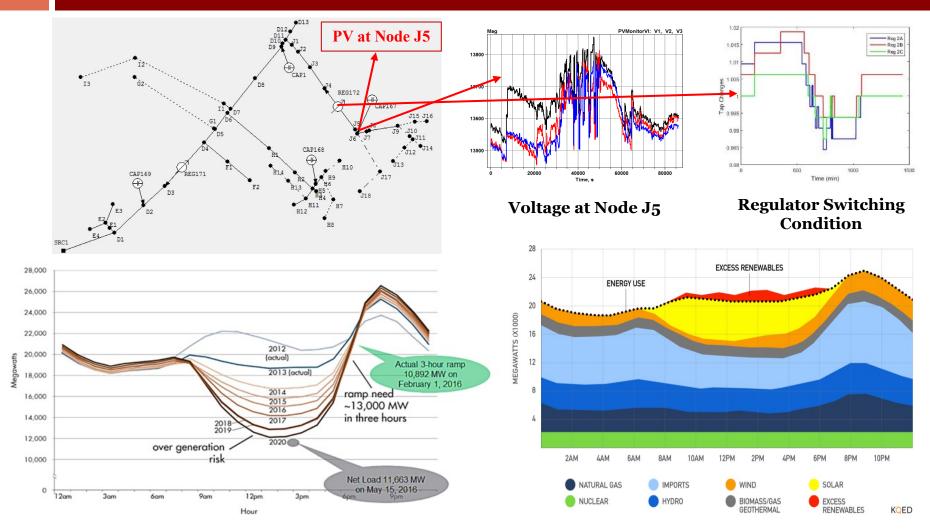
- Coordination of Renewables in Power Systems
- Modern Power Systems: Challenges and Opportunities
- Energy Management for a Single Household
- Energy Management for a Community
- Final Comments

Coordination of Renewables in Power Systems


Introduction

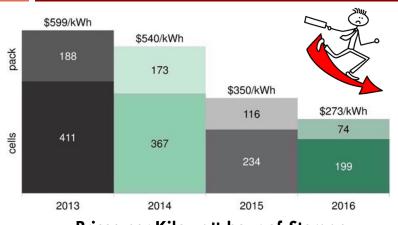
- The main problem with renewable power is its dependence on natural resources (may not be available when necessary)
- Countries such Norway, Canada, Brazil, England, USA regions (BPA concession area, Western Texas, North Carolina) present significant amounts of renewable generation resources
- Hydropower is an exception of these restrictions, since reservoirs
 can store water and control generation
- Other technologies associated with energy management emerged over the years e.g. static batteries and electric vehicles
- In this context, how to properly coordinate the use of resources and manage energy use is a very important question

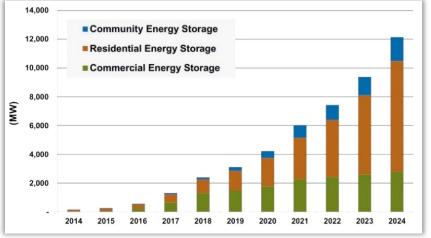
Solar Generation: An Energy Breakthrough


- Solar energy is the most abundant energy resource on earth 173,000 terawatts of solar energy strikes the Earth continuously. That is more than 10,000 times the world's total energy use (<u>http://energy.gov/)</u>
- Life cycle greenhouse gas emissions from solar energy is ~ 5-10% compared to nonrenewable sources (<u>http://www.nrel.gov/)</u>
- Price dropping to ~\$2/W (expected to be <\$1/W by 2025)

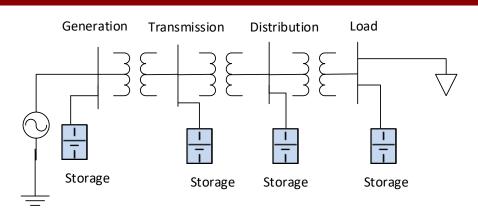
Installation

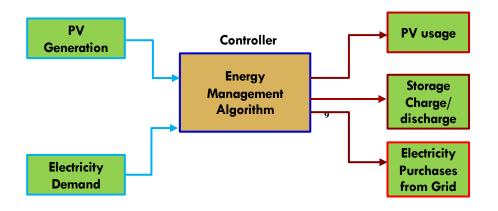
Global Installed Capacity of Solar PV [MW] (IEA)


Challenges to the Solar Deployment

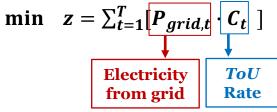

CAISO Duck Curve (Source: CAISO)

On a sunny day in March 2017, some solar farms had to shut down (Source: CAISO)


Energy Storage: Key to Overcome Grid Challenges

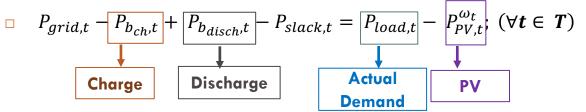

Prices per Kilowatt-hour of Storage (Bloomberg New Energy Finance)

Projections of Energy storage growth in U.S.A in different levels (source: Navigant Research)


Storage deployment in different levels of power system

Flow diagram of PV-based storage control

Mathematical Model Formulation



subjected to:

Equality constraints:

(i) Power Balance: Input and output power should be equivalent

(ii) Charge Balance: State of charge will change based on charging/ discharging power

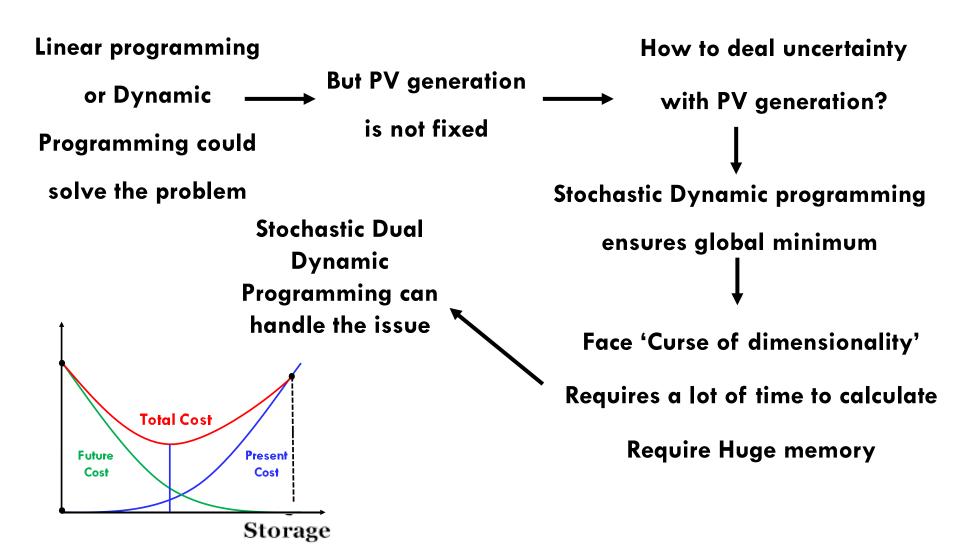
$$\Box \quad SOC_{t} = SOC_{t-1} + \frac{P_{b_{ch,t}} \cdot \eta_{b}^{C}}{Q_{b} \cdot \Delta t} - \frac{P_{b_{disch,t}}}{Q_{b} \cdot \Delta t \cdot \eta_{b}^{C}}; \ (\forall t \in T)$$

$$\downarrow$$
State of charge for
storage device

Defining Boundary Conditions

Inequality Constraint:

- Storage device will be charged only from PV-generated power $P_{b_{ch,t}} \leq P_{PV,t}^{\omega_t}$, $\forall t \in T$
- □ Storage device will deliver power only to the household $P_{b_{disch,t}} \leq P_{load,t}$, $\forall t \in T$
- There will be no back-feeding of power to the grid $P_{grid,t} \ge 0$, $\forall t \in T$

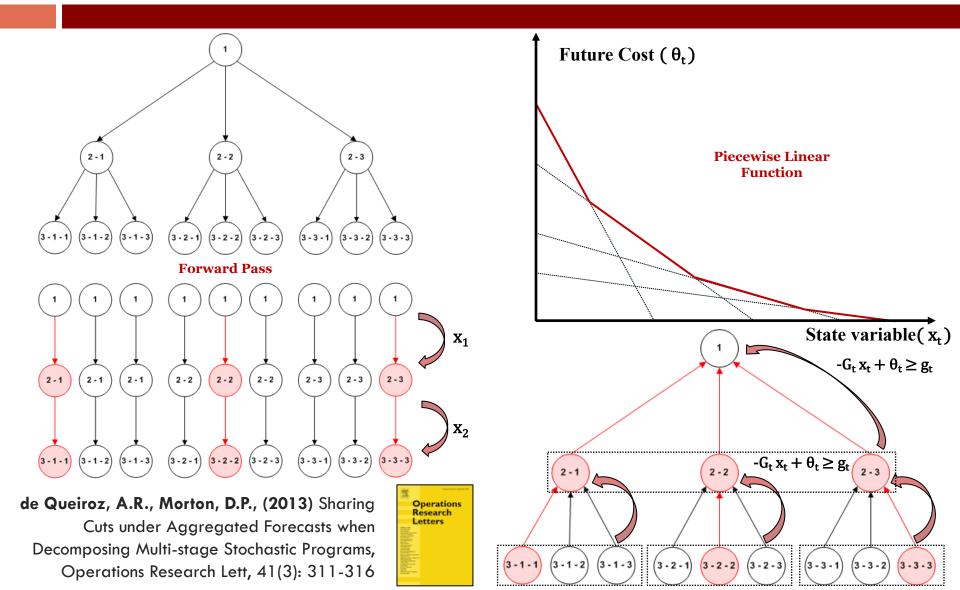

Upper and lower bounds:

- $\Box \quad SoC_{b,min} \leq SoC_{b,t} \leq SoC_{b,max} , \forall t \in T$
- $\square \quad P^{min}_{b_{ch}} \leq P_{b_{ch,t}} \leq P^{max}_{b_{ch}} , \forall t \in T$
- $\square \quad P_{b_{disch}}^{min} \le P_{b_{disch,t}} \le P_{b_{disch}}^{max}, \forall t \in T$

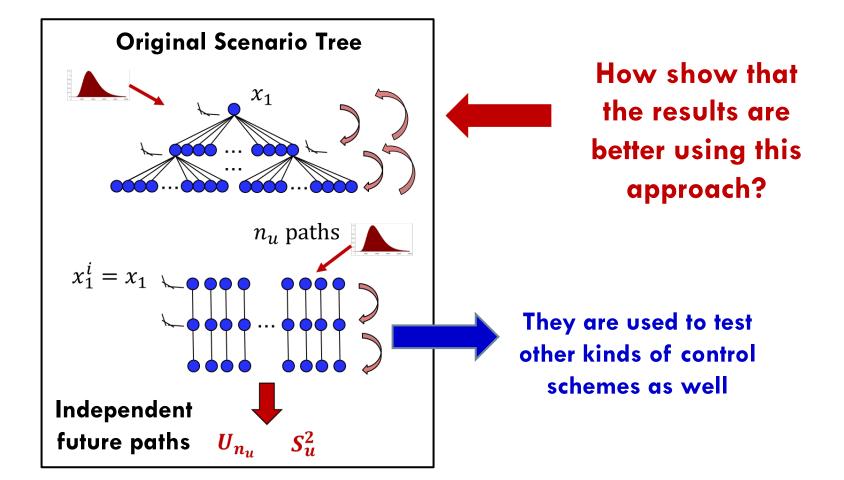
Uncertainty generation:

$$P_{PV,t}^{\omega_t} = P_{PV,t} \pm \rho_t^{\omega_t} P_{PV,t}; \ \omega_t \epsilon \forall \Omega_t , \forall t \in T$$

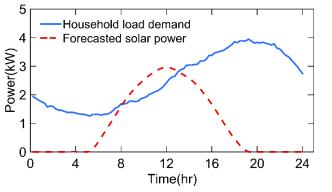
Uncertainty: A Challenge

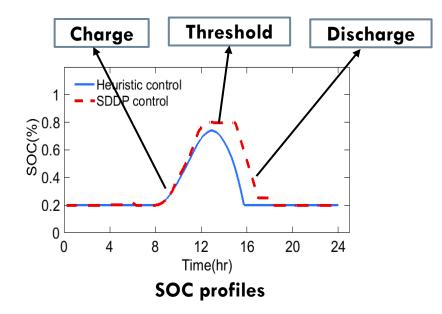


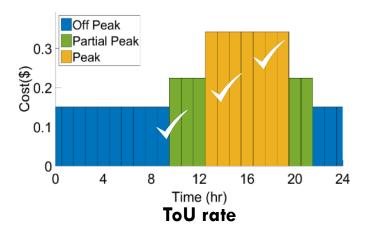
Stage-t Benders' Master Problem

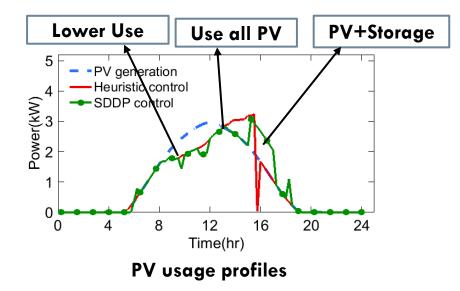

 \square Suppose we are at stage t under ω and we have:

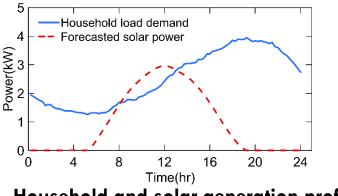
$$\begin{split} & \underset{x_{t},\theta_{t}}{\min} \quad c_{t}x_{t} \ + \ \theta_{t} \\ & \text{s. t.} \quad A_{t}x_{t} = B_{t}x_{t-1} \ + \ b_{t} \ : \ \pi_{t} \\ & \text{s. t.} \quad A_{t}x_{t} = B_{t}x_{t-1} \ + \ b_{t} \ : \ \pi_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} \le c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} = c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} = c_{t} \\ & \text{s. t.} \quad \pi_{t}A_{t} - \alpha_{t}\overrightarrow{G_{t}} = c_{t} \\ & \text{s. t.} \quad \pi_$$

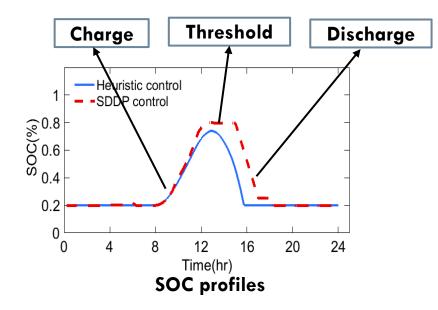

Sampling-based Decomposition Algorithm

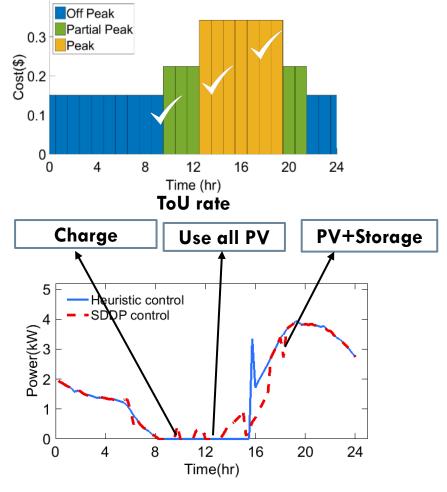

Control Scheme Evaluation




SDDP Control for a Summer Day- PV Usage Policy

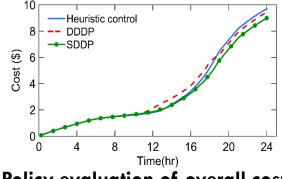

Household and solar generation profiles





SDDP Control for a Summer Day- Electricity Purchases from Grid

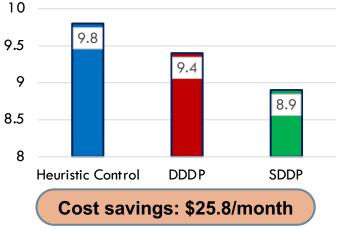
Household and solar generation profile



Electricity demand from grid

Is the Proposed Approach Better?

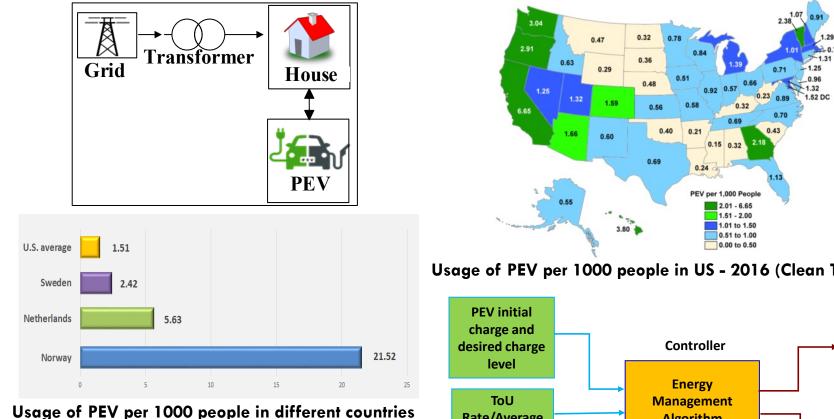
- Randomly independent scenarios to test the performance of the different control policies in outof-sample cases
- Then the average costs across the scenarios are computed for each control strategy



Policy evaluation of overall cost

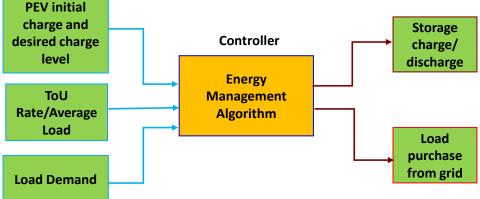
Improvement in PV usage and Peak hour savings

Electricity purchase cost per day(\$)



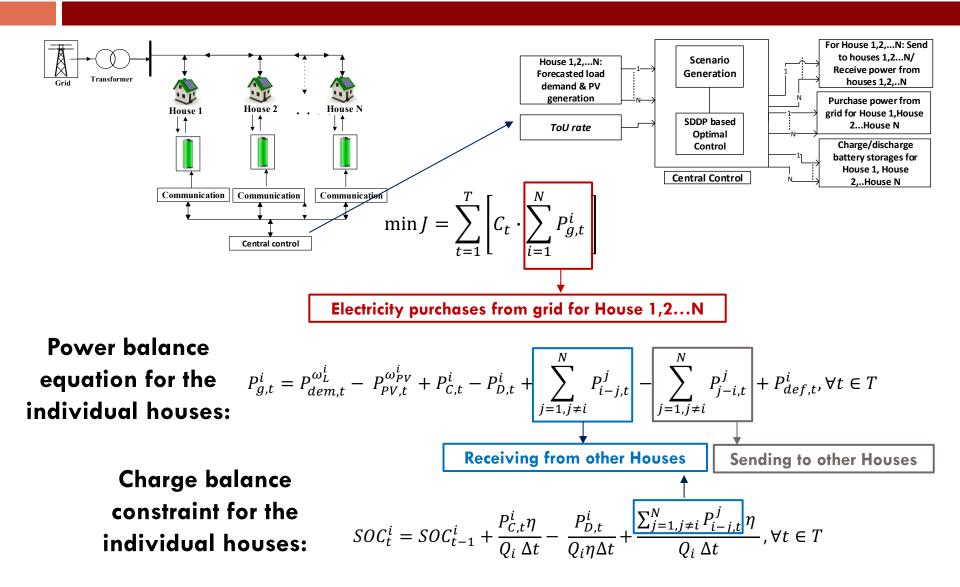
Hafiz, F., de Queiroz, A.R., Husain, I.,

Multi-stage Stochastic Optimization for a PV-Storage Hybrid Unit in a Household, **Proceedings** of the IEEE-IAS Conference, 2017

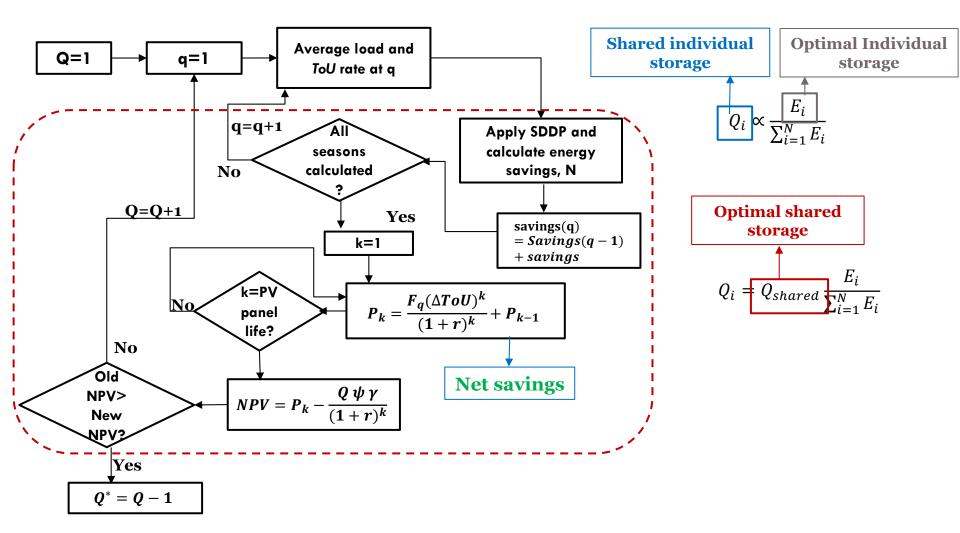

PEV: Introduction of a New Source of Storage

Hafiz, F., de Queiroz, A.R., Husain, I., Fajri, P., Charge Scheduling of a Plug-in Electric Vehicle Considering Load Demand Uncertainty based on Multistage Stochastic Optimization, Proceedings of the IEEE North American Power Symposium (NAPS), 2017

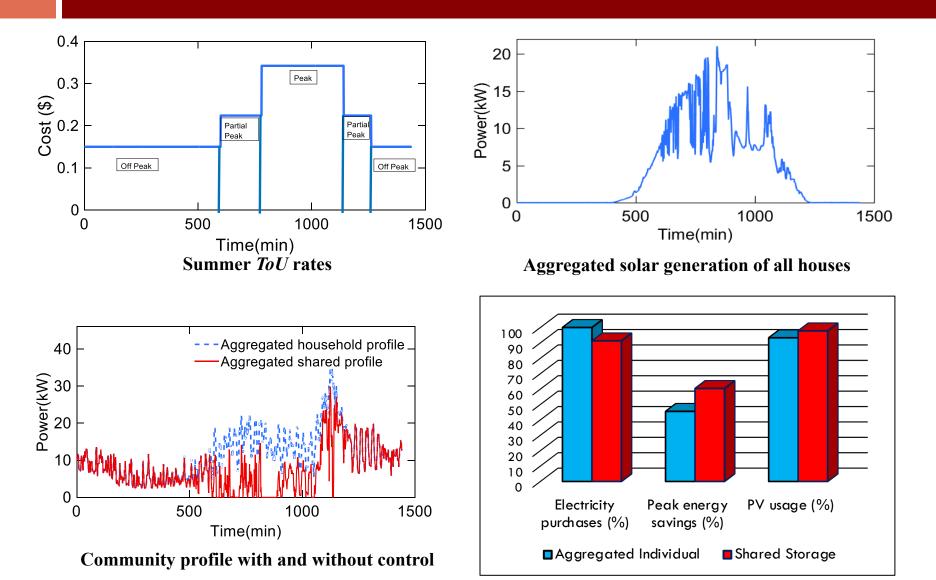
Usage of PEV per 1000 people in US - 2016 (Clean Technica)

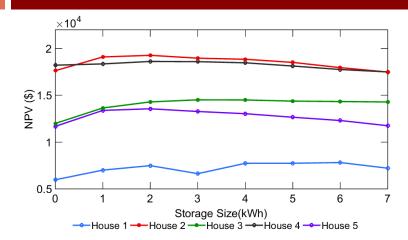

Flow diagram of PEV-based storage control

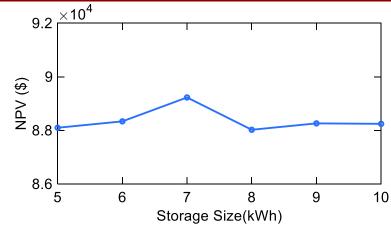
Existing Methods, Limitations and Motivation


- [P. Tian, 2016] _____ No uncertainty consideration No Storage sizing method
 [W. Tushar et al, 2016] _____ No uncertainty consideration No Storage sizing method Central storage is considered
 [S. El-Batway et al., 2017] _____ A central community energy storage sizing method is proposed Distribution network's reliability and flexibility are considered
 [G. Ye et. al, 2017] _____ Two different methods for optimal decision and revenue division is considered
 No storage sizing method is considered
 - P. Tian, X. Xiao, K. Wang, and R. Ding, "A Hierarchical Energy Management System Based on Hierarchical Optimization for Microgrid Community Economic Operation," *IEEE Trans on Smart Grid*, vol. 7, no. 5, pp. 2230–2241, Sept. 2016.
 - W. Tushar, B. Chai, C. Yuen, S. Huang, D. B. Smith, H. V. Poor and Z. Yang, "Energy Storage Sharing in Smart Grid: A Modified Auction-Based Approach," *IEEE Trans on Smart Grid*, vol. 7, no. 3, pp. 1462–1475, May 2016.
 - S. El-Batway, and W. G. Morsi, "Optimal Design of Community Battery Energy Storage Systems with Prosumers Owning Electric Vehicles," *IEEE Trans on Ind. Informatics*, Sept. 2017.
- G. Ye, G. Li, D. Wu, X. Chen, and Y. Zhou, "Towards Cost Minimization With Renewable Energy Sharing in Cooperative Residential Communities," *IEEE* Access, vol. 5, pp. 11688–11699, 2017.

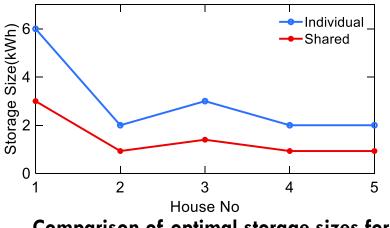
What is the exact size of storages e optimal control scheme to be used in a scheme with several houses???


Cost Effective Energy Management for a Shared Community

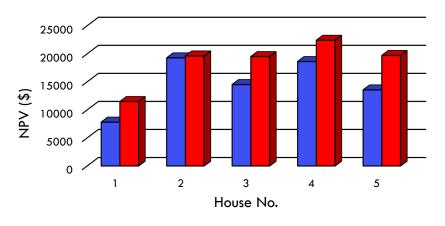

Storage Capacity Sizing for Individual houses in a Shared Community



Shared energy community system vs individual system



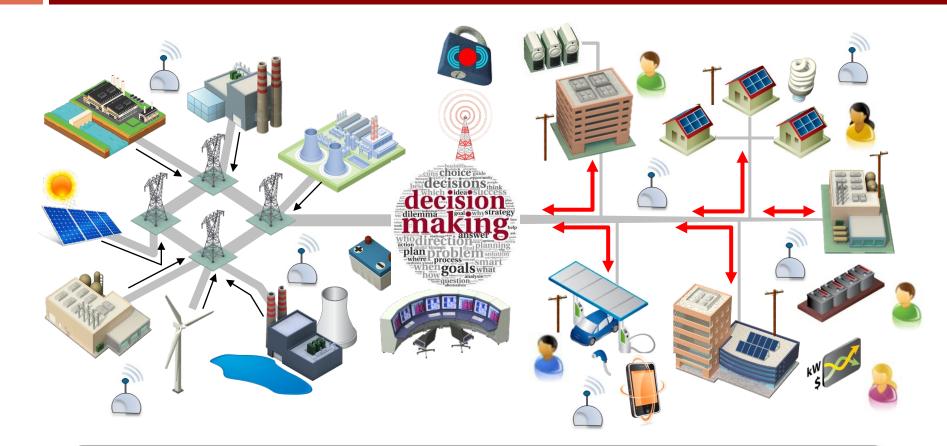
Shared energy community system vs individual system



NPVs of five houses for different storage size

Comparison of optimal storage sizes for different houses for individual and shared controlled strategies

NPVs of different storage sizes for shared strategy



Final Comments

- A shared based control strategy for a community system is proposed
- Solar power generation and electricity demand uncertainties are considered
- A method of capacity sizing of storages for the shared scheme
- Improvement on critical parameters such as electricity purchase costs, peak savings and PV usage on daily basis and reduction of the requirement of storage capacity

Final Comments - Integrated Vision

Present/Future Systems have to be highly Flexible, Resilient and Connected where Resources are Optimized

References

- 1) De Queiroz, Anderson Rodrigo, and David P. Morton. "Sharing cuts under aggregated forecasts when decomposing multi-stage stochastic programs." Operations Research Letters 41.3 (2013): 311-316.
- 2) Hafiz, F., de Queiroz, A. R., Husain, I., & Fajri, P. (2017, September). Charge scheduling of a plug-in electric vehicle considering load demand uncertainty based on multi-stage stochastic optimization. In 2017 North American Power Symposium (NAPS) (pp. 1-6). IEEE.
- Hafiz, F., de Queiroz, A. R., & Husain, I. (2017, October). Multi-stage stochastic optimization for a PV-storage hybrid unit in a household. In 2017 IEEE Industry Applications Society Annual Meeting (pp. 1-7). IEEE.
- 4) Hafiz, F., de Queiroz, A. R., & Husain, I. (2018, September). Coordinated control of PEV and PV-based storage system under generation and load uncertainties. In 2018 IEEE Industry Applications Society Annual Meeting (IAS) (pp. 1-5). IEEE.
- 5) Hafiz, F., de Queiroz, A. R., & Husain, I. (2018). Solar generation, storage, and electric vehicles in power grids: Challenges and solutions with coordinated control at the residential level. IEEE Electrification Magazine, 6(4), 83-90.

Thank You !

adequeiroz@nccu.edu ar_queiroz@yahoo.com.br https://arqueiroz.wordpress.ncsu.edu

Durham, April 2018

Department of Decision Sciences, School of Business

