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Hydrothermal Scheduling Problem

§ Find the sequence of hydro releases and thermal 
plant dispatches for a planning horizon in order to 
match system demand
§ Resource management

§ Input variable forecasting

§ Operational aspects

§ Basic economic criterion 
§ Minimize operational costs (present + expected future)

§ Multi-stage Stochastic Linear Program



Stage 𝑡 Benders’ Master Problem
§ Suppose we are at stage 𝑡 under 𝜔! and we have:

min
!!,#!

𝑐$𝑥$ + 𝜃$
𝑠. 𝑡. 𝐴$𝑥$ = 𝐵$𝑥$%& + 𝜌$ 𝑏$ + 𝑘$ ∶ 𝜋$

-�⃗�$𝑥$ +𝑒 𝜃$ ≥ �⃗�$ ∶ 𝛼$
𝑥$ ≥ 0 𝑏! = 𝑅!"#𝑏!"# + 𝜂!

𝑣𝑒𝑐(𝜂!, 𝑐!, 𝐵!, 𝐴!), 𝑡 = 2,… , 𝑇 are 

𝑥!: stage 𝑡 decision variables including: hydro generation, hydro
storage, spillage, thermal generation, energy transfers, load curtailment

𝐴!: constraint matrix including energy balance, demand satisfaction

𝑏!: stochastic water inflow at each hydro plant
𝜌!: matrix to transform water into energy inflows
𝐵!𝑥!"#: storage from last stage
𝑘! : deterministic demand

Structural constraints

Benders’ cuts



Sampling-based Decomposition Algorithm

Inventory (𝐱𝐭)

Future Cost (𝛉𝐭)

Piecewise Linear 
Function

Forward Pass Backward Pass
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Solution Quality Assessment

§ Monte Carlo simulation → is used to assess if a 
candidate solution (i.e., policy) is near optimal

§ When optimizing a sample-mean estimator we get 
an optimistic bound for 𝑧∗

§ This implies a weak statement regarding quality of 
candidate solution

§ When bias is large it is not possible to be sure if a 
candidate solution is near optimal

cannot solve the SP exactly

Estimate may have large bias



Confidence Interval Construction

Let 𝜖ℓ = 𝑡%ℓ"#𝑆ℓ/ 𝑛ℓ and 𝜖& = 𝑧'𝑆&/ 𝑛&
Output one-sided CI on 𝔼𝑼 − 𝒛∗, 0 , 𝑈%' − 𝐿%ℓ

) + 𝜖ℓ + 𝜖&

Lower bound estimator (LBE) Upper bound estimator (UBE) 
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Jackknife Estimators

§ Jackknife is a technique developed by Quenouille in 
1949 to estimate the bias of $𝜃 (estimator)

§ It is also known as the “leave one out” procedure 
§ Resampling procedure (same class as Bootstrap)

§ Reduce bias of 𝑂 D
E

...

parameter 
estimation

sample

...

...

...

... ...

%𝑋"

#𝑋"#$
(&!)

#𝑋"#$
(&")

#𝑋"#$
(&#)

#𝑋"#$
(&$)

partial
estimates

...



Adaptive Jackknife Estimators

§ In SAA the bias has 𝑂 D
E!

where 𝑝 is unknown, 

𝑝 ∈ [D
F
, ∞) (Bayraksan et al. 2006)

§ Following the idea of the generalized jackknife 
estimators → adaptive jackknife estimators (AJE) 
(Partani et al. 2006)

§ In AJE the order of the bias is not assumed to be 
known when forming an estimator
– Applied to reduce bias in static and two-stage models



AJE Procedure in Multi-stage Setting
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AJE and LBE in Multi-stage
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Application to the Brazilian Electric Power System

§ 80% of generation capacity → hydro
– 150 hydro generators, 150 thermal generators

§ Model Characteristics
– Optimization over 24 stages 

– Aggregated reservoir scheme

– Water inflow forecasts produced by a DLM 
(Marangon Lima, 2011)

§ We consider different sample sizes for the 
same problem instance
– 𝒏𝒖 = 𝟐𝟓𝟔𝟎𝟎 for UBE

– 𝒏ℓ = 𝟏𝟓 for LBE



AJE-M Results

- Jackknife estimator reduced CI widths by a modest amount -

12 16 24 48 100 200 400
Regular 29.26% 14.67% 17.62% 10.08% 8.97% 7.29% 5.63%
Jackknife 27.70% 13.19% 16.82% 8.89% 8.81% 7.18% 4.97%
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12 16 24 48 100 200 400
Gap 15.86% 3.31% 8.29% 2.43% 3.17% 3.44% 2.05%
El 10.83% 8.38% 7.10% 6.05% 4.55% 2.74% 1.88%
Eu 0.79% 1.08% 1.07% 1.05% 0.99% 1.01% 1.05%
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Final Remarks

§ The hydro-scheduling problem is a challenging multi-stage 
stochastic optimization problem. SBDA handles the problem 

§ We study the solution quality with respect to the true problem

§ We presented a procedure to assess the quality of the solution 
using jackknife estimators in the multi-stage setting

§ The improvement from previous results are 1.44% which 
means we are reducing the estimate of the optimality gap by  
$29,526,897.24 over a period of 2 years
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