ENERGY MANAGEMENT FOR A COMMUNITY
SHARED SOLAR PV-STORAGE SYSTEM UNDER
UNCERTAINTIES

Anderson Rodrigo de Queiroz, Ph.D.

N NORTH
iy CAROLINA

April 10™, 2018 Department of Decision Sciences, School of Business * it CENTRAL
et UNIVERSITY



Research Team

Anderson R. de Queiroz, Ph.D.

Faeza Hafiz, Prof. Igbal Husain, Ph.D.
Assistant Professor

Ph.D. candidate Director of the FREEDM Center

FREEZW:

SYSTEMS CENTER

-2 NORTH

p ity 3CHOOL OF
#'\;Te'ﬁ: UNIVERSITY BUSINESS




Overview

Coordination of Renewables in Power Systems

Modern Power Systems: Challenges and
Opportunities

Energy Management for a Single Household

Energy Management for a Community

Final Comments



Coordination of Renewables in Power Systems



Introduction
S

The main problem with renewable power is its dependence on
natural resources (may not be available when necessary)

Countries such Norway, Canada, Brazil, England, USA regions
(BPA concession area, Western Texas, North Carolina) present
significant amounts of renewable generation resources

Hydropower is an exception of these restrictions, since reservoirs
can store water and control generation

Other technologies associated with energy management
emerged over the years e.g. static batteries and electric vehicles

In this context, how to properly coordinate the use of resources
and manage energy use is a very important question



Solar Generation: An Energy Breakthrough

Solar energy is the most abundant energy
resource on earth — 173,000 terawatts of
solar energy strikes the Earth continuously.
That is more than 10,000 times the world's
total energy use | )

Life cycle greenhouse gas emissions from
solar energy is ~ 5-10% compared to non-
renewable sources ( )

Price dropping to ~$2/W (expected to be
< $1/W by 2025)
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Energy Storage: Key to Overcome Grid Challenges
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Mathematical Model Formulation

. T
min z=Y;_1|PgriadiCel]

Electricity ToU
from grid Rate

subjected to:
Equality constraints:

(i) Power Balance: Input and output power should be equivalent
w
Pgrid,t ] Pbch,t + Pbdisch:t — Psiack,t = |Pload,t| — Pth,t (Vte T)

! l | L

Charge Discharge Actual PV
Demand

(ii) Charge Balance: State of charge will change based on charging/ discharging power

SOC, = SOC,_4 + Pooco _ Prascns (VtET)
tr =17 Qpar  Qpdtn§
|

State of charge for
storage device




Defining Boundary Conditions
S

Inequality Constraint:

Storage device will be charged only from PV-generated power

w
Pbcht = PPVtt’Vt €T

Storage device will deliver power only to the household

Pbdlscht — Ploadt th eT

There will be no back-feeding of power to the grid
Pyriae =0,Vt€T

Upper and lower bounds:
S0Cy min < S0Ch < S0Ch max ,VELET

P"“” <Py, < Ppt VEET

min

max
baisch = PbdlSCh t — P Vt €T

Uncertainty generation:
PPVt - PPVt +pt PPVt' (l)tEVQt ,Vt E T



Uncertainty: A Challenge

Linear programming How to deal uncertainty

. But PV generation
or Dynamic —mm—p —_— with PV generation?

Programming could is not fixed 1

solve the problem

Stochastic Dual

Stochastic Dynamic programming

. ensures global minimum
Dynamic

Programming can 1

handle the i
andie The tssbe \ Face ‘Curse of dimensionality’

Requires a lot of time to calculate

Total Cost
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Require Huge memory
Cost

Storage




Stage-t Benders’ Master Problem
S —

Suppose we are at stage t under w and we have:

min CtXt + et max T[t (BtXt_l + bt) + ata
Xt,0¢ T, 0t
S.t. AtXy = BeXe—q + L s.t. A — oGy < ¢
Benders’ — — T
cuts =) -GtXt +e Gt > gt . O(t e O(t =1
Xt ) Gt 2 O O(tZ O

bt = Rt—lbt—l + Nt ‘ Unceriainiy

vec(Ng, ¢, By, Ay),t=2,...,Tare ||
cut-intercept

vector
Gy = Z pwt“lwtn?ﬂlBtﬂ ‘ cut-gradient matrix
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Sampling-based Decomposition Algorithm

Future Cost ( 6,)

Piecewise Linear
Function

Forward Pass
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b §

de Queiroz, A.R., Morton, D.P., (2013) Sharing | Operations

Research
Letters

Cuts under Aggregated Forecasts when
Decomposing Multi-stage Stochastic Programs,
Operations Research Lett, 41(3): 311-316




Control Scheme Evaluation

_
Original Scenario Tree
. How show that
A @ 1 > 3 _ the results are
- N >3 better using this
approach?
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SDDP Control for a Summer Day- PV Usage Policy
N

I I I T T —_
——Household load demand MOff Peak

— —= Forecasted solar power 03 |MPartial Peak

N W AR O

s | Peak
S i reak
@
2 i
[
o

11 ’ \ _

/ \
0 17 ! ! A !
o 4 8 12 16 20 24
Time(hr) 0 4 8 12 16 20 24
Household and solar generation profiles Time (hr)
ToU rate
Charge Threshold Discharge

Use all PV

T

PV+Storage

i /

I I )

08 - <
80.6— . %
o4t - o«
0.2 -
| | | | | | O
L ST ———, o 4 8 12 16 20 24

' Time(hr)
Time(hr) .
SOC profiles PV usage profiles



SDDP Control for a Summer Day- Electricity
Purchases from Grid
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Is the Proposed Approach Better?

Randomly independent scenarios to test the

performance of the different control policies in out-

of-sample cases
Then the average costs across the scenarios are
computed for each control strategy

Electricity purchase cost per day($)
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Hafiz, F., de Queiroz, A.R., Husain, .,

Multi-stage Stochastic Optimization for a PV-
Storage Hybrid Unit in a Household, Proceedings
of the IEEE-IAS Conference, 2017
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PEV: Introduction of a New Source of Storage
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Hafiz, F., de Queiroz, A.R., Husain, I, Fajri, P.,

Charge Scheduling of a Plug-in Electric Vehicle
Considering Load Demand Uncertainty based on Multi-
stage Stochastic Optimization, Proceedings of the IEEE

North American Power Symposium (NAPS), 2017
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Existing Methods, Limitations and Motivation

[P. Tian, 2016] , No uncertainty consideration
No Storage sizing method

No uncertainty consideration
[W. Tushar et al, 2016] — No Storage sizing method
Central storage is considered

A central community energy storage sizing method is proposed

[S. El-Batway et al., 2017] Distribution network’s reliability and flexibility are considered

[G. Ye et. al, 2017] —» Two different methods for optimal decision and revenue
division is considered
No storage sizing method is considered
P. Tian, X. Xiao, K. Wang, and R. Ding, “A Hierarchical Energy Management System Based on Hierarchical Optimization for
Microgrid Community Economic Operation,” IEEE Trans on Smart Grid, vol. 7, no. 5, pp. 2230-2241, Sept. 2016.

W. Tushar, B. Chai, C. Yuen, S. Huang, D. B. Smith, H. V. Poor and Z. Yang, “Energy Storage Sharing in Smart Grid: A Modified
Auction-Based Approach,” IEEE Trans on Smart Grid, vol. 7, no. 3, pp. 1462-1475, May 2016.

S. El-Batway, and W. G. Morsi, “Optimal Design of Community Battery Energy Storage Systems with Prosumers Owning Electric
Vehicles,” IEEE Trans on Ind. Informatics, Sept. 2017.

G. Ye, G. Li, D. Wu, X. Chen, and Y. Zhou, “Towards Cost Minimization With Renewable Energy Sharing in Cooperative Residential
Communities,” IEEE Access, vol. 5, pp. 11688-11699, 2017.

What is the exact size of storages e optimal control scheme
to be used in a scheme with several houses???




Cost Effective Energy Management for a

Shared Community
_
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Storage Capacity Sizing for Individual houses in

a Shared Community
-4
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Shared energy community system vs

individual system
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Shared energy community system vs

individual system
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Final Comments
-

A shared based control strategy for a community
system is proposed

Solar power generation and electricity demand
uncertainties are considered

A method of capacity sizing of storages for the
shared scheme

Improvement on critical parameters such as
electricity purchase costs, peak savings and PV
usage on daily basis and reduction of the
requirement of storage capacity



Final Comments - Integrated Vision

2}
)
R4

Present/Future Systems have to be highly Flexible,
Resilient and Connected where Resources are Optimized
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