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Outline

* Hydrothemal Scheduling Problem

= Model Formulation

* SBDA Multi-stage Scheme

= Solution Quality Evaluation in Multistage
Stochastic Programs



Hydrothermal Scheduling Problem

* Find the sequence of hydro releases and thermal
plant dispatches for a planning horizon in order to
match system demand

= Resource management
" Input variable forecasting

= (Operational aspects

= Basic economic criterion
= Minimize operational costs (present + expected future)

= Multi-stage Stochastic Linear Program



Stage t Benders’ Master Problem

* Suppose we are at stage t under w; and we have:

vec(n¢, ¢t, B, Ap), t = 2, ..., T are 1L
min ¢ x; + 0
Xt,gt

S.t. Arxy =Bixi_q + Pt ki : 1, —— Structural constraints

-ﬁtxt +e B, = g,
x; =0

oy — Benders’ cuts

bt = Re—1be—1 + ¢

X¢: stage t decision variables including: hydro generation, hydro
storage, spillage, thermal generation, energy transfers, load curtailment
Ay constraint matrix including energy balance, demand satisfaction

b¢: stochastic water inflow at each hydro plant
p¢: matrix to transform water into energy inflows
Bix;_q: storage from last stage

k; : deterministic demand



Sampling-based Decomposition Algorithm

1 Future cost (0
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Solution Quality Assessment

= Monte Carlo sitmulation — 1s used to assess if a
candidate solution (i.e., policy) 1s near optimal

(’ cannot solve the SP exactly

= When optimizing a sample-mean estimator we get
an optimistic bound for z*

* This implies a weak statement regarding quality of
candidate solution— Estimate may have large bias

* When bias 1s large it 1s not possible to be sure if a
candidate solution 1s near optimal



Confidence Interval Construction

Upper bound estimator (UBE)
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Lower bound estimator (LBE)

Let € = ty,—1S¢/\/Np and €, = 2,5y, /\/Ny
Output one-sided CI on EU — z*, [O , (Unu — Ln{,)+ + €p + eu]




Previous Results

Upper Bound Estimator ‘ Lower Bound Estimator

— e —

—~—

10 20 60 100 200 1000 2000 4000 8 15 45 75 150 750 1500 3000
number of branches n; number of branches n;

45.00%
40.00% - Confidence Interval Width

35.00% -

(0]

CI width was 6.41%

6 -
25.00% -
20.00% -
15.00% -
10.00% -
5.00% -
0.00% -

m Gap

m €y

m ey

10 20 60 100 200 1000 2000 4000

number of branches n;



Jackknite Estimators

= Jackknife 1s a technique developed by Quenouille in
1949 to estimate the bias of 8 (estimator)

= |t 1s also known as the “leave one out” procedure

= Resampling procedure (same class as Bootstrap)
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00 == 7
v (i2) .
®® == X%\ partial

00 == X.7)



Adaptive Jackknife Estimators

" In SAA the bias has O ( ) where p 1s unknown,
p € [ , 00) (Bayraksan et al. 2006)

* Following the i1dea of the generalized jackknife
estimators — adaptive jackknife estimators (AJE)
(Partani et al. 2006)

= [n AJE the order of the bias is not assumed to be
known when forming an estimator

— Applied to reduce bias 1n static and two-stage models



AJE Procedure in Multi-stage Setting

Full tree

Two trees
(1/2 scenarios)

Four trees
(1/4 scenarios)




AJE and LBE 1n Multi-stage

C - covariance of (Eﬁt, L, lA,,‘;Lt) s ="V"g, (l_,nt)(:'ng (Znt)




Application to the Brazilian Electric Power System

= 80% of generation capacity — hydro

— 150 hydro generators, 150 thermal generators

= Model Characteristics

— Optimization over 24 stages

— Aggregated reservoir scheme T

— Water inflow forecasts produced by a DLM
(Marangon Lima, 2011)

" We consider different sample sizes for the
same problem instance

- n, = 25600 for UBE
- ny, = 15 for LBE



AJE-M Results

Confidence Interval Width Comparison
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mRegular | 29.26% | 14.67% | 17.62% | 10.08% 8.97% 7.29% 5.63%
mJackknife| 27.70% | 13.19% | 16.82% 8.89% 8.81% 7.18% 4.97%

- Jackknife estimator reduced CI widths by a modest amount -



AJE-M Results

28.5%
27.0%
25.5%
24.0%
22.5%
21.0%
19.5%
18.0%
16.5%
15.0%
13.5%
12.0%
10.5%
9.0%
7.5%
6.0%
4.5%
3.0%
1.5%
0.0%

Confidence Interval Width with Jackknife

12

16

24

48

100

200

400

m Gap

15.86%

3.31%

8.29%

2.43%

3.17%

3.44%

2.05%

m El

10.83%

8.38%

7.10%

6.05%

4.55%

2.74%

1.88%

m Eu

0.79%

1.08%

1.07%

1.05%

0.99%

1.01%

1.05%

before



Final Remarks

The hydro-scheduling problem is a challenging multi-stage
stochastic optimization problem. SBDA handles the problem

We study the solution quality with respect to the true problem

We presented a procedure to assess the quality of the solution
using jackknife estimators in the multi-stage setting

The improvement from previous results are 1.44% which

means we are reducing the estimate of the optimality gap by
$29,526,897.24 over a period of 2 years
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